
PRODUCT DOCUMENTATION
Greenplum® Database
Version 4.3

System Administrator Guide
Rev: A01

© 2013 GoPivotal, Inc.

Copyright © 2013 GoPivotal, Inc. All rights reserved.

GoPivotal, Inc. believes the information in this publication is accurate as of its publication date. The
information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED "AS IS." GOPIVOTAL, INC. ("Pivotal") MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION IN THIS
PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any Pivotal software described in this publication requires an applicable
software license.

All trademarks used herein are the property of Pivotal or their respective owners.

Revised November 2013 (4.3.0.0)

Greenplum Database System Administrator Guide 4.3 – Contents
Greenplum Database System Administrator Guide - 4.3 -
Contents

Preface ... 1
About This Guide.. 1
About the Greenplum Database Documentation Set 1
Document Conventions .. 2

Text Conventions.. 2
Command Syntax Conventions ... 3

Getting Support ... 3
Product information .. 3
Technical support ... 4

Chapter 1: About the Greenplum Architecture 5
About the Greenplum Master.. 6
About the Greenplum Segments... 6
About the Greenplum Interconnect .. 6
About Redundancy and Failover in Greenplum Database 7

About Segment Mirroring.. 7
About Master Mirroring ... 8
About Interconnect Redundancy ... 8

About Parallel Data Loading ... 9
About Management and Monitoring .. 9

Chapter 2: Starting and Stopping Greenplum11
Overview...11
Starting Greenplum Database ...11

Restarting Greenplum Database ..11
Uploading Configuration File Changes Only................................12
Starting the Master in Maintenance Mode12

Stopping Greenplum Database ..12

Chapter 3: Configuring Your Greenplum System...................14
About Greenplum Master and Local Parameters14
Setting Configuration Parameters..14

Setting a Local Configuration Parameter14
Setting a Master Configuration Parameter15

Viewing Server Configuration Parameter Settings16
Configuration Parameter Categories ..16

Connection and Authentication Parameters................................17
System Resource Consumption Parameters17
Query Tuning Parameters ..18
Error Reporting and Logging Parameters20
System Monitoring Parameters ..20
Runtime Statistics Collection Parameters21
Automatic Statistics Collection Parameters21
Client Connection Default Parameters..22
Lock Management Parameters ...22
Workload Management Parameters..22
External Table Parameters...23
Append-Optimized Table Parameters ...23
iii

Greenplum Database System Administrator Guide 4.3 – Contents
Database and Tablespace/Filespace Parameters23
Past PostgreSQL Version Compatibility Parameters....................23
Greenplum Array Configuration Parameters...............................23
Greenplum Master Mirroring Parameters....................................24

Chapter 4: Enabling High Availability Features......................25
Overview of High Availability in Greenplum Database......................25

Overview of Segment Mirroring ...25
Overview of Master Mirroring...26
Overview of Fault Detection and Recovery.................................27

Enabling Mirroring in Greenplum Database......................................27
Enabling Segment Mirroring...27
Enabling Master Mirroring ..28

Detecting a Failed Segment...29
Enabling Alerts and Notifications..29
Checking for Failed Segments..30
Checking the Log Files ...30

Recovering a Failed Segment ..31
Recovering From Segment Failures..32

Recovering a Failed Master..35
Restoring Master Mirroring After a Recovery..............................35

Chapter 5: Backing Up and Restoring Databases37
Backup and Restore Operations...37

Parallel Backup Support...37
Non-Parallel Backup Support ...38
Parallel Restores ..38
Non-Parallel Restores ..39

Backing Up a Database ...39
Incremental Backup Support ...40
Using Direct I/O...42
Using Data Domain Boost ..43
Using Named Pipes ..46
Backing Up a Database with gp_dump.......................................47
Automating Parallel Backups with gpcrondump..........................48

Restoring From Parallel Backup Files ...49
Restoring a Database with gp_restore50
Restoring a Database Using gpdbrestore51
Restoring to a Different Greenplum System Configuration51

Chapter 6: Expanding a Greenplum System............................53
Planning Greenplum System Expansion...53

System Expansion Overview..53
System Expansion Checklist ..55
Planning New Hardware Platforms ...56
Planning New Segment Initialization ..56
Planning Table Redistribution...58

Preparing and Adding Nodes ...60
Adding New Nodes to the Trusted Host Environment60
Verifying OS Settings...61
Validating Disk I/O and Memory Bandwidth62
iv

Greenplum Database System Administrator Guide 4.3 – Contents
Integrating New Hardware into the System62
Initializing New Segments ...62

Creating an Input File for System Expansion62
Running gpexpand to Initialize New Segments65
Rolling Back an Failed Expansion Setup66

Redistributing Tables...66
Ranking Tables for Redistribution ..66
Redistributing Tables Using gpexpand..67
Monitoring Table Redistribution..67

Removing the Expansion Schema..68

Chapter 7: Monitoring a Greenplum System69
Monitoring Database Activity and Performance................................69
Monitoring System State ...69

Enabling System Alerts and Notifications70
Checking System State..76
Checking Disk Space Usage ...77
Checking for Data Distribution Skew..78
Viewing Metadata Information about Database Objects79
Viewing Query Workfile Usage Information80

Viewing the Database Server Log Files ..80
Log File Format..80
Searching the Greenplum Database Server Log Files82

Using gp_toolkit ..82

Chapter 8: Routine System Maintenance Tasks83
Routine Vacuum and Analyze ..83

Transaction ID Management ..83
System Catalog Maintenance...84
Vacuum and Analyze for Query Optimization85

Routine Reindexing ...85
Managing Greenplum Database Log Files ..86

Database Server Log Files ...86
Management Utility Log Files ...86

Chapter 9: Kerberos Authentication..87
Requirements for using Kerberos with Greenplum Database88
Installing and Configuring a Kerberos KDC Server...........................89

Creating Greenplum Database Roles in the KDC Database.........89
Installing and Configuring the Kerberos Client.................................90

Setting up Greenplum Database with Kerberos for PSQL91
Setting up Greenplum Database with Kerberos for JDBC92

Sample Kerberos Configuration File...93
krb5.conf Configuration File ...93
v

Greenplum Database System Administrator Guide 4.3 – Preface
Preface
This guide provides information for system administrators responsible for
administering a Greenplum Database system.

• About This Guide

• Document Conventions

• Getting Support

About This Guide
This guide describes system administration tasks for Greenplum Database, such as
configuring the server, monitoring system activity, enabling high-availability, backing
up and restoring databases, and other routine system administration tasks.

This guide assumes knowledge of Linux/UNIX system administration and database
management systems. Familiarity with structured query language (SQL) is helpful.

Because Greenplum Database is based on PostgreSQL 8.2.15, this guide assumes
some familiarity with PostgreSQL. References to PostgreSQL documentation are
provided throughout this guide for features that are similar to those in Greenplum
Database.

About the Greenplum Database Documentation Set
The Greenplum Database 4.3 documentation set consists of the following guides.

Table 1 Greenplum Database documentation set

Guide Name Description

Greenplum Database Database
Administrator Guide

Every day DBA tasks such as configuring access control and
workload management, writing queries, managing data,
defining database objects, and performance troubleshooting.

Greenplum Database System
Administrator Guide

Describes the Greenplum Database architecture and concepts
such as parallel processing, and system administration tasks
for Greenplum Database such as configuring the server,
monitoring system activity, enabling high-availability, backing
up and restoring databases, and expanding the system.

Greenplum Database Reference
Guide

Reference information for Greenplum Database systems: SQL
commands, system catalogs, environment variables, character
set support, datatypes, the Greenplum MapReduce
specification, postGIS extension, server parameters, the
gp_toolkit administrative schema, and SQL 2008 support.

Greenplum Database Utility
Guide

Reference information for command-line utilities, client
programs, and Oracle compatibility functions.

Greenplum Database
Installation Guide

Information and instructions for installing and initializing a
Greenplum Database system.
About This Guide 1

http://www.postgresql.org/docs/8.2/static/index.html

Greenplum Database System Administrator Guide 4.3 – Preface
Document Conventions
The following conventions are used throughout the Greenplum Database
documentation to help you identify certain types of information.

• Text Conventions

• Command Syntax Conventions

Text Conventions

Table 2 Text Conventions

Text Convention Usage Examples

bold Button, menu, tab, page, and field
names in GUI applications

Click Cancel to exit the page without
saving your changes.

italics New terms where they are defined

Database objects, such as schema,
table, or columns names

The master instance is the postgres
process that accepts client
connections.

Catalog information for Greenplum
Database resides in the pg_catalog
schema.

monospace File names and path names

Programs and executables

Command names and syntax

Parameter names

Edit the postgresql.conf file.

Use gpstart to start Greenplum
Database.

monospace italics Variable information within file
paths and file names

Variable information within
command syntax

/home/gpadmin/config_file

COPY tablename FROM
'filename'

monospace bold Used to call attention to a particular
part of a command, parameter, or
code snippet.

Change the host name, port, and
database name in the JDBC
connection URL:

jdbc:postgresql://host:5432/m
ydb

UPPERCASE Environment variables

SQL commands

Keyboard keys

Make sure that the Java /bin
directory is in your $PATH.

SELECT * FROM my_table;

Press CTRL+C to escape.
Document Conventions 2

Greenplum Database System Administrator Guide 4.3 – Preface
Command Syntax Conventions

Table 3 Command Syntax Conventions

Text Convention Usage Examples

{ } Within command syntax, curly
braces group related command
options. Do not type the curly
braces.

FROM { 'filename' | STDIN }

[] Within command syntax, square
brackets denote optional
arguments. Do not type the
brackets.

TRUNCATE [TABLE] name

... Within command syntax, an ellipsis
denotes repetition of a command,
variable, or option. Do not type the
ellipsis.

DROP TABLE name [, ...]

| Within command syntax, the pipe
symbol denotes an “OR”
relationship. Do not type the pipe
symbol.

VACUUM [FULL | FREEZE]

$ system_command

root_system_command

=> gpdb_command

=# su_gpdb_command

Denotes a command prompt - do
not type the prompt symbol. $ and
denote terminal command
prompts. => and =# denote
Greenplum Database interactive
program command prompts (psql
or gpssh, for example).

$ createdb mydatabase

chown gpadmin -R /datadir

=> SELECT * FROM mytable;

=# SELECT * FROM pg_database;

Getting Support
EMC support, product, and licensing information can be obtained as follows.

Product information
For product-specific documentation, release notes, or software updates, go to the
EMC Online Support site at support.emc.com.

For information about EMC products, licensing, and service, go to the EMC
Powerlink website (registration required) at http://Powerlink.EMC.com.
Getting Support 3

http://support.emc.com/
http://Powerlink.EMC.com

Greenplum Database System Administrator Guide 4.3 – Preface
Technical support
For technical support, go to EMC Online Support. On the Support page, you will see
several options, including one for making a service request. Note that to open a service
request, you must have a valid support agreement. Please contact your EMC sales
representative for details about obtaining a valid support agreement or with questions
about your account.
Getting Support 4

http://support.emc.com/

Greenplum Database System Administrator Guide 4.3 – Chapter 1: About the Greenplum Architecture
1. About the Greenplum Architecture

Greenplum Database stores and processes large amounts of data by distributing the
data and processing workload across several servers or hosts. Greenplum Database is
an array of individual databases based upon PostgreSQL 8.2 working together to
present a single database image. The master is the entry point to the Greenplum
Database system. It is the database instance to which clients connect and submit SQL
statements. The master coordinates its work with the other database instances in the
system, called segments, which store and process the data.

Figure 1.1 High-Level Greenplum Database Architecture

This section describes the components that make up a Greenplum Database system
and how they work together:

• About the Greenplum Master

• About the Greenplum Segments

• About the Greenplum Interconnect

• About Redundancy and Failover in Greenplum Database

• About Parallel Data Loading

• About Management and Monitoring
5

Greenplum Database System Administrator Guide 4.3 – Chapter 1: About the Greenplum Architecture
About the Greenplum Master
The master is the entry point to the Greenplum Database system. It is the database
process that accepts client connections and processes SQL commands that system
users issue.

Greenplum Database end-users interact with Greenplum Database (through the
master) as they would with a typical PostgreSQL database. They connect to the
database using client programs such as psql or application programming interfaces
(APIs) such as JDBC or ODBC.

The master is where the global system catalog resides. The global system catalog is
the set of system tables that contain metadata about the Greenplum Database system
itself. The master does not contain any user data; data resides only on the segments.
The master authenticates client connections, processes incoming SQL commands,
distributes workload among segments, coordinates the results returned by each
segment, and presents the final results to the client program.

About the Greenplum Segments
In Greenplum Database, the segments are where data is stored and the majority of
query processing takes place. When a user connects to the database and issues a query,
processes are created on each segment to handle the work of that query. For more
information about query processes, see the Greenplum Database Database
Administrator Guide.

User-defined tables and their indexes are distributed across the available segments in a
Greenplum Database system; each segment contains a distinct portion of data. The
database server processes that serve segment data run under the corresponding
segment instances. Users interact with segments in a Greenplum Database system
through the master.

In the recommended Greenplum Database hardware configuration, there is one active
segment per effective CPU or CPU core. For example, if your segment hosts have two
dual-core processors, you would have four primary segments per host.

About the Greenplum Interconnect
The interconnect is the networking layer of Greenplum Database. The interconnect
refers to the inter-process communication between segments and the network
infrastructure on which this communication relies. The Greenplum interconnect uses a
standard Gigabit Ethernet switching fabric.

By default, the interconnect uses User Datagram Protocol (UDP) to send messages
over the network. The Greenplum software performs packet verification beyond what
is provided by UDP. This means the reliability is equivalent to Transmission Control
Protocol (TCP), and the performance and scalability exceeds TCP. If the interconnect
used TCP, Greenplum Database would have a scalability limit of 1000 segment
instances. With UDP as the current default protocol for the interconnect, this limit is
not applicable.
About the Greenplum Master 6

Greenplum Database System Administrator Guide 4.3 – Chapter 1: About the Greenplum Architecture
About Redundancy and Failover in Greenplum Database
You can deploy Greenplum Database without a single point of failure. This section
explains the redundancy components of Greenplum Database.

• About Segment Mirroring

• About Master Mirroring

• About Interconnect Redundancy

About Segment Mirroring
When you deploy your Greenplum Database system, you can optionally configure
mirror segments. Mirror segments allow database queries to fail over to a backup
segment if the primary segment becomes unavailable. To configure mirroring, you
must have enough hosts in your Greenplum Database system so the secondary
(mirror) segment always resides on a different host than its primary segment. Figure
1.2 shows how table data is distributed across segments when mirroring is
configured..

Figure 1.2 Data Mirroring in Greenplum Database

Segment Failover and Recovery
When mirroring is enabled in a Greenplum Database system, the system will
automatically fail over to the mirror copy if a primary copy becomes unavailable. A
Greenplum Database system can remain operational if a segment instance or host goes
down as long as all the data is available on the remaining active segments.

If the master cannot connect to a segment instance, it marks that segment instance as
down in the Greenplum Database system catalog and brings up the mirror segment in
its place. A failed segment instance will remain out of operation until an administrator
takes steps to bring that segment back online. An administrator can recover a failed
segment while the system is up and running. The recovery process copies over only
the changes that were missed while the segment was out of operation.
About Redundancy and Failover in Greenplum Database 7

Greenplum Database System Administrator Guide 4.3 – Chapter 1: About the Greenplum Architecture
If you do not have mirroring enabled, the system will automatically shut down if a
segment instance becomes invalid. You must recover all failed segments before
operations can continue.

About Master Mirroring
You can also optionally deploy a backup or mirror of the master instance on a separate
host from the master node. A backup master host serves as a warm standby in the
event that the primary master host becomes unoperational. The standby master is kept
up to date by a transaction log replication process, which runs on the standby master
host and synchronizes the data between the primary and standby master hosts.

If the primary master fails, the log replication process stops, and the standby master
can be activated in its place. Upon activation of the standby master, the replicated logs
are used to reconstruct the state of the master host at the time of the last successfully
committed transaction. The activated standby master effectively becomes the
Greenplum Database master, accepting client connections on the master port (which
must be set to the same port number on the master host and the backup master host).

Since the master does not contain any user data, only the system catalog tables need to
be synchronized between the primary and backup copies. When these tables are
updated, changes are automatically copied over to the standby master to ensure
synchronization with the primary master.

Figure 1.3 Master Mirroring in Greenplum Database

About Interconnect Redundancy
The interconnect refers to the inter-process communication between the segments and
the network infrastructure on which this communication relies. You can achieve a
highly available interconnect by deploying dual Gigabit Ethernet switches on your
network and redundant Gigabit connections to the Greenplum Database host (master
and segment) servers.
About Redundancy and Failover in Greenplum Database 8

Greenplum Database System Administrator Guide 4.3 – Chapter 1: About the Greenplum Architecture
About Parallel Data Loading
In a large scale, multi-terabyte data warehouse, large amounts of data must be loaded
within a relatively small maintenance window. Greenplum supports fast, parallel data
loading with its external tables feature. Administrators can also load external tables in
single row error isolation mode to filter bad rows into a separate error table while
continuing to load properly formatted rows. Administrators can specify an error
threshold for a load operation to control how many improperly formatted rows cause
Greenplum to abort the load operation.

By using external tables in conjunction with Greenplum Database’s parallel file server
(gpfdist), administrators can achieve maximum parallelism and load bandwidth
from their Greenplum Database system.

Figure 1.4 External Tables Using Greenplum Parallel File Server (gpfdist)

About Management and Monitoring
Administrators manage a Greenplum Database system using command-line utilities
located in $GPHOME/bin. Greenplum provides utilities for the following
administration tasks:

• Installing Greenplum Database on an Array

• Initializing a Greenplum Database System

• Starting and Stopping Greenplum Database

• Adding or Removing a Host

• Expanding the Array and Redistributing Tables among New Segments

• Managing Recovery for Failed Segment Instances

• Managing Failover and Recovery for a Failed Master Instance
About Parallel Data Loading 9

Greenplum Database System Administrator Guide 4.3 – Chapter 1: About the Greenplum Architecture
• Backing Up and Restoring a Database (in Parallel)

• Loading Data in Parallel

• System State Reporting

Greenplum provides an optional system monitoring and management tool that
administrators can install and enable with Greenplum Database. Greenplum
Command Center uses data collection agents on each segment host to collect and store
Greenplum system metrics in a dedicated database. Segment data collection agents
send their data to the Greenplum master at regular intervals (typically every 15
seconds). Users can query the Command Center database to see query and system
metrics. Greenplum Command Center has a graphical web-based user interface for
viewing system metrics, which administrators can install separately from Greenplum
Database.

Figure 1.5 Greenplum Command Center Architecture

 For more information, see the Greenplum Command Center documentation.
About Management and Monitoring 10

Greenplum Database System Administrator Guide 4.3 – Chapter 2: Starting and Stopping Greenplum
2. Starting and Stopping Greenplum

This chapter describes how to start, stop, and restart a Greenplum Database system.
This chapter contains the following topics:

• Overview

• Starting Greenplum Database

• Stopping Greenplum Database

Overview
Because a Greenplum Database system is distributed across many machines, the
process for starting and stopping a Greenplum database management system (DBMS)
is different than the process for starting and stopping a regular PostgreSQL DBMS.

In a Greenplum Database DBMS, each database server instance (the master and all
segments) must be started or stopped across all of the hosts in the system in such a
way that they can all work together as a unified DBMS.

Use the gpstart and gpstop utilities to start and stop the Greenplum database,
respectively. These utilities are located in $GPHOME/bin of your Greenplum Database
master host installation.

Important: Do not issue a KILL command to end any Postgres process. Instead, use
the database command pg_cancel_backend().

For information about gpstart and gpstop, see the Greenplum Database Utility
Guide.

Starting Greenplum Database
Use the gpstart utility to start a Greenplum Database that has already been
initialized by the gpinitsystem utility, but has been stopped by the gpstop utility.
The gpstart utility starts the Greenplum Database by starting all the Postgres
database instances of the Greenplum Database cluster. gpstart orchestrates this
process and performs the process in parallel.

To start Greenplum Database
$ gpstart

Restarting Greenplum Database
The gpstop utility with the -r option can stop and then restart Greenplum Database
after the shutdown completes.

To restart Greenplum Database

$ gpstop -r
Overview 11

Greenplum Database System Administrator Guide 4.3 – Chapter 2: Starting and Stopping Greenplum
Uploading Configuration File Changes Only
The gpstop utility can upload changes to the pg_hba.conf configuration file and to
runtime parameters in the master postgresql.conf file without service interruption.
Active sessions pick up changes when they reconnect to the database. Many server
configuration parameters require a full system restart (gpstop -r) to activate. For
information about server configuration parameters, see the Greenplum Database
Reference Guide.

To upload runtime configuration file changes without restarting

$ gpstop -u

Starting the Master in Maintenance Mode
You can start only the master to perform maintenance or administrative tasks without
affecting data on the segments. For example, you can connect to a database only on
the master instance in utility mode and edit system catalog settings. For more
information about system catalog tables, see the Greenplum Database Reference
Guide.

To start the master in utility mode

1. Run gpstart using the -m option:

$ gpstart -m

2. Connect to the master in utility mode to do catalog maintenance. For example:

$ PGOPTIONS='-c gp_session_role=utility' psql template1

3. After completing your administrative tasks, stop the master in utility mode. Then,
restart it in production mode.

$ gpstop -m

Warning: Incorrect use of maintenance mode connections can result in an
inconsistent system state. Only Technical Support should perform this operation.

Stopping Greenplum Database
The gpstop utility stops or restarts your Greenplum Database system and always runs
on the master host. When activated, gpstop stops all postgres processes in the
system, including the master and all segment instances.

The gpstop utility uses a default of up to 64 parallel worker threads to bring down the
Postgres instances that make up the Greenplum Database cluster. The system waits for
any active transactions to finish before shutting down. To stop Greenplum Database
immediately, use fast mode.
Stopping Greenplum Database 12

Greenplum Database System Administrator Guide 4.3 – Chapter 2: Starting and Stopping Greenplum
To stop Greenplum Database

$ gpstop

To stop Greenplum Database in fast mode

$ gpstop -M fast
Stopping Greenplum Database 13

Greenplum Database System Administrator Guide 4.3 – Chapter 3: Configuring Your Greenplum System
3. Configuring Your Greenplum System

Server configuration parameters affect the behavior of Greenplum Database. Most are
the same as PostgreSQL configuration parameters; some are Greenplum-specific.

• About Greenplum Master and Local Parameters

• Setting Configuration Parameters

• Configuration Parameter Categories

About Greenplum Master and Local Parameters
Server configuration files contain parameters that configure server behavior. The
Greenplum Database configuration file, postgresql.conf, resides in the data
directory of the database instance.

The master and each segment instance have their own postgresql.conf file. Some
parameters are local: each segment instance examines its postgresql.conf file to
get the value of that parameter. Set local parameters on the master and on each
segment instance.

Other parameters are master parameters that you set on the master instance. The value
is passed down to (or in some cases ignored by) the segment instances at query run
time.

See the Greenplum Database Reference Guide for information about local and master
server configuration parameters.

Setting Configuration Parameters
Many configuration parameters limit who can change them and where or when they
can be set. For example, to change certain parameters, you must be a Greenplum
Database superuser. Other parameters can be set only at the system level in the
postgresql.conf file or require a system restart to take effect.

Many configuration parameters are session parameters. You can set session
parameters at the system level, the database level, the role level or the session level.
Database users can change most session parameters within their session, but some
require superuser permissions. See the Greenplum Database Reference Guide for
information about setting server configuration parameters.

Setting a Local Configuration Parameter
To change a local configuration parameter across multiple segments, update the
parameter in the postgresql.conf file of each targeted segment, both primary and
mirror. Use the gpconfig utility to set a parameter in all Greenplum
postgresql.conf files. For example:

$ gpconfig -c gp_vmem_protect_limit -v 4096MB
About Greenplum Master and Local Parameters 14

Greenplum Database System Administrator Guide 4.3 – Chapter 3: Configuring Your Greenplum System
Restart Greenplum Database to make the configuration changes effective:

$ gpstop -r

Setting a Master Configuration Parameter
To set a master configuration parameter, set it at the Greenplum master instance. If it
is also a session parameter, you can set the parameter for a particular database, role or
session. If a parameter is set at multiple levels, the most granular level takes
precedence. For example, session overrides role, role overrides database, and database
overrides system.

Setting Parameters at the System Level
Master parameter settings in the master postgresql.conf file are the system-wide
default. To set a master parameter:

1. Edit the $MASTER_DATA_DIRECTORY/postgresql.conf file.

2. Find the parameter to set, uncomment it (remove the preceding # character), and
type the desired value.

3. Save and close the file.

4. For session parameters that do not require a server restart, upload the
postgresql.conf changes as follows:

$ gpstop -u

5. For parameter changes that require a server restart, restart Greenplum Database as
follows:

$ gpstop -r

For details about the server configuration parameters, see the Greenplum Database
Reference Guide.

Setting Parameters at the Database Level
Use ALTER DATABASE to set parameters at the database level. For example:

=# ALTER DATABASE mydatabase SET search_path TO myschema;

When you set a session parameter at the database level, every session that connects to
that database uses that parameter setting. Settings at the database level override
settings at the system level.

Setting Parameters at the Role Level
Use ALTER ROLE to set a parameter at the role level. For example:

=# ALTER ROLE bob SET search_path TO bobschema;

When you set a session parameter at the role level, every session initiated by that role
uses that parameter setting. Settings at the role level override settings at the database
level.
Setting Configuration Parameters 15

Greenplum Database System Administrator Guide 4.3 – Chapter 3: Configuring Your Greenplum System
Setting Parameters in a Session
Any session parameter can be set in an active database session using the SET
command. For example:

=# SET work_mem TO '200MB';

The parameter setting is valid for the rest of that session or until you issue a RESET
command. For example:

=# RESET work_mem;

Settings at the session level override those at the role level.

Viewing Server Configuration Parameter Settings
The SQL command SHOW allows you to see the current server configuration parameter
settings. For example, to see the settings for all parameters:

$ psql -c 'SHOW ALL;'

SHOW lists the settings for the master instance only. To see the value of a particular
parameter across the entire system (master and all segments), use the gpconfig
utility. For example:

$ gpconfig --show max_connections

Configuration Parameter Categories
Configuration parameters affect categories of server behaviors, such as resource
confumption, query tuning, and authentication. This section describes Greenplum
configuration parameter categories. For details about configuration parameter
categories, see the Greenplum Database Reference Guide.

• Connection and Authentication Parameters

• System Resource Consumption Parameters

• Query Tuning Parameters

• Error Reporting and Logging Parameters

• System Monitoring Parameters

• Runtime Statistics Collection Parameters

• Automatic Statistics Collection Parameters

• Client Connection Default Parameters

• Lock Management Parameters

• Workload Management Parameters

• External Table Parameters

• Past PostgreSQL Version Compatibility Parameters

• Greenplum Array Configuration Parameters

• Greenplum Master Mirroring Parameters
Viewing Server Configuration Parameter Settings 16

Greenplum Database System Administrator Guide 4.3 – Chapter 3: Configuring Your Greenplum System
Connection and Authentication Parameters
These parameters control how clients connect and authenticate to Greenplum
Database. See the Greenplum Database Database Administrator Guide for
information about configuring client authentication.

Connection Parameters

• gp_vmem_idle_resource_timeout

• listen_addresses

• max_connections

• max_prepared_transactions

• superuser_reserved_connections

• tcp_keepalives_count

• tcp_keepalives_idle

• tcp_keepalives_interval

• unix_socket_directory

• unix_socket_group

• unix_socket_permissions

Security and Authentication Parameters

• authentication_timeout

• db_user_namespace

• krb_caseins_users

• krb_server_keyfile

• krb_srvname

• password_encryption

• ssl

• ssl_ciphers

System Resource Consumption Parameters

Memory Consumption Parameters
These parameters control system memory usage. You can adjust
gp_vmem_protect_limit to avoid running out of memory at the segment hosts
during query processing.

• gp_vmem_idle_resource_timeout

• gp_vmem_protect_limit

• gp_vmem_protect_segworker_cache_limit

• gp_workfile_limit_per_query

• gp_workfile_limit_per_segment

• max_appendonly_tables

• max_prepared_transactions

• max_stack_depth

• shared_buffers

• temp_buffers

Free Space Map Parameters
These parameters control the sizing of the free space map, which contains expired
rows. Use VACUUM to reclaim the free space map disk space. See Chapter 8, “Routine
System Maintenance Tasks” for information about vacuuming a database.

• max_fsm_pages

• max_fsm_relations
Configuration Parameter Categories 17

Greenplum Database System Administrator Guide 4.3 – Chapter 3: Configuring Your Greenplum System
OS Resource Parameters
• max_files_per_process

• shared_preload_libraries

Cost-Based Vacuum Delay Parameters
Warning: Pivotal does not recommend cost-based vacuum delay because it runs
asynchronously anong the segment instances. The vacuum cost limit and delay is
invoked at the segment level without taking into account the state of the entire
Greenplum array

You can configure the execution cost of VACUUM and ANALYZE commands to reduce
the I/O impact on concurrent database activity. When the accumulated cost of I/O
operations reaches the limit, the process performing the operation sleeps for a while,
Then resets the counter and continues execution

• vacuum_cost_delay

• vacuum_cost_limit

• vacuum_cost_page_dirty

• vacuum_cost_page_hit

• vacuum_cost_page_miss

Transaction ID Management Parameters
• xid_stop_limit

• xid_warn_limit

Query Tuning Parameters

Query Plan Operator Control Parameters
The following parameters control the types of plan operations the query planner can
use. Enable or disable plan operations to force the planner to choose a different plan.
This is useful for testing and comparing query performance using different plan types.

• enable_bitmapscan

• enable_groupagg

• enable_hashagg

• enable_hashjoin

• enable_indexscan

• enable_mergejoin

• enable_nestloop

• enable_seqscan

• enable_sort

• enable_tidscan

• gp_enable_adaptive_nestloop

• gp_enable_agg_distinct

• gp_enable_agg_distinct_pruning

• gp_enable_direct_dispatch

• gp_enable_fallback_plan

• gp_enable_fast_sri

• gp_enable_groupext_distinct_
gather

• gp_enable_groupext_distinct_
pruning

• gp_enable_multiphase_agg

• gp_enable_predicate_
propagation

• gp_enable_preunique

• gp_enable_sequential_window_
plans

• gp_enable_sort_distinct

• gp_enable_sort_limit
Configuration Parameter Categories 18

Greenplum Database System Administrator Guide 4.3 – Chapter 3: Configuring Your Greenplum System
Query Planner Costing Parameters
Warning: Greenplum recommends that you do not adjust these query costing
parameters. They are tuned to reflect Greenplum Database hardware configurations
and typical workloads. All of these parameters are related. Changing one without
changing the others can have adverse affects on performance.

• cpu_index_tuple_cost

• cpu_operator_cost

• cpu_tuple_cost

• cursor_tuple_fraction

• effective_cache_size

• gp_motion_cost_per_row

• gp_segments_for_planner

• random_page_cost

• seq_page_cost

Database Statistics Sampling Parameters
These parameters adjust the amount of data sampled by an ANALYZE operation.
Adjusting these parameters affects statistics collection system-wide. You can
configure statistics collection on particular tables and columns by using the ALTER
TABLE SET STATISTICS clause.

• default_statistics_target

• gp_analyze_relative_error

Sort Operator Configuration Parameters
• gp_enable_sort_distinct

• gp_enable_sort_limit

Aggregate Operator Configuration Parameters

• gp_enable_agg_distinct

• gp_enable_agg_distinct_pruning

• gp_enable_multiphase_agg

• gp_enable_preunique

• gp_enable_groupext_distinct_
gather

• gp_enable_groupext_distinct_
pruning

• gp_workfile_compress_algorithm

Join Operator Configuration Parameters

• join_collapse_limit

• gp_adjust_selectivity_for_oute
rjoins

• gp_hashjoin_tuples_per_bucket

• gp_statistics_use_fkeys

• gp_workfile_compress_algorithm

Other Query Planner Configuration Parameters
• from_collapse_limit

• gp_enable_predicate_propagation

• gp_max_plan_size

• gp_statistics_pullup_from_child_partition
Configuration Parameter Categories 19

Greenplum Database System Administrator Guide 4.3 – Chapter 3: Configuring Your Greenplum System
Error Reporting and Logging Parameters

Log

• log_rotation_age

• log_rotation_size

• log_truncate_on_rotation

 Rotation

When to Log

• client_min_messages

• log_error_verbosity

• log_min_duration_statement

• log_min_error_statement

• log_min_messages

What to Log

• debug_pretty_print

• debug_print_parse

• debug_print_plan

• debug_print_prelim_plan

• debug_print_rewritten

• debug_print_slice_table

• log_autostats

• log_connections

• log_disconnections

• log_dispatch_stats

• log_duration

• log_executor_stats

• log_hostname

• log_parser_stats

• log_planner_stats

• log_statement

• log_statement_stats

• log_timezone

• gp_debug_linger

• gp_log_format

• gp_max_csv_line_length

• gp_reraise_signal

System Monitoring Parameters

SNMP Alerts

The following parameters send SNMP notifications when events occur.

• gp_snmp_community

• gp_snmp_monitor_address

• gp_snmp_use_inform_or_trap

Email Alerts
The following parameters configure the system to send email alerts for fatal error
events, such as a segment going down or a server crash and reset.

• gp_email_from

• gp_email_smtp_password

• gp_email_smtp_server

• gp_email_smtp_userid

• gp_email_to
Configuration Parameter Categories 20

Greenplum Database System Administrator Guide 4.3 – Chapter 3: Configuring Your Greenplum System
Greenplum Command Center Agent
The following parameters configure the data collection agents for Greenplum
Command Center.

• gp_enable_gpperfmon

• gp_gpperfmon_send_interval

• gpperfmon_port

Runtime Statistics Collection Parameters
These parameters control the server statistics collection feature. When statistics
collection is enabled, you can access the statistics data using the pg_stat and pg_statio
family of system catalog views.

• stats_queue_level

• track_activities

• track_counts

• update_process_title

Automatic Statistics Collection Parameters
When automatic statistics collection is enabled, you can run ANALYZE automatically in
the same transaction as an INSERT, UPDATE, DELETE, COPY or CREATE TABLE...AS
SELECT statement when a certain threshold of rows is affected (on_change), or when
a newly generated table has no statistics (on_no_stats). To enable this feature, set
the following server configuration parameters in your Greenplum master
postgresql.conf file and restart Greenplum Database:

• gp_autostats_mode

• log_autostatss

Warning: Depending on the specific nature of your database operations, automatic
statistics collection can have a negative performance impact. Carefully evaluate
whether the default setting of on_no_stats is appropriate for your system.
Configuration Parameter Categories 21

Greenplum Database System Administrator Guide 4.3 – Chapter 3: Configuring Your Greenplum System
Client Connection Default Parameters

Statement Behavior Parameters

• check_function_bodies

• default_tablespace

• default_transaction_isolation

• default_transaction_read_only

• search_path

• statement_timeout

• vacuum_freeze_min_age

Locale and Formatting Parameters

• client_encoding

• DateStyle

• extra_float_digits

• IntervalStyle

• lc_collate

• lc_ctype

• lc_messages

• lc_monetary

• lc_numeric

• lc_time

• TimeZone

Other Client Default Parameters

• dynamic_library_path

• explain_pretty_print

• local_preload_libraries

Lock Management Parameters
• deadlock_timeout

• max_locks_per_transaction

Workload Management Parameters
The following configuration parameters configure the Greenplum Database workload
management feature (resource queues), query prioritization, memory utilization and
concurrency control.

• gp_resqueue_priority

• gp_resqueue_priority_cpucores_per_
segment

• gp_resqueue_priority_sweeper_
interval

• gp_vmem_idle_resource_timeout

• gp_vmem_protect_limit

• gp_vmem_protect_segworker_cache_
limit

• max_resource_queues

• max_resource_portals_per_
transaction

• resource_cleanup_gangs_on_
wait

• resource_select_only

• stats_queue_level
Configuration Parameter Categories 22

Greenplum Database System Administrator Guide 4.3 – Chapter 3: Configuring Your Greenplum System
External Table Parameters
The following parameters configure the external tables feature of Greenplum
Database. See the Greenplum Database Database Administrator Guide for more
information about external tables.

• gp_external_enable_exec

• gp_external_grant_privileges

• gp_external_max_segs

• gp_reject_percent_threshold

Append-Optimized Table Parameters
The following parameters configure the append-optimized tables feature of
Greenplum Database. See the Greenplum Database Database Administrator Guide
for more information about append-optimized tables.

• max_appendonly_tables

• gp_appendonly_compaction

• gp_appendonly_compaction_threshold

Database and Tablespace/Filespace Parameters
The following parameters configure the maximum number of databases, tablespaces,
and filespaces allowed in a system.

• gp_max_tablespaces

• gp_max_filespaces

• gp_max_databases

Past PostgreSQL Version Compatibility Parameters
The following parameters provide compatibility with older PostgreSQL versions. You
do not need to change these parameters in Greenplum Database.

• add_missing_from

• array_nulls

• backslash_quote

• escape_string_warning

• regex_flavor

• standard_conforming_strings

• transform_null_equals

Greenplum Array Configuration Parameters
The parameters in this section control the configuration of the Greenplum Database
array and its components: segments, master, distributed transaction manager, master
mirror, and interconnect.
Configuration Parameter Categories 23

Greenplum Database System Administrator Guide 4.3 – Chapter 3: Configuring Your Greenplum System
Interconnect Configuration Parameters

• gp_interconnect_fc_method

• gp_interconnect_hash_multiplier

• gp_interconnect_queue_depth

• gp_interconnect_snd_queue_depth

• gp_interconnect_setup_
timeout

• gp_interconnect_type

• gp_max_packet_size

Dispatch Configuration Parameters

• gp_cached_segworkers_threshold

• gp_connections_per_thread

• gp_enable_direct_dispatch

• gp_segment_connect_timeout

• gp_set_proc_affinity

Fault Operation Parameters

• gp_set_read_only

• gp_fts_probe_interval

• gp_fts_probe_threadcount

Distributed Transaction Management Parameters
• gp_max_local_distributed_cache

Read-Only Parameters
• gp_command_count

• gp_content

• gp_dbid

• gp_num_contents_in_cluster

• gp_role

• gp_session_id

Greenplum Master Mirroring Parameters
The parameters in this section control the configuration of the replication between
Greenplum Database primary master and standby master.

• keep_wal_segments

• repl_catchup_within_range

• replication_timeout

• wal_receiver_status_interval
Configuration Parameter Categories 24

Greenplum Database System Administrator Guide 4.3 – Chapter 4: Enabling High Availability Features
4. Enabling High Availability Features

This chapter describes the high-availability features of Greenplum Database and the
process to recover a segment or master instance.

• Overview of High Availability in Greenplum Database

• Enabling Mirroring in Greenplum Database

• Detecting a Failed Segment

• Recovering a Failed Segment

• Recovering a Failed Master

For information about the Greenplum Database utilities that are used to enable high
availability, see the Greenplum Database Utility Guide.

Overview of High Availability in Greenplum Database
Greenplum Database provides several optional features to ensure maximum uptime
and high availability of your system. This section summarizes these features:

• Overview of Segment Mirroring

• Overview of Master Mirroring

• Overview of Fault Detection and Recovery

Overview of Segment Mirroring
Mirror segments allow database queries to fail over to a backup segment if the
primary segment becomes unavailable. To configure mirroring, your Greenplum
Database system must have enough nodes for a primary segment and its mirror to
reside on different hosts. Only primary segments are active during database
operations. The system uses a file block replication process to copy changes from a
primary segment to its mirror; if a failure has not occurred, only this process runs on
the mirror host.

Figure 4.1 Data Mirroring in Greenplum Database
Overview of High Availability in Greenplum Database 25

Greenplum Database System Administrator Guide 4.3 – Chapter 4: Enabling High Availability Features
If a segment fails, the file replication process stops and the mirror segment
automatically starts as the active segment instance. The active mirror’s system state is
Change Tracking, and all database operations as it logs changes made by transactions.

When the failed segment is repaired and ready to be brought back online,
administrators initiate a recovery process and the system goes into Resynchronization
state. The recovery process copies the changes made to the mirror onto the repaired
segment. The system state is Synchronized when the recovery process completes.

Overview of Master Mirroring
You can deploy a backup or mirror of the master instance on a separate host machine
or on the same host machine. A backup master or standby master serves as a warm
standby if the primary master becomes nonoperational. You create a standby master
from the primary master while the primary is online.

The primary master continues to provide service to users while a transactional
snapshot of the primary master instance is taken. While the transactional snapshot is
taken and deployed on the standby master, changes to the primary master are also
recorded. After the snapshot is deployed on the standby master, the updates are
deployed to synchronize the standby master with the primary master.

Once the primary master and standby master are synchronized, the standby master is
kept up to date by the walsender and walreceiver a replication processes. The
walreceiver is a standby master process. The walsender process is a primary
master process. The two processes use WAL based streaming replication to keep the
primary and standby masters synchronized.

Since the master does not house user data, only system catalog tables are synchronized
between the primary and standby masters. When these tables are updated, changes are
automatically copied to the standby master to keep it current with the primary.

Figure 4.2 Master Mirroring in Greenplum Database

If the primary master fails, the replication process stops, and an administrator can
activate the standby master. Upon activation of the standby master, the replicated logs
reconstruct the state of the primary master at the time of the last successfully
committed transaction. The activated standby then functions as the Greenplum
Database master, accepting connections on the port specified when standby master
was initalized.
Overview of High Availability in Greenplum Database 26

Greenplum Database System Administrator Guide 4.3 – Chapter 4: Enabling High Availability Features
Overview of Fault Detection and Recovery
The Greenplum Database server (postgres) subprocess named ftsprobe handles
fault detection. ftsprobe monitors the Greenplum array; it connects to and scans all
segments and database processes at intervals that you can configure.

If ftsprobe cannot connect to a segment, it marks the segment as “down” in the
Greenplum Database system catalog. The segment remains nonoperational until an
administrator initiates the recovery process.

With mirroring enabled, Greenplum Database automatically fails over to a mirror
copy if a primary copy becomes unavailable. The system is operational if a segment
instance or host fails provided all data is available on the remaining active segments.

To recover failed segments, a Greenplum administrator runs the gprecoverseg
recovery utility. This utility locates the failed segments, verifies they are valid, and
compares the transactional state with the currently active segment to determine
changes made while the segment was offline. gprecoverseg synchronizes the
changed database files with the active segment and brings the segment back online.
Administrators perform the recovery while Greenplum Database is up and running.

With mirroring disabled, the system automatically shuts down if a segment instance
fails. Administrators manually recover all failed segments before operations resume.

Enabling Mirroring in Greenplum Database
You can configure your Greenplum Database system with mirroring at setup time
using gpinitsystem or enable mirroring later using gpaddmirrors and
gpinitstandby. This section assumes you are adding mirrors to an existing system
that was initialized without mirrors.

You can enable the following types of mirroring:

• Enabling Segment Mirroring

• Enabling Master Mirroring

Enabling Segment Mirroring
Mirror segments allow database queries to fail over to a backup segment if the primary
segment is unavailable. To configure mirroring, your Greenplum Database system
must have enough nodes to allow the mirror segment to reside on a different host than
its primary. By default, mirrors are configured on the same array of hosts as the
primary segments. You may choose a completely different set of hosts for your mirror
segments so they do not share machines with any of your primary segments.

To add segment mirrors to an existing system (same hosts as primaries)

1. Allocate the data storage area for mirror data on all segment hosts. The data
storage area must be different from your primary segments’ file system location.

2. Use gpssh-exkeys to ensure that the segment hosts can SSH and SCP to each other
without a password prompt.
Enabling Mirroring in Greenplum Database 27

Greenplum Database System Administrator Guide 4.3 – Chapter 4: Enabling High Availability Features
3. Run the gpaddmirrors utility to enable mirroring in your Greenplum Database
system. For example, to add to your primary segment port numbers to calculate
the mirror segment port numbers:

$ gpaddmirrors -p 10000

Where -p specifies the number to add to your primary segment port numbers

To add segment mirrors to an existing system (different hosts from
primaries)

1. Ensure the Greenplum Database software is installed on all hosts. See the
Greenplum Database Installation Guide for detailed installation instructions.

2. Allocate the data storage area for mirror data on all segment hosts.

3. Use gpssh-exkeys to ensure the segment hosts can SSH and SCP to each other
without a password prompt.

4. Create a configuration file that lists the host names, ports, and data directories on
which to create mirrors. To create a sample configuration file to use as a starting
point, run:

$ gpaddmirrors -o filename

The format of the mirror configuration file is:

filespaceOrder=[filespace1_fsname[:filespace2_fsname:...]

mirror[content]=content:address:port:mir_replication_port:pri_
replication_port:fselocation[:fselocation:...]

For example, a configuration for two segment hosts and two segments per host,
with no additional filespaces configured besides the default pg_system filespace):

filespaceOrder=

mirror0=0:sdw1:sdw1-1:52001:53001:54001:/gpdata/mir1/gp0

mirror1=1:sdw1:sdw1-2:52002:53002:54002:/gpdata/mir1/gp1

mirror2=2:sdw2:sdw2-1:52001:53001:54001:/gpdata/mir1/gp2

mirror3=3:sdw2:sdw2-2:52002:53002:54002:/gpdata/mir1/gp3

5. Run the gpaddmirrors utility to enable mirroring in your Greenplum Database
system:

$ gpaddmirrors -i mirror_config_file

Where -i names the mirror configuration file you just created.

Enabling Master Mirroring
You can configure a new Greenplum Database system with a standby master using
gpinitsystem or enable it later using gpinitstandby. This section assumes you are
adding a standby master to an existing system that was initialized without one.
Enabling Mirroring in Greenplum Database 28

Greenplum Database System Administrator Guide 4.3 – Chapter 4: Enabling High Availability Features
To add a standby master to an existing system

1. Ensure the standby master host is installed and configured: gpadmin system user
created, Greenplum Database binaries installed, environment variables set, SSH
keys exchanged, and data directory created. See the Greenplum Database
Installation Guide for detailed installation instructions.

2. Run the gpinitstandby utility on the currently active primary master host to add
a standby master host to your Greenplum Database system. For example:

$ gpinitstandby -s smdw

Where -s specifies the standby master host name.

3. To switch operations to a standby master, see “Recovering a Failed Master” on
page 35.

To check the status of the master mirroring process (optional)

You can display the information in the Greenplum Database system view
pg_stat_replication. The view lists information about the walsender process that is
used for Greenplum Database master mirroring. For example, this command displays
the process ID and state of the walsender process

$ psql dbname -c 'SELECT procpid, state FROM pg_stat_replication;'

For information about the pg_stat_replication system view, see the Greenplum
Database Reference Guide.

Detecting a Failed Segment
With mirroring enabled, Greenplum Database automatically fails over to a mirror
segment when a primary segment goes down. Provided one segment instance is online
per portion of data, users may not realize a segment is down. If a transaction is in
progress when a fault occurs, the in-progress transaction rolls back and restarts
automatically on the reconfigured set of segments.

If the entire Greenplum Database system becomes nonoperational due to a segment
failure (for example, if mirroring is not enabled or not enough segments are online to
access all user data), users will see errors when trying to connect to a database. The
errors returned to the client program may indicate the failure. For example:

ERROR: All segment databases are unavailable

Enabling Alerts and Notifications
To receive notifications of system events such as segment failures, enable email
and/or SNMP alerts. See “Enabling System Alerts and Notifications” on page 70.
Detecting a Failed Segment 29

Greenplum Database System Administrator Guide 4.3 – Chapter 4: Enabling High Availability Features
Checking for Failed Segments
With mirroring enabled, you may have failed segments in the system without
interruption of service or any indication that a failure has occurred. You can verify the
status of your system using the gpstate utility. gpstate provides the status of each
individual component of a Greenplum Database system, including primary segments,
mirror segments, master, and standby master.

To check for failed segments

1. On the master, run the gpstate utility with the -e option to show segments with
error conditions:

$ gpstate -e

Segments in Change Tracking mode indicate the corresponding mirror segment is
down. When a segment is not in its preferred role, the segment does not operate in
the role to which it was assigned at system initialization. This means the system is
in a potentially unbalanced state, as some segment hosts may have more active
segments than is optimal for top system performance.

See “To return all segments to their preferred role” on page 33 for instructions to
fix this situation.

2. To get detailed information about a failed segment, check the
gp_segment_configuration catalog table. For example:

$ psql -c "SELECT * FROM gp_segment_configuration WHERE
status='d';"

3. For failed segment instances, note the host, port, preferred role, and data directory.
This information will help determine the host and segment instances to
troubleshoot.

4. To show information about mirror segment instances, run:

$ gpstate -m

Checking the Log Files
Log files can provide information to help determine an error’s cause. The master and
segment instances each have their own log file in pg_log of the data directory. The
master log file contains the most information and you should always check it first.

Use the gplogfilter utility to check the Greenplum Database log files for additional
information. To check the segment log files, run gplogfilter on the segment hosts
using gpssh.

To check the log files

1. Use gplogfilter to check the master log file for WARNING, ERROR, FATAL or
PANIC log level messages:

$ gplogfilter -t

2. Use gpssh to check for WARNING, ERROR, FATAL, or PANIC log level messages on
each segment instance. For example:
Detecting a Failed Segment 30

Greenplum Database System Administrator Guide 4.3 – Chapter 4: Enabling High Availability Features
$ gpssh -f seg_hosts_file -e 'source
/usr/local/greenplum-db/greenplum_path.sh ; gplogfilter -t
/data1/primary/*/pg_log/gpdb*.log' > seglog.out

Recovering a Failed Segment
If the master cannot connect to a segment instance, it marks that segment as down in
the Greenplum Database system catalog. The segment instance remains offline until
an administrator takes steps to bring the segment back online. The process for
recovering a failed segment instance or host depends on the failure cause and whether
or not mirroring is enabled. A segment instance can be unavailable for many reasons:

• A segment host is unavailable; for example, due to network or hardware failures.

• A segment instance is not running; for example, there is no postgres database
listener process.

• The data directory of the segment instance is corrupt or missing; for example, data
is not accessible, the file system is corrupt, or there is a disk failure.
Recovering a Failed Segment 31

Greenplum Database System Administrator Guide 4.3 – Chapter 4: Enabling High Availability Features
Figure 4.3 shows the high-level steps for each of the preceding failure scenarios.

Figure 4.3 Segment Failure Troubleshooting Matrix

Recovering From Segment Failures
Segment host failures usually cause multiple segment failures: all primary or mirror
segments on the host are marked as down and nonoperational. If mirroring is not
enabled and a segment goes down, the system automatically becomes nonoperational.

To recover with mirroring enabled

1. Ensure you can connect to the segment host from the master host. For example:

$ ping failed_seg_host_address

2. Troubleshoot the problem that prevents the master host from connecting to the
segment host. For example, the host machine may need to be restarted or replaced.
Recovering a Failed Segment 32

Greenplum Database System Administrator Guide 4.3 – Chapter 4: Enabling High Availability Features
3. After the host is online and you can connect to it, run the gprecoverseg utility
from the master host to reactivate the failed segment instances. For example:

$ gprecoverseg

4. The recovery process brings up the failed segments and identifies the changed
files that need to be synchronized. The process can take some time; wait for the
process to complete. During this process, database write activity is suspended.

5. After gprecoverseg completes, the system goes into Resynchronizing mode and
begins copying the changed files. This process runs in the background while the
system is online and accepting database requests.

6. When the resynchronization process completes, the system state is Synchronized.
Run the gpstate utility to verify the status of the resynchronization process:

$ gpstate -m

To return all segments to their preferred role

When a primary segment goes down, the mirror activates and becomes the primary
segment. After running gprecoverseg, the currently active segment remains the
primary and the failed segment becomes the mirror. The segment instances are not
returned to the preferred role that they were given at system initialization time. This
means that the system could be in a potentially unbalanced state if segment hosts have
more active segments than is optimal for top system performance. To check for
unbalanced segments and rebalance the system, run:

$ gpstate -e

All segments must be online and fully synchronized to rebalance the system. Database
sessions remain connected during rebalancing, but queries in progress are canceled
and rolled back.

1. Run gpstate -m to ensure all mirrors are Synchronized.

$ gpstate -m

2. If any mirrors are in Resynchronizing mode, wait for them to complete.

3. Run gprecoverseg with the -r option to return the segments to their preferred
roles.

$ gprecoverseg -r

4. After rebalancing, run gpstate -e to confirm all segments are in their preferred
roles.

$ gpstate -e

To recover from a double fault

In a double fault, both a primary segment and its mirror are down. This can occur if
hardware failures on different segment hosts happen simultaneously. Greenplum
Database is unavailable if a double fault occurs. To recover from a double fault:

1. Restart Greenplum Database:

$ gpstop -r
Recovering a Failed Segment 33

Greenplum Database System Administrator Guide 4.3 – Chapter 4: Enabling High Availability Features
2. After the system restarts, run gprecoverseg:

$ gprecoverseg

3. After gprecoverseg completes, use gpstate to check the status of your mirrors:

$ gpstate -m

4. If you still have segments in Change Tracking mode, run a full copy recovery:

$ gprecoverseg -F

To recover without mirroring enabled

1. Ensure you can connect to the segment host from the master host. For example:

$ ping failed_seg_host_address

2. Troubleshoot the problem that is preventing the master host from connecting to
the segment host. For example, the host machine may need to be restarted.

3. After the host is online, verify that you can connect to it and restart Greenplum
Database. For example:

$ gpstop -r

4. Run the gpstate utility to verify that all segment instances are online:

$ gpstate

If a segment host is not recoverable and you lost one or more segments, recreate your
Greenplum Database system from backup files. See “Backing Up and Restoring
Databases” on page 37.

When a segment host is not recoverable

If a host is nonoperational, for example, due to hardware failure, recover the segments
onto a spare set of hardware resources. If mirroring is enabled, you can recover a
segment from its mirror onto an alternate host using gprecoverseg. For example:

$ gprecoverseg -i recover_config_file

Where the format of recover_config_file is:

filespaceOrder=[filespace1_name[:filespace2_name:...]

failed_host_address:port:fselocation
[recovery_host_address:port:replication_port:fselocation[:fselocation:
...]]

For example, to recover to a different host than the failed host without additional
filespaces configured (besides the default pg_system filespace):

filespaceOrder=

sdw5-2:50002:/gpdata/gpseg2 sdw9-2:50002:53002:/gpdata/gpseg2

The gp_segment_configuration and pg_filespace_entry system catalog tables can help
determine your current segment configuration so you can plan your mirror recovery
configuration. For example, run the following query:

=# SELECT dbid, content, hostname, address, port,

 replication_port, fselocation as datadir

 FROM gp_segment_configuration, pg_filespace_entry
Recovering a Failed Segment 34

Greenplum Database System Administrator Guide 4.3 – Chapter 4: Enabling High Availability Features
 WHERE dbid=fsedbid

 ORDER BY dbid;.

The new recovery segment host must be pre-installed with the Greenplum Database
software and configured exactly as the existing segment hosts.

Recovering a Failed Master
If the primary master fails, log replication stops. Use gpactivatestandby to activate
the standby master. Upon activation of the standby master, Greenplum Database
reconstructs the master host state at the time of the last successfully committed
transaction.

To activate the standby master

1. Ensure a standby master host is configured for the system. See “Enabling Master
Mirroring” on page 28.

2. Run the gpactivatestandby utility from the standby master host you are
activating. For example:

$ gpactivatestandby -d /data/master/gpseg-1

Where -d specifies the data directory of the master host you are activating.

After you activate the standby, it becomes the active or primary master for your
Greenplum Database array.

3. After the utility finishes, run gpstate to check the status:

$ gpstate -f

The newly activated master’s status should be Active. If you configured a new
standby host, its status is Passive. If not configured, its status is Not Configured.

4. After switching to the newly active master host, run ANALYZE on it. For example:

$ psql dbname -c 'ANALYZE;'

5. Optional: If you did not specify a new standby host when running the
gpactivatestandby utility, use gpinitstandby to configure a new standby
master at a later time. Run gpinitstandby on your active master host. For
example:

$ gpinitstandby -s new_standby_master_hostname

Restoring Master Mirroring After a Recovery
After you activate a standby master for recovery, the standby master becomes the
primary master. You can continue running that instance as the primary master if it has
the same capabilities and dependability as the original master host.

You must initialize a new standby master to continue providing master mirroring
unless you have already done so while activating the prior standby master. Run
gpinitstandby on the active master host to configure a new standby master.
Recovering a Failed Master 35

Greenplum Database System Administrator Guide 4.3 – Chapter 4: Enabling High Availability Features
You may restore the primary and standby master instances on the original hosts. This
process swaps the roles of the primary and standby master hosts, and it should be
performed only if you strongly prefer to run the master instances on the same hosts
they occupied prior to the recovery scenario.

To restore the master and standby instances on original hosts (optional)

1. Ensure the original master host is in dependable running condition; ensure the
cause of the original failure is fixed.

2. Initialize a standby master on the original master host. For example:

$ gpinitstandby -s original_master_hostname

3. Run the gpactivatestandby utility from the original master host (currently a
standby master). For example:

$ gpactivatestandby -d $MASTER_DATA_DIRECTORY

Where -d specifies the data directory of the host you are activating.

4. After the utility finishes, run gpstate to check the status:

$ gpstate -f

Verify the original primary master status is Active, and the standby master status is
Not Configured.

5. After the original master host runs the primary Greenplum Database master, you
can initialize a standby master on the original standby master host. For example:

$ gpinitstandby -s original_standby_master_hostname

To check the status of the master mirroring process (optional)

You can display the information in the Greenplum Database system view
pg_stat_replication. The view lists information about the walsender process that is
used for Greenplum Database master mirroring. For example, this command displays
the process ID and state of the walsender process

$ psql dbname -c 'SELECT procpid, state FROM pg_stat_replication;'
Recovering a Failed Master 36

Greenplum Database System Administrator Guide 4.3 – Chapter 5: Backing Up and Restoring Databases
5. Backing Up and Restoring Databases

Taking regular backups ensures that you can restore your data or rebuild your
Greenplum Database system if data corruption or system failure occur. You can use
backups to migrate data from one Greenplum Database system to another.

• Backup and Restore Operations

• Backing Up a Database

• Restoring From Parallel Backup Files

Backup and Restore Operations
Greenplum Database supports parallel and non-parallel backup and restore. Parallel
backup and restore ensure that operations scale regardless of the number of segments
in your system. Greenplum Database also supports non-parallel backup and restore
utilities to enable migration from PostgreSQL to Greenplum. See “Non-Parallel
Backup Support” on page 38.

Parallel Backup Support
The Greenplum Database parallel dump utility gpcrondump backs up the Greenplum
master instance and each active segment instance at the same time. Master host dump
files consist of DDL statements, the Greenplum system catalog tables, and metadata
backup files created on the master. gpcrondump creates one dump file for each
segment instance to contain the data for that segment instance. A unique 14-digit
timestamp key identifies the files that comprise a full backup set.

Figure 5.1 Parallel Backups in Greenplum Database
Backup and Restore Operations 37

Greenplum Database System Administrator Guide 4.3 – Chapter 5: Backing Up and Restoring Databases
The Greenplum gpcrondump utility automates routine backups. You can call
gpcrondump directly or from a scheduled CRON job. gpcrondump allows you to
backup data and database objects such as database roles and server configuration files.
See “Automating Parallel Backups with gpcrondump” on page 48.

Non-Parallel Backup Support
Greenplum supports the PostgreSQL non-parallel backup utilities pg_dump and
pg_dumpall to enable migration from PostgreSQL to Greenplum Database. These
utilities create a single dump file on the master host that contains all data from all
active segments. In most cases, the master host does not have enough disk space for a
single backup file of a distributed database.

Greenplum supports the COPY TO SQL command for copying all or a portion of a
table out of the database to a text-delimited file on the master host.

Parallel Restores
The Greenplum Database parallel restore utility gpdbrestore takes the timestamp
key generated by gpcrondump, validates the backup set, and restores the database
objects and data into a distributed database in parallel. Parallel restore operations
require a complete backup set created by gpcrondump, a full backup and any required
incremental backups.

Figure 5.2 Parallel Restores in Greenplum Database

The Greenplum Database gpdbrestore utility provides flexibility and verification
options for use with the automated backup files produced by gpcrondump or with
backup files moved from the Greenplum array to an alternate location. See “Restoring
a Database Using gpdbrestore” on page 51.

Note: gpdbrestore can also be used to copy files to the alternate location.
Backup and Restore Operations 38

Greenplum Database System Administrator Guide 4.3 – Chapter 5: Backing Up and Restoring Databases
Non-Parallel Restores
Greenplum supports the non-parallel PostgreSQL restore utility pg_restore to
enable:

• Migration from PostgreSQL to Greenplum Database.

• Migration between Greenplum Database systems with different configurations,
such as a source system with 4 segments to a target system with 5 segments.
Neither gpdbrestore or gp_restore can distribute the source system’s backup
files evenly across an expanded system.

pg_restore requires compressed dump files created by pg_dump or pg_dumpall.
Before starting the restore, modify the CREATE TABLE statements in the dump files to
include the Greenplum DISTRIBUTED clause.

Note: If you do not include the DISTRIBUTED clause, Greenplum Database assigns a
default value. For details, see CREATE TABLE in the Greenplum Database Reference
Guide.

To perform a non-parallel restore using parallel backup files, collect each backup file
from the segment hosts, copy them to the master host, and load them through the
master. See “Restoring to a Different Greenplum System Configuration” on page 51.

Figure 5.3 Non-parallel Restore Using Parallel Backup Files

Backing Up a Database
The options for database backup are as follows.

• Schedule or run routine dumps with gpcrondump. gpcrondump allows you to
schedule routine backups, including incremental backups, using the UNIX
scheduling utility, cron. Schedule cron jobs that call gpcrondump on the
Greenplum master host. gpcrondump backs up databases, data, and objects such
as database roles and server configuration files.
Full backup jobs scheduled or run with gpcrondump can use Data Domain Boost.
See “Using Data Domain Boost” on page 43.
Backing Up a Database 39

Greenplum Database System Administrator Guide 4.3 – Chapter 5: Backing Up and Restoring Databases
• Create a dump file for each segment with gp_dump. Use this option to backup a
database or to migrate your data to a system with the same segment configuration.
You must use the gp_restore utility to restore the database. You can use dump
files created by gp_dump to restore to a different Greenplum system configuration.

• Create a single dump file with pg_dump or pg_dumpall. Use this option to
migrate your data to another database vendor’s system. If restoring to a
PostgreSQL or Greenplum database and the dump file is in archive format, you
can use pg_restore. If the dump file is in plain text format, you can use a client
such as psql. To restore to another Greenplum Database system, do a parallel
dump using gpcrondump or gp_dump, then do a non-parallel restore.

Incremental Backup Support
For Greenplum Database Version 4.2.5 and later, the utilities gpcrondump and
gpdbrestore support incremental backups and restores of append-optimized tables,
including column-oriented tables. Use the gpcrondump option --incremental to
create an incremental backup.

An incremental backup is similar to a full backup. An incremental backup creates
backup files for the master and hosts. A unique 14-digit timestamp key identifies the
files that comprise an incremental backup set. Similar to a full backup, an incremental
backup backs up regular, heap-storage tables. The difference between an incremental
backup and a full backup is that append-optimized tables are backed up only if one of
the following operations was performed on the table after the last backup:

ALTER TABLE
INSERT
TRUNCATE
DROP and then re-create the table

For a partitioned, append-optimized tables, only the changed table partitions are
backed up.

Important: Incremental backups are not supported with Data Domain Boost. You
cannot use Data Domain Boost with a full backup if you plan to create incremental
backups that use the full backup. You can use a Data Domain server as an NFS file
system to perform incremental backups.

To create an incremental backup or restore data from an incremental backup, you need
the complete backup set. A complete backup set consists of a full backup and any
incremental backups that were created after the last full backup. See “Example using
full and incremental backups” on page 41.

Because incremental backups are table-based for append-optimized tables,
incremental backups are efficient when the updates are made to data in tables that are
separate from tables that contain unchanged data, and the total amount of data in
tables that have changed is small compared to the data in the tables that contain
unchanged data. Incremental backups are also efficient with append-optimized
partition tables if only a few table partitions are being updated. An incremental backup
only backs up the partitions that have changed.

When you archive incremental backups, all incremental backups between the last full
backup and the target incremental backup must be archived. You must archive all the
files that are created to back up the master and all segments.
Backing Up a Database 40

Greenplum Database System Administrator Guide 4.3 – Chapter 5: Backing Up and Restoring Databases
Changes to the Greenplum Database segment configuration invalidate incremental
backups. After you change the segment configuration you must create a full backup
before you can create an incremental backup.

Example using full and incremental backups
When creating a backup, the Greenplum Database utilities use a timestamp as the key
for the backup set files. For example, if you created a backup that starts on May 14,
2012, the backup set file names would have 20120514hhmmss in the file names. The
hhmmss are the time, hour, minute, and second, determined by the utility.

Assume you created both full and incremental backups of the database mytest. You
used the following command create full backups:

gpcrondump –x mytest –u /backupdir

You used this command to create incremental backups.

gpcrondump –x mytest –u /backupdir --incremental

When you specify the -u option, the backups you created are in the directory
\backupdir on the Greenplum Database hosts with the following timestamp keys.
The full backups have the timestamp key 20120514054532 and 20121114064330. The
other backups are incremental backups.

20120514054532 (full backup)
20120714095512
20120914081205
20121114064330 (full backup)
20130114051246

If you create an incremental backup that starts on March 14, 2013, the timestamp for
the backup would 20130314hhmmss. To create the incremental backup, you need both
the incremental backup 20130114051246 and the full backup 20121114064330. Also,
you must specify the same -u option for any incremental backups that are part of the
backup set.

To restore a database with the incremental backup 20120914081205, you need the
incremental backups 20120914081205 and 20120714095512 the full backup
20120514054532.

To restore the mytest database with the incremental backup 20130114051246, you
need only the incremental backup and the full backup 20121114064330. The restore
command would be similar to this command.

gpdbrestore –t 20130114051246 -u /backupdir

Backing Up a Set of Tables
You can perform an incremental backup on a set of database tables by specifying the
gpcrondump option --prefix to identify the backup set when you specify the tables
to include or exclude when you create the full backup.

First, create a full backup of a set of tables. When you create the full backup, specify
the --prefix option to identify the backup set. To include a set of tables, use the
gpcrondump option -t or --table-file. To exclude a set of tables, use the
gpcrondump option -T or --exclude-table-file.
Backing Up a Database 41

Greenplum Database System Administrator Guide 4.3 – Chapter 5: Backing Up and Restoring Databases
To create an incremental backup based on the full backup of the set of tables, specify
the gpcrondump option --incremental and the --prefix option with the string
specified when creating the full backup. The incremental backup is limited to only the
tables in the full backup.

The following example uses the --table-file option to create a full backup for the
set of tables listed in the file user-tables. The prefix user_backup identifies the
backup set.

gpcrondump -x mydatabase --table-file=user-tables
 --prefix user_backup

To create an incremental backup for the backup identified by the prefix user_backup,
specify the --incremental option and the option --prefix user_backup to
identify backup set. This example creates an incremental backup.

gpcrondump -x mydatabase --incremental --prefix user_backup

This command lists the tables that were included or exclued for the full backup.

gpcrondump -x mydatabase --incremental --prefix user_backup
 --list-filter-tables

Restoring From an Incremental Backup
When restoring a backup with gpdbrestore, command line output displays whether
the backup is an incremental or a full backup. If the gpdbrestore option -q is
specified, the backup type information is written to the log file.

With the gpdbrestore option --noplan, you can restore only the data contained in
an incremental backup.

With the --list-backup option you can display the full and incremental backup sets
required to perform a restore.

Using Direct I/O
Direct I/O allows you to bypass the buffering of memory within the file system cache.
When Direct I/O is used for a file, data is transferred directly from the disk to the
application buffer, without the use of the file buffer cache. Direct I/O benefits
applications by reducing CPU consumption and eliminating the overhead of copying
data twice: first between the disk and the file buffer cache, and then from the file.

Note: Direct I/O is supported only on RHEL, CentOS and SUSE.

Turn on Direct I/O
$ gpconfig -c gp_backup_directIO -v on

Decrease network data chunks sent to dump when the database is
busy
$ gpconfig -c gp_backup_directIO_read_chunk_mb -v 10

The above command sets the chunk size to 10MB; the default chunk size is 20MB.
The default value has been tested to be the optimal setting. Decreasing it will increase
the backup time and increasing it will result in little change to backup time.
Backing Up a Database 42

Greenplum Database System Administrator Guide 4.3 – Chapter 5: Backing Up and Restoring Databases
Verify the current data chunk size
$ gpconfig –s gp_backup_directIO_read_chunk_mb

Verify whether Direct I/O is turned on
$ gpconfig –s gp_backup_directIO

Using Data Domain Boost
Data Domain Boost is a gpcrondump and gpdbrestore option that provides faster
backups after the initial backup operation, and provides deduplication at the source to
decrease network traffic. When you restore files from the Data Domain system with
Data Domain Boost, some files are copied to the master local disk and are restored
from there, and others are restored directly.

With Data Domain Boost managed file replication, you can replicate Greenplum
Database backup images that are stored on a Data Domain system for disaster recover
purposes. The gpmfr utility manages the Greenplum Database backup sets that are on
the primary and a remote Data Domain system. For information about gpmfr, see the
Greenplum Database Utility Guide.

Managed file replication requires network configuration when a replication network is
being used between two Data Domain systems:

• The Greenplum Database system requires the Data Domain login credentials to be
configured with gpcrondump. These credentials are created for the local and
remote Data Domain systems.

• When the non-management network interface is used for replication on the Data
Domain systems, static routes must be configured on the systems to pass the
replication data traffic to the correct interfaces.

Do not use Data Domain Boost with gp_dump, pg_dump, or pg_dumpall.

Refer to Data Domain Boost documentation for detailed information.

Important: Incremental backups are not supported with Data Domain Boost. You
cannot use Data Domain Boost with a full backup if you plan to create incremental
backups that use the full backup. You can use a Data Domain server as an NFS file
system to perform incremental backups.

Data Domain Boost Requirements
Using Data Domain Boost requires the following.

• Purchase and install a Data Domain Boost license on the Data Domain.

• Obtain sizing recommendations for Data Domain Boost.

Contact your EMC Data Domain account representative for assistance.

One-Time Data Domain Boost Credential Setup
There is a one-time process to set up credentials to use Data Domain Boost. Credential
setup connects one Greenplum Database instance to one Data Domain instance. If you
are using Data Domain Boost managed file replication capabilities for disaster
recovery purposes, you must set up credentials for both the primary and remote Data
Domain systems.
Backing Up a Database 43

Greenplum Database System Administrator Guide 4.3 – Chapter 5: Backing Up and Restoring Databases
To perform the credential setup, run gpcrondump with the following options:

--ddboost-host ddboost_hostname --ddboost-user ddboost_user
--ddboost-backupdir backup_directory

To remove credentials, run gpcrondump with the --ddboost-config-remove
option.

To manage credentials for the remote Data Domain system that is used for backup
replication, specify the --ddboost-remote option with the other gpcrondump
options. For example, these options set up credentials for a Data Domain system that
is used for backup replication. The system IP address is 172.28.8.230, the user ID is
ddboostmyuser, and the location for the backups on the system is
GPDB/gp_production:

--ddboost-host 172.28.8.230 --ddboost-user ddboostmyuser
--ddboost-backupdir gp_production --ddboost-remote

For details, see gpcrondump in the Greenplum Database Utility Guide.

If you use two or more network connections to connect to the Data Domain system,
use gpcrondump to set up the login credentials for the Data Domain hostnames
associated with the network connections. To perform this setup for two network
connections, run gpcrondump with the following options:

--ddboost-host ddboost_hostname1
--ddboost-host ddboost_hostname2 --ddboost-user ddboost_user
--ddboost-backupdir backup_directory

Configuring Data Domain Boost for the Greenplum Database
After you set up credentials for Data Domain Boost on the Greenplum Database,
perform the following tasks in Data Domain to allow Data Domain Boost to work
with the Greenplum Database:

• Configuring Distributed Segment Processing in Data Domain

• Configuring Advanced Load Balancing and Link Failover in Data Domain

• Export the Data Domain Path to the DCA Network

Configuring Distributed Segment Processing in Data Domain

Configure the distributed segment processing option on the Data Domain system. The
configuration applies to all the DCA servers and the Data Domain Boost plug-in
installed on them. This option is enabled by default, but verify that it is enabled before
using Data Domain Boost backups:

ddboost option show

To enable distributed segment processing:

ddboost option set distributed-segment-processing {enabled | disabled}

Configuring Advanced Load Balancing and Link Failover in Data Domain

If you have multiple network connections on a network subnet, you can create an
interface group to provide load balancing and higher network throughput on your Data
Domain system. When a Data Domain system on an interface group receives data
Backing Up a Database 44

Greenplum Database System Administrator Guide 4.3 – Chapter 5: Backing Up and Restoring Databases
from the media server clients, the data transfer is load balanced and distributed as
separate jobs on the private network. You can achieve optimal throughput with
multiple 1 GbE connections.

Note: To ensure that interface groups function properly, use interface groups only
when using multiple network connections on the same networking subnet.

To create an interface group on the Data Domain system, create interfaces with the
net command (if interfaces do not already exist), add the interfaces to the group, and
register the Data Domain system with the backup application.

1. Add the interfaces to the group:

ddboost ifgroup add interface 192.168.1.1

ddboost ifgroup add interface 192.168.1.2

ddboost ifgroup add interface 192.168.1.3

ddboost ifgroup add interface 192.168.1.4

Note: You can create only one interface group and this group cannot be named.

2. Select one interface on the Data Domain system to register with the backup
application. Create a failover aggregated interface and register that interface with
the backup application.

Note: You do not have to register one of the ifgroup interfaces with the backup
application. You can use an interface that is not part of the ifgroup to
register with the backup application.

3. Enable DD Boost on the Data Domain system:

ddboost ifgroup enable

4. Verify the Data Domain system configuration as follows:

ddboost ifgroup show config

Results similar to the following appear.

Interface

192.168.1.1

192.168.1.2

192.168.1.3

192.168.1.4

You can add or delete interfaces from the group at any time.

Note: Manage Advanced Load Balancing and Link Failover (an interface group)
using the ddboost ifgroup command or from the Enterprise Manager Data
Management > DD Boost view.

Export the Data Domain Path to the DCA Network
The commands and options in this section apply to DDOS 5.0.x and 5.1.x. See the
Data Domain documentation for details.

Use the following Data Domain commands to export the /backup/ost directory to
the DCA for Data Domain Boost backups.
Backing Up a Database 45

Greenplum Database System Administrator Guide 4.3 – Chapter 5: Backing Up and Restoring Databases
nfs add /backup/ost 172.28.8.0/24, 172.28.12.0/24 (insecure)

Note: The IP addresses refer to the Greenplum system working with the Data Domain
Boost system.

Create the Data Domain Login Credentials for the DCA

Create a username and password for the DCA to access the DD Boost Storage Unit
(SU) at the time of backup and restore:

user add <user> [password <password>] [priv {admin | security
| user}]

Backup Options for Data Domain Boost
Specify the gpcrondump options to match the setup.

Data Domain Boost backs up files to the Data Domain system. Status and report files
remain on the local disk.

To configure Data Domain Boost to remove old backup directories before starting a
backup operation, specify a gpcrondump backup expiration option.

• The -c option clears all backup directories.

• The -o option clears the oldest backup directory.

To remove the oldest dump directory, specify gpcrondump --ddboost with the -o
option. For example, if your retention period is 30 days, use gpcrondump --ddboost
with the -o option on day 31.

Use gpcrondump --ddboost with the -c option to clear out all the old dump
directories in db_dumps. The -c option deletes all dump directories that are at least
one day old.

Using Named Pipes
Greenplum Database supports using named pipes with gpcrondump and
gpdbrestore to back up and restore a Greenplum database. When backing up a
database with regular files, the files that contain the backup information are placed in
directories on the Greenplum Database segments. When you use named pipes, you can
configure named pipes on Greenplum Database segments to connect to another
process, such as input process to a backup device. With named pipes you can back up
data without the need for regular files to temporarily store the backup files.

Backing up with named pipes is not supported if the option --ddboost is specified.

To back up a Greenplum database using named pipes:

1. Generate the names of the named pipes with the gpcrondump options
-K timestamp and --list-backup-files.

The file names use the timestamp specified by the -K timestamp option and
have the suffix _pipes and _regular_files. For example:

gp_dump_20130514093000_pipes
gp_dump_20130514093000_regular_files
Backing Up a Database 46

Greenplum Database System Administrator Guide 4.3 – Chapter 5: Backing Up and Restoring Databases
The file names listed in the _pipes file can be created as named pipes. The file
names in the _regular_files file cannot be created as named pipes.
gpcrondump and gpdbrestore use the information in these files during backup
and restore operations.

2. Create the named pipes as writeable on all Greenplum Database segments.

3. Back up the database using the named pipes.

Note: To back up a complete set of Greenplum Database backup files, the files
listed in the _regular_files file must also be backed up.

To restore a database that used named pipes during backup:

1. Configure the named pipes as readable.

2. Restore the database using the named pipes and the backup files.

Example
This gpcrondump command creates two text files that contain the file names that will
be used to back up the database testdb. The files are created in the directory
/backups.

gpcrondump -x testdb -K 20130530090000 --list-backup-files
 -u /backups

After you create the writeable named pipes on all the Greenplum Database segments,
you run gpcrondump to back up the database.

gpcrondump -x testdb -K 20130530090000 -u /backups

To restore the database with gpdbrestore, you configure the named pipes as readable
and run this command:

gpdbrestore -x testdb -t 20130530090000 -u /backups

Backing Up a Database with gp_dump
The gp_dump utility dumps the contents of a Greenplum Database system into SQL
files that contain SQL commands for recreating the system configuration and database
and restoring the data. Users can access the database during dump operations.

Use gp_restore to restore databases from gp_dump files. gp_restore restores the
schema and data first, then rebuilds objects associated with the database tables.

Important: The gp_dump and gp_restore utilities do not support incremental
backups and are deprecated. gp_dump and gp_restore will be removed in a future
release. Use gpcrondump and gpdbrestore to backup and restore Greenplum
databases.

gp_dump creates the system-level backup files and files for rebuilding database
objects in the master host’s master data directory. The file names include the database
id <dbid> and a 14-digit timestamp. The timestamp uniquely identifies the backup
job and must be passed to gp_restore when you restore a Greenplum database.

• Greenplum system catalog tables: gp_catalog_1_<dbid>_<timestamp>.
Backing Up a Database 47

Greenplum Database System Administrator Guide 4.3 – Chapter 5: Backing Up and Restoring Databases
• The CREATE DATABASE SQL statement:
gp_cdatabase_1_<dbid>_<timestamp>. Run this statement on the master
instance to recreate the database.

• Create user database schema(s): gp_dump_1_<dbid>_<timestamp>. To recreate
the database schema(s), specify this file to gp_restore.

• Log file containing status information about the dump process:
gp_dump_status_1_<dbid>_<timestamp>.

• SQL commands for rebuilding table objects:
gp_dump_1_<dbid>_<timestamp>_post_data.

gp_dump launches a gp_dump_agent for each segment instance to back up.
gp_dump_agent processes run on the segment hosts and send their status to the
gp_dump process running on the master host.

• gp_dump dumps the user data for each segment instance into a SQL file in the
segment instance’s data directory. By default, only primary (active) segment
instances are backed up. The default naming convention of this file is
gp_dump_0_<dbid>_<timestamp>. gp_restore uses these files to recreate
particular user data segments.

• gp_dump creates a log file in each segment instance’s data directory named
gp_dump_status_0_<dbid>_<timestamp>.

To backup a Greenplum database using gp_dump

1. From the master, run the gp_dump utility. For example (where mydatabase is the
name of the database you are backing up):

$ gp_dump mydatabase

Note: gp_dump tries to resolve the master and segment hostnames from the
calling machine and not from the machine the master is running on before
connecting to them. This can cause failures if the calling machine is not the
machine on which the master is running. To avoid this problem, use gpcrondump.

Automating Parallel Backups with gpcrondump
You can call gpcrondump directly or from a crontab entry. Use gpcrondump to
backup databases, data, and objects such as database roles and server configuration
files.

As the default, gpcrondump creates the dump files in the master and each segment
instance’s data directory in <data_directory>/db_dumps/YYYYMMDD. The segment
data dump files are compressed using gzip.

To schedule a dump operation using CRON

1. On the master, log in as the Greenplum superuser (gpadmin).

2. Define a crontab entry that calls gpcrondump. For example, if your shell is
bin/bash and the PATH includes the location of the Greenplum Database
management utilities, schedule a nightly dump of the sales database at one minute
past midnight as follows:

Linux Example:
Backing Up a Database 48

Greenplum Database System Administrator Guide 4.3 – Chapter 5: Backing Up and Restoring Databases
SHELL=/bin/bash

GPHOME=/usr/local/greenplum-db-4.3.0.0

MASTER_DATA_DIRECTORY=/data/gpdb_p1/gp-1

01 0 * * * gpadmin source $GPHOME/greenplum_path.sh;
gpcrondump -x sales -c -g -G -a -q >> gp_salesdump.log

3. Create a file named mail_contacts in either the Greenplum superuser’s home
directory or in $GPHOME/bin. For example:

$ vi /home/gpadmin/mail_contacts

$ vi /export/home/gpadmin/mail_contacts

4. In this file, type one email address per line. For example:

dba@mycompany.com

jjones@mycompany.com

5. Save and close the mail_contacts file. gpcrondump will send email
notifications to the email addresses listed in this file.

To schedule a dump operation using CRON with Data Domain Boost

1. Ensure the One-Time Data Domain Boost Credential Setup is complete.

2. Add the option --ddboost to the gpcrondump option:

gpcrondump -x mydatabase -z -v --ddboost

Important: Do not use compression with Data Domain Boost backups. The -z
option turns backup compression off.
Note: Some of the options available in gpcrondump have different implications
when using Data Domain Boost. For details, see gpcrondump in the Greenplum
Database Utility Guide.

Restoring From Parallel Backup Files
How you restore a database from parallel backup files depends on how you answer the
following questions.

1. Where are your backup files? If your backup files are on the segment hosts
where gpcrondump or gp_dump created them, you can restore the database with
gpdbrestore or gp_restore, respectively. If you moved your backup files off
the Greenplum array, for example to an archive server with gpcrondump, use
gpdbrestore.

2. Are you recreating the Greenplum Database system, or just restoring your
data? If Greenplum Database is running and you are restoring your data, use
gpdbrestore or gp_restore. If you lost your entire array and need to rebuild
the entire system from backup, use gpinitsystem.

3. Are you restoring to a system with the same number of segment instances as
your backup set? If you are restoring to an array with the same number of
segment hosts and segment instances per host, use gpdbrestore or gp_restore.
Restoring From Parallel Backup Files 49

Greenplum Database System Administrator Guide 4.3 – Chapter 5: Backing Up and Restoring Databases
If you are migrating to a different array configuration, you must do a non-parallel
restore. See “Restoring to a Different Greenplum System Configuration” on page
51.

Restoring a Database with gp_restore
gp_restore recreates the data definitions (schema) and user data in a database using
backup files created by gp_dump.

Important: The gp_dump and gp_restore utilities are deprecated and will be
removed in a future release. Use gpcrondump and gpdbrestore to backup and
restore Greenplum databases.

The requirements for using gp_restore are:

• Backup files created by gp_dump.

• Backup files reside on the segment hosts where gp_dump created them.

• A running Greenplum Database system with the same number of primary segment
instances as the system backed up with gp_dump.

• The restore target database is created in the system.

• Use the same options for restore that you used for backup, for example, -s
(schema only), -a (data only), --gp-c (compressed), --gp-d (alternate dump file
location).

The gp_restore utility performs the following actions.

On the master host

• Runs the SQL DDL commands in the gp_dump_1_<dbid>_<timestamp> file
created by gp_dump to recreate the database schema and objects.

• Creates a log file in the master data directory named
gp_restore_status_1_<dbid>_<timestamp>.

• gp_restore launches a gp_restore_agent for each segment instance to be
restored. gp_restore_agent processes run on the segment hosts and report
status back to the gp_restore process running on the master host.

On the segment hosts

• Restores the user data for each segment instance using the
gp_dump_1_<dbid>_<timestamp> files created by gp_dump. Each primary and
mirror segment instance on a host is restored.

• Creates a log file for each segment instance named
gp_restore_status_1_<dbid>_<timestamp>.

The 14-digit timestamp uniquely identifies the backup job to restore. You specify the
timestamp when you invoke gp_restore with the --gp-k option.

To restore from a backup created by gp_dump

1. Ensure that the backup files created by gp_dump reside on the master host and
segment hosts for the Greenplum Database system you are restoring.

2. Ensure that the restore’s target database exists. For example:
Restoring From Parallel Backup Files 50

Greenplum Database System Administrator Guide 4.3 – Chapter 5: Backing Up and Restoring Databases
$ createdb database_name

3. From the master, run the gp_restore utility. --gp-k specifies the timestamp key
of the backup job and -d specifies the database to connect to:

$ gp_restore -gp-k=2012103112453 -d database_name

Restoring a Database Using gpdbrestore
The gpdbrestore utility provides convenience and flexibility in restoring from a set
of backup files created by gpcrondump. To restore using gpdbrestore, ensure that
you have:

• A complete set of backup files created by a gpcrondump operation. A full backup
and any required incremental backups.

• A running Greenplum Database system.

• A Greenplum Database system with the same number of primary segment
instances as the system that was backed up.

• The database you are restoring to is created in the system.

To restore from an archive host using gpdbrestore

This procedure assumes that the backup set was moved off the Greenplum array to
another host in the network.

1. Ensure that the archive host is reachable from the Greenplum master host:

$ ping archive_host

2. Ensure that the restore’s target database exists. For example:

$ createdb database_name

3. From the master, run the gpdbrestore utility. -R specifies the host name and path
to a complete backup set:

$ gpdbrestore -R archive_host:/gpdb/backups/archive/20120714

To restore from a Data Domain system using gpdbrestore with Data
Domain Boost

1. Ensure the One-Time Data Domain Boost Credential Setup is complete.

2. Add the option --ddboost to the gpdbrestore option:

$ gpdbrestore -t backup_timestamp -v -ddboost

Note: Some of the options available in gpdbrestore have different implications
when using Data Domain. For details, see gpdbrestore.

Restoring to a Different Greenplum System Configuration
To perform a parallel restore operation using gpdbrestore or gp_restore, the
system you are restoring to must have the same configuration as the system that was
backed up. To restore your database objects and data into a different system
Restoring From Parallel Backup Files 51

Greenplum Database System Administrator Guide 4.3 – Chapter 5: Backing Up and Restoring Databases
configuration, for example, to expand into a system with more segments, restore your
parallel backup files by loading them through the Greenplum master. To perform a
non-parallel restore, you must have:

• A full backup set created by a gpcrondump or gp_dump operation. The backup
file of the master contains the DDL to recreate your database objects. The backup
files of the segments contain the data.

• A running Greenplum Database system.

• The database you are restoring to exists in the system.

Segment dump files contain a COPY command for each table followed by the data in
delimited text format. Collect all of the dump files for all of the segment instances and
run them through the master to restore your data and redistribute it across the new
system configuration.

To restore a database to a different system configuration

1. Ensure that you have a complete backup set, including dump files of the master
(gp_dump_1_1_<timestamp>, gp_dump_1_1_<timestamp>_post_data) and
one for each segment instance (gp_dump_0_2_<timestamp>,
gp_dump_0_3_<timestamp>, gp_dump_0_4_<timestamp>, and so on). Each
dump file must have the same timestamp key. gp_dump creates the dump files in
each segment instance’s data directory. You must collect all the dump files and
move them to one location on the master host. You can copy each segment dump
file to the master, load it, and then delete it after it loads successfully.

2. Ensure that the database you are restoring to is created in the system. For example:

$ createdb database_name

3. Load the master dump file to restore the database objects. For example:

$ psql database_name -f /gpdb/backups/gp_dump_1_1_20120714

4. Load each segment dump file to restore the data. For example:

$ psql database_name -f /gpdb/backups/gp_dump_0_2_20120714

$ psql database_name -f /gpdb/backups/gp_dump_0_3_20120714

$ psql database_name -f /gpdb/backups/gp_dump_0_4_20120714

$ psql database_name -f /gpdb/backups/gp_dump_0_5_20120714

...

5. Load the post data file to restore database objects such as indexes, triggers,
primary key constraints, etc.

$ psql database_name
 -f /gpdb/backups/gp_dump_0_5_20120714_post_data
Restoring From Parallel Backup Files 52

Greenplum Database System Administrator Guide 4.3 – Chapter 6: Expanding a Greenplum System
6. Expanding a Greenplum System

This chapter provides information about adding resources to an existing Greenplum
Database system to scale performance and storage capacity.

• Planning Greenplum System Expansion

• Preparing and Adding Nodes

• Initializing New Segments

• Redistributing Tables

• Removing the Expansion Schema

This chapter focuses on software aspects of expansion and gives a general overview
for preparing hardware platforms and focuses on software aspects of expansion. To
configure hardware resources for Greenplum Database expansion, work with
Greenplum Database platform engineers.

Planning Greenplum System Expansion
This section provides a synopsis and checklist for the system expansion process.
Careful planning helps ensure a successful system expansion. To minimize risk and
downtime for Greenplum Database, prepare all new hardware and plan each step of
the expansion procedure.

“Planning Table Redistribution” on page 58 describes performance considerations for
large-scale systems.

System Expansion Overview
System expansion consists of the following phases. Perform these operations with the
system offline. The gpexpand utility shuts down the database during initialization if
an administrator has not already done so.

• Adding and testing new hardware —“Planning New Hardware Platforms” on
page 56 describes general considerations for deploying new hardware. For more
information about hardware platforms, consult Greenplum platform engineers.
After you provision the new hardware platforms and set up their networks, run
performance tests using Greenplum utilities.

• Initializing new segments — After you install Greenplum Database on new
hardware, initialize new segments using gpexpand. gpexpand creates a data
directory, copies user tables from all existing databases on the new segments, and
captures metadata for each table in an expansion schema for status tracking. After
this process completes, the expansion operation is committed and irrevocable.

• Redistributing tables — At initialization, gpexpand nullifies hash distribution
policies on tables in all existing databases, except for parent tables of a partitioned
table, and sets the distribution policy for all tables to random distribution.
Planning Greenplum System Expansion 53

Greenplum Database System Administrator Guide 4.3 – Chapter 6: Expanding a Greenplum System
Users can access Greenplum Database after initialization completes and the
system is back online, but they may experience performance degradation on
systems that rely heavily on hash distribution of tables.

During redistribution, normal operations such as ETL jobs, user queries, and
reporting can continue, though users might experience slower response times.

Note: When a table has a random distribution policy, Greenplum Database cannot
enforce unique constraints (such as PRIMARY KEY). This can affect your ETL and
loading processes until table redistribution completes because duplicate rows do
not issue a constraint violation error.

To complete system expansion, you must run gpexpand to redistribute data tables
across the newly added segments. Depending on the size and scale of your system,
redistribution can be accomplished in a single session during low-use hours, or
you can divide the process into batches over an extended period. Each table or
partition is unavailable for read or write operations during redistribution. As each
table is redistributed across the new segments, database performance should
incrementally improve until it exceeds pre-expansion performance levels.

In a typical operation, you run the gpexpand utility four times with different options
during the complete expansion process.

1. To interactively create an expansion input file:

gpexpand -f hosts_file

2. To initialize segments and create expansion schema:

gpexpand -i input_file -D database_name

3. To redistribute tables:

gpexpand -d duration

4. To remove the expansion schema:

gpexpand -c

You may need to run gpexpand several times to complete the expansion in large-scale
systems that require multiple redistribution sessions. gpexpand can benefit from
explicit table redistribution ranking; see “Planning Table Redistribution” on page 58.

For information about the gpexpand utility and the other utilities that are used for
system expansion, see the Greenplum Database Utility Guide.
Planning Greenplum System Expansion 54

Greenplum Database System Administrator Guide 4.3 – Chapter 6: Expanding a Greenplum System
System Expansion Checklist
This checklist summarizes the tasks for a system expansion.

Online Pre-Expansion Tasks

* System is up and available

Devise and execute a plan for ordering, building, and networking new
hardware platforms.

Devise a database expansion plan. Map the number of segments per host,
schedule the offline period for testing performance and creating the
expansion schema, and schedule the intervals for table redistribution.

Perform a complete schema dump.

Install Greenplum Database binaries on new hosts.

Copy SSH keys to the new hosts (gpssh-exkeys).

Validate the operating system environment of the new hardware (gpcheck).

Validate disk I/O and memory bandwidth of the new hardware
(gpcheckperf).

Validate that the master data directory has no extremely large files in the
pg_log or gpperfmon/data directories.

Validate that there are no catalog issues (gpcheckcat).

Prepare an expansion input file (gpexpand).

Offline Expansion Tasks

* The system is locked and unavailable to all user activity during this process.

Validate the operating system environment of the combined existing and
new hardware (gpcheck).

Validate disk I/O and memory bandwidth of the combined existing and new
hardware (gpcheckperf).

Initialize new segments into the array and create an expansion schema
(gpexpand -i input_file).
Planning Greenplum System Expansion 55

Greenplum Database System Administrator Guide 4.3 – Chapter 6: Expanding a Greenplum System
Planning New Hardware Platforms
A deliberate, thorough approach to deploying compatible hardware greatly minimizes
risk to the expansion process.

Hardware resources and configurations for new segment hosts should match those of
the existing hosts. Work with Greenplum Platform Engineering before making a
hardware purchase to expand Greenplum Database.

The steps to plan and set up new hardware platforms vary for each deployment. Some
considerations include how to:

• Prepare the physical space for the new hardware; consider cooling, power supply,
and other physical factors.

• Determine the physical networking and cabling required to connect the new and
existing hardware.

• Map the existing IP address spaces and developing a networking plan for the
expanded system.

• Capture the system configuration (users, profiles, NICs, and so on) from existing
hardware to use as a detailed list for ordering new hardware.

• Create a custom build plan for deploying hardware with the desired configuration
in the particular site and environment.

After selecting and adding new hardware to your network environment, ensure you
perform the burn-in tasks described in “Verifying OS Settings” on page 61.

Planning New Segment Initialization
Expanding Greenplum Database requires a limited period of system down time.
During this period, run gpexpand to initialize new segments into the array and create
an expansion schema.

The time required depends on the number of schema objects in the Greenplum system
and other factors related to hardware performance. In most environments, the
initialization of new segments requires less than thirty minutes offline.

Online Expansion and Table Redistribution

* System is up and available

Before you start table redistribution, stop any automated snapshot processes
or other processes that consume disk space.

Redistribute tables through the expanded system (gpexpand).

Remove expansion schema (gpexpand -c).

Run analyze to update distribution statistics.

During the expansion, use gpexpand -a, and post-expansion, use analyze
Planning Greenplum System Expansion 56

Greenplum Database System Administrator Guide 4.3 – Chapter 6: Expanding a Greenplum System
Note: After you begin initializing new segments, you can no longer restore the system
using gp_dump files created for the pre-expansion system. When initialization
successfully completes, the expansion is committed and cannot be rolled back.

Planning Mirror Segments
If your existing array has mirror segments, the new segments must have mirroring
configured. If there are no mirrors configured for existing segments, you cannot add
mirrors to new hosts with the gpexpand utility.

For Greenplum Database arrays with mirror segments, ensure you add enough new
host machines to accommodate new mirror segments. The number of new hosts
required depends on your mirroring strategy:

• Spread Mirroring — Add at least one more host to the array than the number of
segments per host. The number of separate hosts must be greater than the number
of segment instances per host to ensure even spreading.

• Grouped Mirroring — Add at least two new hosts so the mirrors for the first
host can reside on the second host, and the mirrors for the second host can reside
on the first. For more information, see “About Segment Mirroring” on page 7.

Increasing Segments Per Host
By default, new hosts are initialized with as many primary segments as existing hosts
have. You can increase the segments per host or add new segments to existing hosts.

For example, if existing hosts currently have two segments per host, you can use
gpexpand to initialize two additional segments on existing hosts for a total of four
segments and four new segments on new hosts.

The interactive process for creating an expansion input file prompts for this option; the
input file format allows you to specify new segment directories manually, also. For
more information, see “Creating an Input File for System Expansion” on page 62.

About the Expansion Schema
At initialization, gpexpand creates an expansion schema. If you do not specify a
database at initialization (gpexpand -D), the schema is created in the database
indicated by the PGDATABASE environment variable.

The expansion schema stores metadata for each table in the system so its status can be
tracked throughout the expansion process. The expansion schema consists of two
tables and a view for tracking expansion operation progress:

• gpexpand.status

• gpexpand.status_detail

• gpexpand.expansion_progress

Control expansion process aspects by modifying gpexpand.status_detail. For
example, removing a record from this table prevents the system from expanding the
table across new segments. Control the order in which tables are processed for
redistribution by updating the rank value for a record. For more information, see
“Ranking Tables for Redistribution” on page 66.
Planning Greenplum System Expansion 57

Greenplum Database System Administrator Guide 4.3 – Chapter 6: Expanding a Greenplum System
Planning Table Redistribution
Table redistribution is performed while the system is online. For many Greenplum
systems, table redistribution completes in a single gpexpand session scheduled during
a low-use period. Larger systems may require multiple sessions and setting the order
of table redistribution to minimize performance impact. Pivotal recommends
completing the table redistribution in one session if possible.

Important: To perform table redistribution, your segment hosts must have enough
disk space to temporarily hold a copy of your largest table. All tables are unavailable
for read and write operations during redistribution.

The performance impact of table redistribution depends on the size, storage type, and
partitioning design of a table. Per table, redistributing a table with gpexpand takes as
much time as a CREATE TABLE AS SELECT operation does. When redistributing a
terabyte-scale fact table, the expansion utility can use much of the available system
resources, with resulting impact on query performance or other database workloads.

Managing Redistribution in Large-Scale Greenplum Systems
You can manage the order in which tables are redistributed by adjusting their ranking.
See “Ranking Tables for Redistribution” on page 66. Manipulating the redistribution
order can help adjust for limited disk space and restore optimal query performance.

When planning the redistribution phase, consider the impact of the exclusive lock
taken on each table during redistribution. User activity on a table can delay its
redistribution. Tables are unavailable during redistribution.

Systems with Abundant Free Disk Space

In systems with abundant free disk space (required to store a copy of the largest table),
you can focus on restoring optimum query performance as soon as possible by first
redistributing important tables that queries use heavily. Assign high ranking to these
tables, and schedule redistribution operations for times of low system usage. Run one
redistribution process at a time until large or critical tables have been redistributed.

Systems with Limited Free Disk Space

If your existing hosts have limited disk space, you may prefer to first redistribute
smaller tables (such as dimension tables) to clear space to store a copy of the largest
table. Disk space on the original segments will increase as each table is redistributed
across the expanded array. When enough free space exists on all segments to store a
copy of the largest table, you can redistribute large or critical tables. Redistribution of
large tables requires exclusive locks; schedule this procedure for off-peak hours.

Also consider the following:

• Run multiple parallel redistribution processes during off-peak hours to maximize
available system resources.

• When running multiple processes, operate within the connection limits for your
Greenplum system. For information about limiting concurrent connections, see
the Greenplum Database Administrator’s Guide.
Planning Greenplum System Expansion 58

Greenplum Database System Administrator Guide 4.3 – Chapter 6: Expanding a Greenplum System
Redistributing Append-Optimized and Compressed Tables
gpexpand redistributes append-optimized and compressed append-optimized tables at
different rates from heap tables. The CPU capacity required to compress and
decompress data tends to increase the impact on system performance. For
similar-sized tables with similar data, you may find overall performance differences
like the following:

• Uncompressed append-optimized tables expand 10% faster than heap tables

• zlib-compressed append-optimized tables expand at a significantly slower rate
than uncompressed append-optimized tables, potentially up to 80% slower.

• Systems with data compression such as ZFS/LZJB take longer to redistribute.
Important: If your system nodes use data compression, use identical compression on
new nodes to avoid disk space shortage.

Redistributing Tables with Primary Key Constraints
There is a time period during which primary key constraints cannot be enforced
between the initialization of new segments and successful table redistribution.
Duplicate data inserted into tables during this time prevents the expansion utility from
redistributing the affected tables.

After a table is redistributed, the primary key constraint is properly enforced again. If
an expansion process violates constraints, the expansion utility logs errors and
displays warnings when it completes. To fix constraint violations, perform either:

• Clean up duplicate data in the primary key columns, and re-run gpexpand.

• Drop the primary key constraints, and re-run gpexpand.

Redistributing Tables with User-Defined Data Types
You cannot perform redistribution with the expansion utility on tables with dropped
columns of user-defined data types. To redistribute tables with dropped columns of
user-defined types, first re-create the table using CREATE TABLE AS SELECT. After
this process removes the dropped columns, redistribute the table with gpexpand.

Redistributing Partitioned Tables
Because the expansion utility can process each individual partition on a large table, an
efficient partition design reduces the performance impact of table redistribution. Only
the child tables of a partitioned table are set to a random distribution policy. The
read/write lock for redistribution applies to only one child table at a time.

Redistributing Indexed Tables

Because the gpexpand utility must re-index each indexed table after redistribution, a
high level of indexing has a large performance impact. Systems with intensive
indexing have significantly slower rates of table redistribution.
Planning Greenplum System Expansion 59

Greenplum Database System Administrator Guide 4.3 – Chapter 6: Expanding a Greenplum System
Preparing and Adding Nodes
To prepare new system nodes for expansion, install the Greenplum Database software
binaries, exchange the required SSH keys, and run performance tests. Pivotal
recommends running performance tests on first the new nodes and then all nodes. Run
the tests on all nodes with the system offline so user activity does not distort results.

Generally, Pivotal recommends running performance tests when an administrator
modifies node networking or other special conditions in the system. For example, if
you will run the expanded system on two network clusters, run tests on each cluster.

This section describes how to run Greenplum administrative utilities to verify your
new nodes are ready for integration into the existing Greenplum system.

Adding New Nodes to the Trusted Host Environment
New nodes must exchange SSH keys with the existing nodes to enable Greenplum
administrative utilities to connect to all segments without a password prompt. Pivotal
recommends performing the key exchange process twice.

First perform the process as root, for administration convenience, and then as the
user gpadmin, for management utilities. Perform the following tasks in order:

a. “To exchange SSH keys as root” on page 60

b. “To create the gpadmin user” on page 61

c. “To exchange SSH keys as the gpadmin user” on page 61

To exchange SSH keys as root

1. Create a host file with the existing host names in your array and a separate host
file with the new expansion host names. For existing hosts, you can use the same
host file used to set up SSH keys in the system. In the files, list all hosts (master,
backup master, and segment hosts) with one name per line and no extra lines or
spaces. Exchange SSH keys using the configured host names for a given host if
you use a multi-NIC configuration. In this example, mdw is configured with a
single NIC, and sdw1, sdw2, and sdw3 are configured with 4 NICs:

mdw
sdw1-1
sdw1-2
sdw1-3
sdw1-4
sdw2-1
sdw2-2
sdw2-3
sdw2-4
sdw3-1
sdw3-2
sdw3-3
sdw3-4

1. Log in as root on the master host, and source the greenplum_path.sh file from
your Greenplum installation.
Preparing and Adding Nodes 60

Greenplum Database System Administrator Guide 4.3 – Chapter 6: Expanding a Greenplum System
$ su -

source /usr/local/greenplum-db/greenplum_path.sh

2. Run the gpssh-exkeys utility referencing the host list files. For example:

gpssh-exkeys -f /home/gpadmin/existing_hosts_file -x
/home/gpadmin/new_hosts_file

3. gpssh-exkeys checks the remote hosts and performs the key exchange between
all hosts. Enter the root user password when prompted. For example:

***Enter password for root@hostname: <root_password>

To create the gpadmin user

1. Use gpssh to create the gpadmin user on all the new segment hosts (if it does not
exist already). Use the list of new hosts you created for the key exchange. For
example:

gpssh -f new_hosts_file '/usr/sbin/useradd gpadmin -d
/home/gpadmin -s /bin/bash'

2. Set a password for the new gpadmin user. On Linux, you can do this on all
segment hosts simultaneously using gpssh. For example:

gpssh -f new_hosts_file 'echo gpadmin_password | passwd
gpadmin --stdin'

On Solaris, you must log in to each segment host and set the gpadmin user’s
password on each host. For example:

ssh segment_hostname

passwd gpadmin

New password: <gpadmin_password>

Retype new password: <gpadmin_password>

3. Verify the gpadmin user has been created by looking for its home directory:

gpssh -f new_hosts_file ls -l /home

To exchange SSH keys as the gpadmin user

1. Log in as gpadmin and run the gpssh-exkeys utility referencing the host list
files. For example:

gpssh-exkeys -e /home/gpadmin/existing_hosts_file -x
/home/gpadmin/new_hosts_file

2. gpssh-exkeys will check the remote hosts and perform the key exchange
between all hosts. Enter the gpadmin user password when prompted. For
example:

***Enter password for gpadmin@hostname: <gpadmin_password>

Verifying OS Settings
Use the gpcheck utility to verify all new hosts in your array have the correct OS
settings to run Greenplum Database software.
Preparing and Adding Nodes 61

Greenplum Database System Administrator Guide 4.3 – Chapter 6: Expanding a Greenplum System
To run gpcheck

1. Log in on the master host as the user who will run your Greenplum Database
system (for example, gpadmin).

$ su - gpadmin

2. Run the gpcheck utility using your host file for new hosts. For example:

$ gpcheck -f new_hosts_file

Validating Disk I/O and Memory Bandwidth
Use the gpcheckperf utility to test disk I/O and memory bandwidth.

To run gpcheckperf

1. Run the gpcheckperf utility using the host file for new hosts. Use the -d option
to specify the file systems you want to test on each host. You must have write
access to these directories. For example:

$ gpcheckperf -f new_hosts_file -d /data1 -d /data2 -v

2. The utility may take a long time to perform the tests because it is copying very
large files between the hosts. When it is finished, you will see the summary results
for the Disk Write, Disk Read, and Stream tests.

For a network divided into subnets, repeat this procedure with a separate host file for
each subnet.

Integrating New Hardware into the System
Before initializing the system with the new segments, shut down the system with
gpstop to prevent user activity from skewing performance test results. Then, repeat
the performance tests using host files that include all nodes, existing and new:

• Verifying OS Settings

• Validating Disk I/O and Memory Bandwidth

Initializing New Segments
Use the gpexpand utility to initialize the new segments, create the expansion schema,
and set a system-wide random distribution policy for the database. The utility
performs these tasks by default the first time you run it with a valid input file on a
Greenplum Database master. Subsequently, it will detect if an expansion schema has
been created and, if so, perform table redistribution.

Creating an Input File for System Expansion
To begin expansion, gpexpand requires an input file containing information about the
new segments and hosts. If you run gpexpand without specifying an input file, the
utility displays an interactive interview that collects the required information and
automatically creates an input file.
Initializing New Segments 62

Greenplum Database System Administrator Guide 4.3 – Chapter 6: Expanding a Greenplum System
If you create the input file using the interactive interview, you may specify a file with
a list of expansion hosts in the interview prompt. If your platform or command shell
limits the length of the host list, specifying the hosts with -f may be mandatory.

Creating an input file in Interactive Mode
Before you run gpexpand to create an input file in interactive mode, ensure you
know:

• The number of new hosts (or a hosts file)

• The new hostnames (or a hosts file)

• The mirroring strategy used in existing hosts, if any

• The number of segments to add per host, if any

The utility automatically generates an input file based on this information, dbid,
content ID, and data directory values stored in gp_segment_configuration, and saves
the file in the current directory.

To create an input file in interactive mode

1. Log in on the master host as the user who will run your Greenplum Database
system; for example, gpadmin.

2. Run gpexpand. The utility displays messages about how to prepare for an
expansion operation, and it prompts you to quit or continue.

Optionally, specify a hosts file using -f. For example:

$ gpexpand -f /home/gpadmin/new_hosts_file

3. At the prompt, select Y to continue.

4. Unless you specified a hosts file using -f, you will be prompted to enter
hostnames. Enter a comma separated list of the hostnames of the new expansion
hosts. Do not include interface hostnames. For example:

> sdw4, sdw5, sdw6, sdw7

To add segments to existing hosts only, enter a blank line at this prompt. Do not
specify localhost or any existing host name.

5. Enter the mirroring strategy used in your system, if any. Options are
spread|grouped|none. The default setting is grouped.

Ensure you have enough hosts for the selected grouping strategy. For more
information about mirroring, see “Planning Mirror Segments” on page 57.

6. Enter the number of new primary segments to add, if any. By default, new hosts
are initialized with the same number of primary segments as existing hosts.
Increase segments per host by entering a number greater than zero. The number
you enter will be the number of additional segments initialized on all hosts. For
example, if existing hosts currently have two segments each, entering a value of 2
initializes two more segments on existing hosts, and four segments on new hosts.
Initializing New Segments 63

Greenplum Database System Administrator Guide 4.3 – Chapter 6: Expanding a Greenplum System
7. If you are adding new primary segments, enter the new primary data directory root
for the new segments. Do not specify the actual data directory name, which is
created automatically by gpexpand based on the existing data directory names.

For example, if your existing data directories are as follows:

/gpdata/primary/gp0
/gpdata/primary/gp1

then enter the following (one at each prompt) to specify the data directories for
two new primary segments:

/gpdata/primary
/gpdata/primary

When the initialization runs, the utility creates the new directories gp2 and gp3
under /gpdata/primary.

8. If you are adding new mirror segments, enter the new mirror data directory root
for the new segments. Do not specify the data directory name; it is created
automatically by gpexpand based on the existing data directory names.

For example, if your existing data directories are as follows:

/gpdata/mirror/gp0
/gpdata/mirror/gp1

enter the following (one at each prompt) to specify the data directories for two
new mirror segments:

/gpdata/mirror
/gpdata/mirror

When the initialization runs, the utility will create the new directories gp2 and gp3
under /gpdata/mirror

Important: These primary and mirror root directories for new segments must
exist on the hosts, and the user running gpexpand must have permissions to
create directories in them.

After you have entered all required information, the utility generates an input file
and saves it in the current directory. For example:

gpexpand_inputfile_yyyymmdd_145134

Expansion Input File Format
Pivotal recommends using the interactive interview process to create your own input
file unless your expansion scenario has atypical needs.

The format for expansion input files is:

hostname:address:port:fselocation:dbid:content:preferred_role:rep
lication_port

For example:

sdw5:sdw5-1:50011:/gpdata/primary/gp9:11:9:p:53011

sdw5:sdw5-2:50012:/gpdata/primary/gp10:12:10:p:53011

sdw5:sdw5-2:60011:/gpdata/mirror/gp9:13:9:m:63011

sdw5:sdw5-1:60012:/gpdata/mirror/gp10:14:10:m:63011
Initializing New Segments 64

Greenplum Database System Administrator Guide 4.3 – Chapter 6: Expanding a Greenplum System
For each new segment, this format of expansion input file requires the following:

Table 6.1 Data for the expansion configuration file

Parameter Valid Values Description

hostname Hostname Hostname for the segment host.

port An available port number Database listener port for the segment, incremented on the
existing segment port base number.

fselocation Directory name The data directory (filespace) location for a segment as per the
pg_filespace_entry system catalog.

dbid Integer. Must not conflict with
existing dbid values.

Database ID for the segment. The values you enter should be
incremented sequentially from existing dbid values shown in
the system catalog gp_segment_configuration. For example,
to add four nodes to an existing ten-segment array with dbid
values of 1-10, list new dbid values of 11, 12, 13 and 14.

content Integer. Must not conflict with
existing content values.

The content ID of the segment. A primary segment and its
mirror should have the same content ID, incremented
sequentially from existing values. For more information, see
content in the reference for gp_segment_configuration.

preferred_role p | m Determines whether this segment is a primary or mirror.
Specify p for primary and m for mirror.

replication_port An available port number File replication port for the segment, incremented on the
existing segment replication_port base number.

Running gpexpand to Initialize New Segments
After you have created an input file, run gpexpand to initialize new segments. The
utility automatically stops Greenplum Database segment initialization and restarts the
system when the process finishes.

To run gpexpand with an input file

1. Log in on the master host as the user who will run your Greenplum Database
system; for example, gpadmin.

2. Run the gpexpand utility, specifying the input file with -i. Optionally, use -D to
specify the database in which to create the expansion schema. For example:

$ gpexpand -i input_file -D database1

The utility detects if an expansion schema exists for the Greenplum Database
system. If a schema exists, remove it with gpexpand -c before you start a new
expansion operation. See “Removing the Expansion Schema” on page 68.

When the new segments are initialized and the expansion schema is created, the
utility prints a success message and exits.

When the initialization process completes, you can connect to Greenplum Database
and view the expansion schema. The schema resides in the database you specified
with -D or in the database specified by the PGDATABASE environment variable. For
more information, see “About the Expansion Schema” on page 57.
Initializing New Segments 65

Greenplum Database System Administrator Guide 4.3 – Chapter 6: Expanding a Greenplum System
Rolling Back an Failed Expansion Setup
You can roll back an expansion setup operation only if the operation fails. To roll back
a failed expansion setup, use the following command, specifying the database that
contains the expansion schema:

gpexpand --rollback -D database_name

Redistributing Tables
After creating an expansion schema, you can bring Greenplum Database back online
and redistribute tables across the entire array with gpexpand. Target low-use hours
when the utility’s CPU usage and table locks have minimal impact on operations.
Rank tables to redistribute the largest or most critical tables in preferential order.

While table redistribution is underway:

• Any new tables or partitions created are distributed across all segments exactly as
they would be under normal operating conditions.

• Queries can access all segments, even if the relevant data is not yet redistributed to
tables on the new segments.

• The table or partition being redistributed is locked and unavailable for read or
write operations. When its redistribution completes, normal operations resume.

Ranking Tables for Redistribution
For large systems, Pivotal recommends controlling table redistribution order. Adjust
tables’ rank values in the expansion schema to prioritize heavily-used tables and
minimize performance impact. Available free disk space can affect table ranking; see
“Managing Redistribution in Large-Scale Greenplum Systems” on page 58.

To rank tables for redistribution by updating rank values in gpexpand.status_detail,
connect to Greenplum Database using psql or another supported client. Update
gpexpand.status_detail with commands such as:

=> UPDATE gpexpand.status_detail SET rank= 10;

UPDATE gpexpand.status_detail SET rank=1 WHERE fq_name =
‘public.lineitem’;

UPDATE gpexpand.status_detail SET rank=2 WHERE fq_name =
‘public.orders’;

These commands lower the priority of all tables to 10 and then assign a rank of 1 to
lineitem and a rank of 2 to orders. When table redistribution begins, lineitem is
redistributed first, followed by orders and all other tables in gpexpand.status_detail.
To exclude a table from redistribution, remove the table from gpexpand.status_detail.
Redistributing Tables 66

Greenplum Database System Administrator Guide 4.3 – Chapter 6: Expanding a Greenplum System
Redistributing Tables Using gpexpand

To redistribute tables with gpexpand

1. Log in on the master host as the user who will run your Greenplum Database
system; for example, gpadmin.

2. Run the gpexpand utility. You can use the -d or -e option to define the expansion
session time period. For example, to run the utility for up to 60 consecutive hours:

$ gpexpand -d 60:00:00

The utility redistributes tables until the last table in the schema completes or it
reaches the specified duration or end time. gpexpand updates the status and time
in gpexpand.status when a session starts and finishes.

Monitoring Table Redistribution
You can query the expansion schema during the table redistribution process. The view
gpexpand.expansion_progress provides a current progress summary, including the
estimated rate of table redistribution and estimated time to completion. You can query
the table gpexpand.status_detail for per-table status information.

Viewing Expansion Status
After the first table completes redistribution, gpexpand.expansion_progress calculates
its estimates and refreshes them based on all tables’ redistribution rates. Calculations
restart each time you start a table redistribution session with gpexpand. To monitor
progress, connect to Greenplum Database using psql or another supported client;
query gpexpand.expansion_progress with a command like the following:

=# select * from gpexpand.expansion_progress;

 name | value

------------------------------+-----------------------

 Bytes Left | 5534842880

 Bytes Done | 142475264

 Estimated Expansion Rate | 680.75667095996092 MB/s

 Estimated Time to Completion | 00:01:01.008047

 Tables Expanded | 4

 Tables Left | 4

(6 rows)

Viewing Table Status
The table gpexpand.status_detail stores status, time of last update, and more facts
about each table in the schema. To see a table’s status, connect to Greenplum Database
using psql or another supported client and query gpexpand.status_detail:

=> SELECT status, expansion_started, source_bytes FROM
gpexpand.status_detail WHERE fq_name = ‘public.sales’;

status | expansion_started | source_bytes

-----------+----------------------------+--------------

 COMPLETED | 2009-02-20 10:54:10.043869 | 4929748992
Redistributing Tables 67

Greenplum Database System Administrator Guide 4.3 – Chapter 6: Expanding a Greenplum System
(1 row)

Removing the Expansion Schema
You can safely remove the expansion schema after the expansion operation is
complete and verified. To run another expansion operation on a Greenplum system,
first remove the existing expansion schema.

To remove the expansion schema

1. Log in on the master host as the user who will be running your Greenplum
Database system (for example, gpadmin).

2. Run the gpexpand utility with the -c option. For example:

$ gpexpand -c

$

Note: Some systems require two returns.
Removing the Expansion Schema 68

Greenplum Database System Administrator Guide 4.3 – Chapter 7: Monitoring a Greenplum System
7. Monitoring a Greenplum System

Education in the Greenplum Database system helps administrators plan workflow and
troubleshoot problems. This chapter discusses tools for monitoring database
performance and activity.

• Monitoring Database Activity and Performance

• Monitoring System State

• Viewing the Database Server Log Files

• Using gp_toolkit

Monitoring Database Activity and Performance
Greenplum provides an optional system monitoring and management tool, Greenplum
Command Center, that administrators can enable within Greenplum Database 4.3.

Enabling Greenplum Command Center is a two-part process. First, enable the
Greenplum Database server to collect and store system metrics. Next, install and
configure the Greenplum Command Center Console, an online application used to
view the system metrics collected and store them in the Command Center’s dedicated
Greenplum Database.

The Greenplum Command Center Console ships separately from your Greenplum
Database 4.3 installation. Download the Greenplum Command Center Console
package and documentation from the EMC Download Center. See the Greenplum
Database Command Center Administrator Guide for more information on installing
and using the Greenplum Command Center Console.

Monitoring System State
As a Greenplum Database administrator, you must to monitor the system for problem
events such as a segment going down or running out of disk space on a segment host.
This section describes how to monitor the health of a Greenplum Database system and
examine certain state information for a Greenplum Database system.

• Enabling System Alerts and Notifications

• Checking System State

• Checking Disk Space Usage

• Checking for Data Distribution Skew

• Viewing Metadata Information about Database Objects

• Viewing Query Workfile Usage Information
Monitoring Database Activity and Performance 69

https://emc.subscribenet.com
https://emc.subscribenet.com

Greenplum Database System Administrator Guide 4.3 – Chapter 7: Monitoring a Greenplum System
Enabling System Alerts and Notifications
You can configure a Greenplum Database system to trigger SNMP (Simple Network
Management Protocol) alerts or send email notifications to system administrators if
certain database events occur. These events include:

• All PANIC-level error conditions

• All FATAL-level error conditions

• ERROR-level conditions that are "internal errors" (for example, SIGSEGV errors)

• Database system shutdown and restart

• Segment failure and recovery

• Standby master out-of-sync conditions

• Master host manual shutdown or other software problem (in certain failure
scenarios, Greenplum Database cannot send an alert or notification)

This section includes the following topics:

• Using SNMP with a Greenplum Database System

• Enabling Email Notifications

Note that SNMP alerts and email notifications report the same event information.
There is no difference in the event information that either tool reports.

Using SNMP with a Greenplum Database System
Greenplum’s gpsnmpd agent is an SNMP daemon that supports SNMP requests about
the state of a Greenplum Database system using MIBs (Management Information
Bases).

MIBs are collections of objects that describe an SNMP-manageable entity — in this
case, a Greenplum Database system. An agent is any SNMP software running on a
managed device that responds to queries or set requests. The gpsnmpd daemon
currently supports the generic RDBMS MIB and typically operates on the master host.

gpsnmpd works with the SNMP support that already exists on the Greenplum
Database system. Greenplum recommends you install and run gpsnmpd as an AgentX
(Agent Extensibility Protocol) sub-agent to the operating system’s SNMP agent
(usually called snmpd). This allows a Network Management System to obtain
information about the hardware, operating system, and Greenplum Database from the
same port (161) and IP address. It also enables the auto-discovery of Greenplum
Database instances.

Alternatively, you can run the Greenplum SNMP agent as a stand-alone agent and use
the gpsnmpd agent or SNMP notification features independently of each other. As a
standalone SNMP agent, gpsnmpd listens for SNMP queries and requires the same
configuration as the system SNMP agent.

When the gpsnmpd sub-agent starts, it registers itself with the system-level SNMP
agent and communicates to the system agent the MIB parts of which it is aware. The
system agent communicates with the SNMP client/network monitoring application
and forwards requests for particular sections of the MIB to the gpsnmpd sub-agent.
Monitoring System State 70

Greenplum Database System Administrator Guide 4.3 – Chapter 7: Monitoring a Greenplum System
To obtain information about a Greenplum Database instance, gpsnmpd logs into
Greenplum Database through a normal libpq client session. SNMP GetRequests
trigger SELECT statements against Greenplum Database to get the requested
information. gpsnmpd does not send SNMP trap notifications; Greenplum Database
itself sends this information to the network monitor application.

Prerequisites

Before setting up SNMP support on Greenplum Database, ensure SNMP is installed
on the master host. If the snmpd file is not present in the /usr/sbin directory
(/usr/sfw/sbin/ on Solaris), then SNMP is not installed on the system. Depending
on the platform on which you are running Greenplum Database, install the following:

Table 7.1 SNMP Prerequisites

Operating System Packages1

1. SNMP is installed by default on SUSE, Solaris, and OSX platforms.

Red Hat Enterprise net-snmp

net-snmp-libs

net-snmp-utils

CentOS net-snmp

SUSE, Solaris, OSX N/A

The snmp.conf configuration file is located in /etc/snmp/. On Solaris platforms,
the snmp.conf file is in /etc/sma/snmp/.

Pre-installation Tasks

After you establish that SNMP is on the master host, log in as root, open a text editor,
and edit the path_to/snmp/snmpd.conf file. To use SNMP with Greenplum
Database, the minimum configuration change required to the snmpd.conf file is
specifying a community name. For example:

rocommunity public

Note: Replace public with the name of your SNMP community. Greenplum also
recommends configuring syslocation and syscontact. Configure other SNMP
settings as required for your environment and save the file.

For more information about the snmpd.conf file, enter:

man snmpd.conf

Note: On SUSE Linux platforms, make sure to review and configure security settings
in the snmp.conf file so snmpd accepts connections from sub-agents and returns all
available Object IDs (OIDs).

After you finish configuring the snmpd.conf file, start the system snmpd daemon:

/sbin/chkconfig snmpd on

Then, verify the system snmpd daemon is running. Enter:

snmpwalk -v 1 -c community_name localhost .1.3.6.1.2.1.1.1.0

For example:

snmpwalk -v 1 -c public localhost .1.3.6.1.2.1.1.1.0
Monitoring System State 71

Greenplum Database System Administrator Guide 4.3 – Chapter 7: Monitoring a Greenplum System
If this command returns “Timeout: No Response from localhost”, then the
system snmpd daemon is not running. If the daemon is running, output similar to the
following displays:

SNMPv2-MIB::sysDescr.0 = STRING: Linux hostname
2.6.18-92.el5 #1 SMP Tue Jun 10 18:51:06 EDT 2010 x86_64

Installing and Configuring the Greenplum SNMP Agent

The following procedure describes how to configure the Greenplum SNMP agent
(gpsnmpd) to collect and return database information to a network monitor.

If required, gpsnmpd can run as a stand-alone agent on a port other than port 161.

1. Log in as root and source the greenplum_path.sh file from your Greenplum
installation.

$ su -

source $GPHOME/greenplum_path.sh

2. Copy NETWORK-SERVICES-MIB.txt, GPDB-MIB.txt, and RDBMS-MIB.txt from
the $GPHOME/share/postgresql directory to the default location for MIBs on
the system.

The typical default location for MIBs is: /usr/share/snmp/mibs

For example:

cp NETWORK-SERVICES-MIB.txt GPDB-MIB.txt RDBMS-MIB.txt \
/usr/share/snmp/mibs

3. Determine how you want to use gpsnmpd. Greenplum recommends running
gpsnmpd as a sub-agent. This allows the monitoring application to use standard
SNMP ports to communicate with both the system agent and gpsnmpd. This
enables you to monitor both system and Greenplum Database status and events.

To run gpsnmpd as a sub-agent to the existing SNMP agent, open
/etc/snmp/snmpd.conf in a text editor and enter the following:

master agentx

On SUSE Linux, also enter the following:

agentXSocket /var/run/agentx/master

Alternatively, you can run gpsnmpd as stand-alone agent. To do this, skip this step
and go to Step 6b.

4. Perform platform-specific tasks:

a. On SUSE Linux platforms, create the following link:
/var $ ln -s /var/run/agentx /var/agent

b. On Solaris platforms, start the System Management Agent:
enable svc:/application/management/sma

5. Restart the snmpd daemon.

/etc/init.d/snmpd restart
Monitoring System State 72

Greenplum Database System Administrator Guide 4.3 – Chapter 7: Monitoring a Greenplum System
6. Set up a Greenplum Database table that is used by the Greenplum SNMP daemon
gpsnmpd by running the script $GPHOME/share/postgresql/gpsnmpd.sql.

Greenplum recommends using the postgres database. The database name is
specified in step 7 when you start the gpsnmpd daemon. For example, as gpadmin
run this script to create the table in the postgres database:

$ psql -d postgres -f $GPHOME/share/postgresql/gpsnmpd.sql

7. Start gpsnmpd.

a. To start gpsnmpd as an AgentX sub-agent, enter the following command (as
root):
gpsnmpd -s -b -C "dbname=postgres user=username \
password=password"

For example:

gpsnmpd -s -b -C "dbname=postgres user=gpadmin \
password=secret"

b. To start gpsnmpd as a stand-alone agent, enter the following command (as
root):
gpsnmpd -b -c path_to/snmp/snmpd.conf -x \
nic_ip_address:port -C "dbname=postgres user=username \
password=password"

For example:

gpsnmpd -b -c /etc/snmp/snmpd.conf -x \
192.168.100.24:10161 -C "dbname=postgres user=gpadmin \
password=secret"

Greenplum recommends using the postgres database in the connection string
(dbname=postgres).

You do not need to specify the –C option if you create a database role (user
identification) called root and add the following line in the pg_hba.conf
file:

local postgres root ident

This allows the UNIX user root to connect to the Postgres database over the
local connection. The root user does not require special permissions, but
other users require the user and password parameters to start gpsnmpd.

You can specify any configuration file to run gpsnmpd as a stand-alone agent;
you do not have to use the path_to/snmp/snmpd.conf file. The
configuration file you use must include a value for rocommunity.

The -x option allows you to specify an IP address for a network interface
card on the host and specify a port other than the default SNMP port of 161.
This enables you to run gpsnmpd without root permissions because you must
have root permissions to use ports 1024 and lower. You do not need to specify
this option if you are running gpsnmpd as an AgentX sub-agent (-s).

gpsnmpd loads a default set of MIBs automatically. However, you can use -m
option to load specific MIBs when starting gpsnmpd. You can also use -M
option to specify a list of directories from which you will load MIBs.
Monitoring System State 73

Greenplum Database System Administrator Guide 4.3 – Chapter 7: Monitoring a Greenplum System
Note: Best practice is not to enter a password in the gpsnmpd command as shown
in Step 6 or use the PGPASSWORD environment variable. Some operating systems
allow non-root users to see process environment variables and passwords through
the ps command.

Instead, use the .pgpass file. If you do not specify a password in the gpsnmpd
command, the agent reads from the .pgpass file in the home directory of the user
you specify in the command. See the The Password File section in the PostgreSQL
documentation for more information.

8. To verify the gpsnmpd agent is enabled and responding, perform the following
tests:

a. Test server access to the Greenplum Database:
snmpwalk -c communityname hostname:161 -v2c \
RDBMS-MIB::rdbmsRelState

You should see the following output:

Resetting connectionapplIndex for 0 is 0

applIndex for 1 is 1

RDBMS-MIB::rdbmsRelState.1.1 = INTEGER: active(2)

RDBMS-MIB::rdbmsRelState.2.0 = INTEGER: active(2)

RDBMS-MIB::rdbmsRelState.2.1 = INTEGER: active(2)

b. Verify Greenplum Database appears in the rdbmsDbTable. This table
describes each database monitored by gpsnmpd agent.
snmpwalk -c communityname hostname:161 -v2c \
RDBMS-MIB::rdbmsDbTable

You should see output similar to the following:

...

RDBMS-MIB::rdbmsDbPrivateMibOID.10888 = OID:
SNMPv2-SMI::enterprises.31327.10888

RDBMS-MIB::rdbmsDbPrivateMibOID.10889 = OID:
SNMPv2-SMI::enterprises.31327.10889

RDBMS-MIB::rdbmsDbVendorName.1 = STRING: Greenplum
Corporation

RDBMS-MIB::rdbmsDbVendorName.10888 = STRING: Greenplum
Corporation

RDBMS-MIB::rdbmsDbVendorName.10889 = STRING: Greenplum
Corporation

RDBMS-MIB::rdbmsDbName.1 = STRING: postgres

RDBMS-MIB::rdbmsDbName.10888 = STRING: template0

RDBMS-MIB::rdbmsDbName.10889 = STRING: postgres

...

9. In your network monitor application (such as Nagios, Cacti, or OpenView),
import RDBMS-MIB.txt, GPDB-MIB.txt, and NETWORK-SERVICES-MIB.txt.
Specify the host name of the Greenplum master in your monitoring application.
Monitoring System State 74

http://www.postgresql.org/docs/8.2/static/libpq-pgpass.html

Greenplum Database System Administrator Guide 4.3 – Chapter 7: Monitoring a Greenplum System
Setting up SNMP Notifications

1. To configure a Greenplum Database system to send SNMP notifications when
alerts occur, open the postgresql.conf file on the master host, uncomment, and
set the following parameters:

• gp_snmp_community: Set this parameter to the community name you
specified for your environment.

• gp_snmp_monitor_address: Enter the hostname:port of your network
monitor application. Typically, the port number is 162. If there are multiple
monitor addresses, separate them with a comma.

• gp_snmp_use_inform_or_trap: Enter either trap or inform. Trap
notifications are SNMP messages sent from one application to another (for
example, between Greenplum Database and a network monitoring
application). These messages are unacknowledged by the monitoring
application, but generate less network overhead.
Inform notifications are the same as trap messages, except the application
sends an acknowledgement to the application that generated the alert. In this
case, the monitoring application sends acknowledgement messages to
Greenplum Database-generated trap notifications. While inform messages
create more overhead, they inform Greenplum Database the monitoring
application has received the traps.

2. To test SNMP notifications, you can use the snmptrapd trap receiver. As root,
enter:

/usr/sbin/snmptrapd -m ALL -Lf ~/filename.log

On Solaris, enter:

/usr/sfw/sbin/snmptrapd -m ALL -Lf ~/filename.log

-Lf indicates that traps are logged to a file. -Le indicates that traps are logged to
stderr instead. -m ALL loads all available MIBs (you can also specify individual
MIBs if required).

Enabling Email Notifications
Complete the following steps to enable Greenplum Database to send email
notifications to system administrators whenever certain database events occur.

1. Open $MASTER_DATA_DIRECTORY/postgresql.conf in a text editor.

2. In the EMAIL ALERTS section, uncomment the following parameters and enter the
appropriate values for your email server and domain. For example:

gp_email_smtp_server='smtp.company.com:25'

gp_email_smtp_userid='gpadmin@company.com'

gp_email_smtp_password='mypassword'

gp_email_from='Greenplum Database <gpadmin@company.com>'

gp_email_to='dba@company.com;John Smith
<jsmith@company.com>'

You may create specific email accounts or groups in your email system that send
and receive email alerts from the Greenplum Database system. For example:

gp_email_from='GPDB Production Instance <gpdb@company.com>'
Monitoring System State 75

Greenplum Database System Administrator Guide 4.3 – Chapter 7: Monitoring a Greenplum System
gp_email_to='gpdb_dba_group@company.com'

You can also specify multiple email addresses for both gp_email parameters. Use
a semi-colon (;) to separate each email address. For example:

gp_email_to='gpdb_dba_group@company.com';'admin@company.com'

3. Save and close the postgresql.conf file.

4. Restart Greenplum Database:

$ gpstop -r

Testing Email Notifications
The Greenplum Database master host must be able to connect to the SMTP email
server you specify for the gp_email_smtp_server parameter. To test connectivity,
use the ping command:

$ ping my_email_server

If the master host can contact the SMTP server, log in to psql and test email
notifications with the following command:

$ psql template1

=# SELECT gp_elog('Test GPDB Email',true); gp_elog

The address you specified for the gp_email_to parameter should receive an email
with Test GPDB Email in the subject line.

You can also test email notifications by using a public SMTP server, such as Google’s
Gmail SMTP server, and an external email address. For example:

gp_email_smtp_server='smtp.gmail.com:25'

#gp_email_smtp_userid=''

#gp_email_smtp_password=''

gp_email_from='gpadmin@company.com'

gp_email_to='test_account@gmail.com'

Note: If you have difficulty sending and receiving email notifications, verify the
security settings for you organization’s email server and firewall.

Checking System State
A Greenplum Database system is comprised of multiple PostgreSQL instances (the
master and segments) spanning multiple machines. To monitor a Greenplum Database
system, you need to know information about the system as a whole, as well as status
information of the individual instances. The gpstate utility provides status
information about a Greenplum Database system.

Viewing Master and Segment Status and Configuration
The default behavior of gpstate is to check segment instances and show a brief status
of the valid and failed segments. For example, to see a quick status of your Greenplum
Database system:

$ gpstate
Monitoring System State 76

Greenplum Database System Administrator Guide 4.3 – Chapter 7: Monitoring a Greenplum System
To see more detailed information about your Greenplum array configuration, use
gpstate with the -s option:

$ gpstate -s

Viewing Your Mirroring Configuration and Status
If you are using mirroring for data redundancy, you may want to see the list of mirror
segment instances in the system, their current synchronization status, and the mirror to
primary mapping. For example, to see the mirror segments in the system and their
status:

$ gpstate -m

To see the primary to mirror segment mappings:

$ gpstate -c

To see the status of the standby master mirror:

$ gpstate -f

Checking Disk Space Usage
A database administrator’s most important monitoring task is to make sure the file
systems where the master and segment data directories reside do not grow to more
than 70 percent full. A filled data disk will not result in data corruption, but it may
prevent normal database activity from occurring. If the disk grows too full, it can
cause the database server to shut down.

You can use the gp_disk_free external table in the gp_toolkit administrative schema to
check for remaining free space (in bytes) on the segment host file systems. For
example:

=# SELECT * FROM gp_toolkit.gp_disk_free
 ORDER BY dfsegment;

Checking Sizing of Distributed Databases and Tables
The gp_toolkit administrative schema contains several views that you can use to
determine the disk space usage for a distributed Greenplum Database, schema, table,
or index. For a list of the available sizing views for checking database object sizes and
disk space, see the Greenplum Database Reference Guide.

Viewing Disk Space Usage for a Database

To see the total size of a database (in bytes), use the gp_size_of_database view in the
gp_toolkit administrative schema. For example:

=> SELECT * FROM gp_toolkit.gp_size_of_database
 ORDER BY soddatname;

Viewing Disk Space Usage for a Table

The gp_toolkit administrative schema contains several views for checking the size of a
table. The table sizing views list the table by object ID (not by name). To check the
size of a table by name, you must look up the relation name (relname) in the pg_class
table. For example:

=> SELECT relname as name, sotdsize as size, sotdtoastsize
Monitoring System State 77

Greenplum Database System Administrator Guide 4.3 – Chapter 7: Monitoring a Greenplum System
 as toast, sotdadditionalsize as other

 FROM gp_size_of_table_disk as sotd, pg_class

 WHERE sotd.sotdoid=pg_class.oid ORDER BY relname;

For a list of the available table sizing views, see the Greenplum Database Reference
Guide.

Viewing Disk Space Usage for Indexes

The gp_toolkit administrative schema contains a number of views for checking index
sizes. To see the total size of all index(es) on a table, use the
gp_size_of_all_table_indexes view. To see the size of a particular index, use the
gp_size_of_index view. The index sizing views list tables and indexes by object ID
(not by name). To check the size of an index by name, you must look up the relation
name (relname) in the pg_class table. For example:

=> SELECT soisize, relname as indexname

 FROM pg_class, gp_size_of_index

 WHERE pg_class.oid=gp_size_of_index.soioid

 AND pg_class.relkind='i';

Checking for Data Distribution Skew
All tables in Greenplum Database are distributed, meaning their data is divided evenly
across all of the segments in the system. Unevenly distributed data may diminish
query processing performance. A table’s distribution policy is determined at table
creation time. For information about choosing the table distribution policy, see the
Greenplum Database Administrator’s Guide.

• Viewing a Table’s Distribution Key

• Viewing Data Distribution

• Checking for Query Processing Skew

The gp_toolkit administrative schema also contains a number of views for checking
data distribution skew on a table. For information about how to check for uneven data
distribution, see the Greenplum Database Reference Guide.

Viewing a Table’s Distribution Key
To see the columns used as the data distribution key for a table, you can use the \d+
meta-command in psql to examine the definition of a table. For example:

=# \d+ sales

 Table "retail.sales"

 Column | Type | Modifiers | Description

-------------+--------------+-----------+-------------

 sale_id | integer | |

 amt | float | |

 date | date | |

Has OIDs: no

Distributed by: (sale_id)
Monitoring System State 78

Greenplum Database System Administrator Guide 4.3 – Chapter 7: Monitoring a Greenplum System
Viewing Data Distribution
To see the data distribution of a table’s rows (the number of rows on each segment),
you can run a query such as:

=# SELECT gp_segment_id, count(*)

 FROM table_name GROUP BY gp_segment_id;

A table is considered to have a balanced distribution if all segments have roughly the
same number of rows.

Checking for Query Processing Skew
When a query is being processed, all segments should have equal workloads to ensure
the best possible performance. If you identify a poorly-performing query, you may
need to inveestigate further using the EXPLAIN command. For information about using
the EXPLAIN command and query profiling, see the Greenplum Database
Administrator’s Guide.

Query processing workload can be skewed if the table’s data distribution policy and
the query predicates are not well matched. To check for processing skew, you can run
a query such as:

=# SELECT gp_segment_id, count(*) FROM table_name

 WHERE column='value' GROUP BY gp_segment_id;

This will show the number of rows returned by segment for the given WHERE
predicate.

Viewing Metadata Information about Database Objects
Greenplum Database tracks various metadata information in its system catalogs about
the objects stored in a database, such as tables, views, indexes and so on, as well as
global objects such as roles and tablespaces.

Viewing the Last Operation Performed
You can use the system views pg_stat_operations and pg_stat_partition_operations to
look up actions performed on an object, such as a table. For example, to see the
actions performed on a table, such as when it was created and when it was last
vacuumed and analyzed:

=> SELECT schemaname as schema, objname as table,

 usename as role, actionname as action,

 subtype as type, statime as time

 FROM pg_stat_operations

 WHERE objname='cust';

 schema | table | role | action | type | time

--------+-------+------+---------+-------+--------------------------

 sales | cust | main | CREATE | TABLE | 2010-02-09 18:10:07.867977-08

 sales | cust | main | VACUUM | | 2010-02-10 13:32:39.068219-08

 sales | cust | main | ANALYZE | | 2010-02-25 16:07:01.157168-08

(3 rows)
Monitoring System State 79

Greenplum Database System Administrator Guide 4.3 – Chapter 7: Monitoring a Greenplum System
Viewing the Definition of an Object
To see the definition of an object, such as a table or view, you can use the \d+ meta
command when working in psql. For example, to see the definition of a table:

=> \d+ mytable

Viewing Query Workfile Usage Information
Greenplum Database administrative schema gp_toolkit to contains views that display
information about Greenplum Database workfiles. Greenplum Database creates
workfiles on disk if it does not have sufficient memory to execute the query in
memory. This information can be used for troubleshooting and tuning queries. The
information in the views can also be used to specify the values for the Greenplum
Database configuration parameters gp_workfile_limit_per_query and
gp_workfile_limit_per_segment.

These are the views in the schema gp_toolkit:

• The gp_workfile_entries view contains one row for each operator using disk space
for workfiles on a segment at the current time.

• The gp_workfile_usage_per_query view contains one row for each query using
disk space for workfiles on a segment at the current time.

• The gp_workfile_usage_per_segment view contains one row for each segment.
Each row displays the total amount of disk space used for workfiles on the
segment at the current time.

For information about using gp_toolkit, see “Using gp_toolkit” on page 82.

Viewing the Database Server Log Files
Every database instance in Greenplum Database (master and segments) runs a
PostgreSQL database server with its own server log file. Daily log files are created in
the pg_log directory of the master and each segment data directory.

Log File Format
The server log files are written in comma-separated values (CSV) format. Some log
entries will not have values for all log fields. For example, only log entries associated
with a query worker process will have the slice_id populated. You can identify
related log entries of a particular query by the query’s session identifier
(gp_session_id) and command identifier (gp_command_count).

The following fields are written to the log:

Table 7.2 Greenplum Database Server Log Format

Field Name Data Type Description

1 event_time timestamp with time
zone

Time that the log entry was written to the log

2 user_name varchar(100) The database user name
Viewing the Database Server Log Files 80

Greenplum Database System Administrator Guide 4.3 – Chapter 7: Monitoring a Greenplum System
3 database_name varchar(100) The database name

4 process_id varchar(10) The system process ID (prefixed with "p")

5 thread_id varchar(50) The thread count (prefixed with "th")

6 remote_host varchar(100) On the master, the hostname/address of the client machine.
On the segment, the hostname/address of the master.

7 remote_port varchar(10) The segment or master port number

8 session_start_time timestamp with time
zone

Time session connection was opened

9 transaction_id int Top-level transaction ID on the master. This ID is the parent of
any subtransactions.

10 gp_session_id text Session identifier number (prefixed with "con")

11 gp_command_count text The command number within a session (prefixed with "cmd")

12 gp_segment text The segment content identifier (prefixed with "seg" for
primaries or "mir" for mirrors). The master always has a
content ID of -1.

13 slice_id text The slice ID (portion of the query plan being executed)

14 distr_tranx_id text Distributed transaction ID

15 local_tranx_id text Local transaction ID

16 sub_tranx_id text Subtransaction ID

17 event_severity varchar(10) Values include: LOG, ERROR, FATAL, PANIC, DEBUG1,
DEBUG2

18 sql_state_code varchar(10) SQL state code associated with the log message

19 event_message text Log or error message text

20 event_detail text Detail message text associated with an error or warning
message

21 event_hint text Hint message text associated with an error or warning
message

22 internal_query text The internally-generated query text

23 internal_query_pos int The cursor index into the internally-generated query text

24 event_context text The context in which this message gets generated

25 debug_query_string text User-supplied query string with full detail for debugging. This
string can be modified for internal use.

26 error_cursor_pos int The cursor index into the query string

27 func_name text The function in which this message is generated

28 file_name text The internal code file where the message originated

29 file_line int The line of the code file where the message originated

30 stack_trace text Stack trace text associated with this message

Table 7.2 Greenplum Database Server Log Format

Field Name Data Type Description
Viewing the Database Server Log Files 81

Greenplum Database System Administrator Guide 4.3 – Chapter 7: Monitoring a Greenplum System
Searching the Greenplum Database Server Log Files
Greenplum provides a utility called gplogfilter can search through a Greenplum
Database log file for entries matching the specified criteria. By default, this utility
searches through the Greenplum master log file in the default logging location. For
example, to display the last three lines of the master log file:

$ gplogfilter -n 3

To search through all segment log files simultaneously, run gplogfilter through the
gpssh utility. For example, to display the last three lines of each segment log file:

$ gpssh -f seg_host_file

=> source /usr/local/greenplum-db/greenplum_path.sh

=> gplogfilter -n 3 /gpdata/gp*/pg_log/gpdb*.log

Using gp_toolkit
Use Greenplum’s administrative schema gp_toolkit to query the system catalogs, log
files, and operating environment for system status information. The gp_toolkit schema
contains several views you can access using SQL commands. The gp_toolkit schema
is accessible to all database users. Some objects require superuser permissions. Use a
command similar to the following to add the gp_toolkit schema to your schema search
path:

=> ALTER ROLE myrole SET search_path TO myschema,gp_toolkit;

For a description of the available administrative schema views and their usages, see
the Greenplum Database Reference Guide.
Using gp_toolkit 82

Greenplum Database System Administrator Guide 4.3 – Chapter 8: Routine System Maintenance Tasks
8. Routine System Maintenance Tasks

Greenplum Database requires that certain tasks be performed regularly to achieve
optimal performance. The tasks discussed here are required, but database
administrators can automate them using standard UNIX tools such as cron scripts. An
administrator sets up the appropriate scripts and checks that they execute successfully.

• Routine Vacuum and Analyze

• Routine Reindexing

• Managing Greenplum Database Log Files

Routine Vacuum and Analyze
Because of the MVCC transaction concurrency model used in Greenplum Database,
deleted or updated data rows still occupy physical space on disk even though they are
not visible to new transactions. If your database has many updates and deletes, many
expired rows will exist. The VACUUM command collects table-level statistics such as
number of rows and pages, so it is also necessary to vacuum append-optimized tables,
even when there is no space from updated or deleted rows to reclaim.

Vacuuming an append-optimized table follows a different process than vacuuming
heap tables. On each segment, a new segment file is created and visible rows are
copied into it from the current segment. When the segment file has been copied, the
original is scheduled to be dropped and the new segment file is made available. This
requires sufficient available disk space for a copy of the visible rows until the original
segment file is dropped.

For details about vacuuming a database, see “Managing Data” in the Greenplum
Database Database Administrator Guide and the VACUUM command in the Greenplum
Database Reference Guide.

Transaction ID Management
Greenplum’s MVCC transaction semantics depend on comparing transaction ID
(XID) numbers to determine visibility to other transactions. Because transaction ID
numbers have an upper limit, a Greenplum system that runs more than 4 billion
transactions experiences transaction ID wraparound: the XID counter reverts to zero,
and past transactions appear to be in the future. This means past transactions’ outputs
become invisible. Therefore, it is necessary to VACUUM every table in every database at
least once per two billion transactions.

Important: Greenplum Database monitors transaction IDs. If you do not vacuum
the database regularly, Greenplum Database will generate a warning and error.

Greenplum Database issues the following warning when a significant portion of the
transaction IDs are no longer available and before transaction ID wraparound occurs:

WARNING: database "database_name" must be vacuumed within
number_of_transactions transactions
Routine Vacuum and Analyze 83

Greenplum Database System Administrator Guide 4.3 – Chapter 8: Routine System Maintenance Tasks
When the warning is issued, a VACUUM operation is required. If a VACUUM operation is
not performed, Greenplum Database stops creating transactions when it reaches a
limit prior to when transaction ID wraparound occurs. Greenplum Database issues this
error when it stops creating transactions to avoid possible data loss:

FATAL: database is not accepting commands to avoid
wraparound data loss in database "database_name"

The Greenplum Database configuration parameter xid_warn_limit controls when
the warning is displayed. The parameter xid_stop_limit controls when Greenplum
Database stops creating transactions.

Recovering from a Transaction ID Limit Error

When Greenplum Database reaches the xid_stop_limit transaction ID limit due to
infrequent VACUUM maintenance, it becomes unresponsive. To recover from this
situation, perform the following steps as database administrator:

1. Shut down Greenplum Database.

2. Temporarily lower the xid_stop_limit by 10,000,000.

3. Start Greenplum Database.

4. Run VACUUM FREEZE on all affected databases.

5. Reset the xid_stop_limit to its original value.

6. Restart Greenplum Database.

For information about the configuration parameters, see the Greenplum Database
Reference Guide. For information about transaction ID wraparound see the
PostgreSQL documentation.

System Catalog Maintenance
Numerous database updates with CREATE and DROP commands increase the system
catalog size and affect system performance. For example, running many DROP TABLE
statements degrades the overall system performance due to excessive data scanning
during metadata operations on catalog tables. The performance loss occurs between
thousands to tens of thousands of DROP TABLE statements depending on the system.

Greenplum recommends you regularly run a system catalog maintenance procedure to
reclaim the space occupied by deleted objects. If a regular procedure has not been run
for a long time, you may need to run a more intensive procedure to clear the system
catalog. This section describes both procedures.

Regular System Catalog Maintenance
It is recommended that you periodically run VACUUM on the system catalog to clear the
space that deleted objects occupy. If regular database operations include numerous
DROP statements, it is safe and appropriate to run a system catalog maintenance
procedure with VACUUM daily at off-peak hours. You can do this while the system is
available.
Routine Vacuum and Analyze 84

http://www.postgresql.org/docs/8.2/static/index.html

Greenplum Database System Administrator Guide 4.3 – Chapter 8: Routine System Maintenance Tasks
The following example script performs a VACUUM of the Greenplum Database system
catalog:

#!/bin/bash

DBNAME="<database_name>"

VCOMMAND="VACUUM ANALYZE"

psql -tc "select '$VCOMMAND' || ' pg_catalog.' || relname || ';'
from pg_class a,pg_namespace b where a.relnamespace=b.oid and
b.nspname= 'pg_catalog' and a.relkind='r'" $DBNAME | psql -a
$DBNAME

Intensive System Catalog Maintenance
If a system catalog maintenance procedure has not been performed in a long time, the
catalog can become bloated with dead space; this causes excessively long wait times
for simple metadata operations. A wait of more than two seconds to list user tables,
such as with the \d metacommand from within psql, is an indication of catalog bloat.

If you see indications of system catalog bloat, you must perform an intensive system
catalog maintenance procedure with VACUUM FULL during a scheduled downtime
period. During this period, stop all catalog activity on the system; the FULL system
catalog maintenance procedure takes exclusive locks against the system catalog.

Running regular system catalog maintenance procedures can prevent the need for this
more costly procedure.

Vacuum and Analyze for Query Optimization
Greenplum Database uses a cost-based query planner that relies on database statistics.
Accurate statistics allow the query planner to better estimate selectivity and the
number of rows that a query operation retrieves. These estimates help it choose the
most efficient query plan. The ANALYZE command collects column-level statistics for
the query planner.

You can run both VACUUM and ANALYZE operations in the same command. For
example:

=# VACUUM ANALYZE mytable;

Routine Reindexing
For B-tree indexes, a freshly-constructed index is slightly faster to access than one that
has been updated many times because logically adjacent pages are usually also
physically adjacent in a newly built index. Reindexing older indexes periodically can
improve access speed. If all but a few index keys on a page have been deleted, there
will be wasted space on the index page. A reindex will reclaim that wasted space. In
Greenplum Database it is often faster to drop an index (DROP INDEX) and then
recreate it (CREATE INDEX) than it is to use the REINDEX command.

Bitmap indexes are not updated when changes are made to the indexed column(s). If
you have updated a table that has a bitmap index, you must drop and recreate the index
for it to remain current.
Routine Reindexing 85

Greenplum Database System Administrator Guide 4.3 – Chapter 8: Routine System Maintenance Tasks
Managing Greenplum Database Log Files
• Database Server Log Files

• Management Utility Log Files

Database Server Log Files
Greenplum Database log output tends to be voluminous, especially at higher debug
levels, and you do not need to save it indefinitely. Administrators rotate the log files
periodically so new log files are started and old ones are removed.

Greenplum Database has log file rotation enabled on the master and all segment
instances. Daily log files are created in pg_log of the master and each segment data
directory using the naming convention of: gpdb-YYYY-MM-DD_hhmmss.csv.
Although log files are rolled over daily, they are not automatically truncated or
deleted. Administrators need to implement scripts or programs to periodically clean
up old log files in the pg_log directory of the master and each segment instance.

For information about viewing the database server log files, see the For a list of the
available sizing views for checking database object sizes and disk space, see the
Greenplum Database Administrator’s Guide.

Management Utility Log Files
Log files for the Greenplum Database management utilities are written to
~/gpAdminLogs by default. The naming convention for management log files is:

<script_name>_<date>.log

The log entry format is:

<timestamp>:<utility>:<host>:<user>:[INFO|WARN|FATAL]:<message>

The log file for a particular utility execution is appended to its daily log file each time
that utility is run.
Managing Greenplum Database Log Files 86

Greenplum Database System Administrator Guide 4.3 – Chapter 9: Kerberos Authentication
9. Kerberos Authentication

On the versions of Red Hat Enterprise Linux that are supported by Greenplum
Database, you can use a Kerberos authentication system to control access to
Greenplum Database. Greenplum Database supports GSSAPI with Kerberos
authentication. GSSAPI provides automatic authentication (single sign-on) for
systems that support it. If Kerberos authentication is not available when a role
attempts to log into Greenplum Database the login fails.

You specify which Greenplum Database users require Kerberos authentication in the
Greenplum Database configuration file pg_hba.conf. Whether you specify Kerberos
authentication or another type of authentication for a Greenplum Database user,
authorization to access Greenplum databases and database objects such as schemas
and tables is controlled by the settings specified in the pg_hba.conf file and the
privileges given to Greenplum Database users and roles within the database. For
information about managing authorization privileges, see the Greenplum Database
Database Administrator Guide.

This chapter describes how to configure a Kerberos authentication system and
Greenplum Database to authenticate a Greenplum Database administrator. It contains
the following topics:

• Enabling Kerberos authentication for Greenplum Database

• Requirements for using Kerberos with Greenplum Database

• Installing and Configuring a Kerberos KDC Server

• Creating Greenplum Database Roles in the KDC Database

• Installing and Configuring the Kerberos Client

• Setting up Greenplum Database with Kerberos for PSQL

• Setting up Greenplum Database with Kerberos for JDBC

• Sample Kerberos Configuration File

For more information about Kerberos, see http://web.mit.edu/kerberos/.

Enabling Kerberos authentication for Greenplum Database

The following tasks are required to use Kerberos with Greenplum Database:

1. Set up a Kerberos Key Distribution Center (KDC) server.

In a Kerberos database on the KDC server, set up a Kerberos realm and principals
on the server. For Greenplum Database, a principal is a Greenplum Database role
that utilizes Kerberos authentication. In the Kerberos database, a realm groups
together the Kerberos principals that are the Greenplum Database roles.

2. Create a Kerberos keytab file for Greenplum Database.

To access Greenplum Database, you create a service key known only by Kerberos
and Greenplum Database. On the Kerberos server, the service key is stored in the
Kerberos database.
87

Greenplum Database System Administrator Guide 4.3 – Chapter 9: Kerberos Authentication
On the Greenplum Database master, the service key is stored in key tables, which
are files known as keytabs. The service keys are usually stored in the keytab file
/etc/krb5.keytab. This service key is the equivalent of the service’s password,
and must be kept secure. Data which is meant to be read only by the service is
encrypted using this key.

3. Install the Kerberos client packages and the keytab file on Greenplum Database
master.

4. Create a Kerberos ticket for gpadmin on Greenplum Database master node using
the keytab file. The ticket contains the Kerberos authentication credentials that
grant access to the Greenplum Database.

With Kerberos authentication configured on the Greenplum Database, you can use to
use Kerberos for PSQL and JDBC.

Setting up Greenplum Database with Kerberos for PSQL

Setting up Greenplum Database with Kerberos for JDBC

Requirements for using Kerberos with Greenplum
Database

The following items are required for using Kerberos with Greenplum Database:

• Kerberos Key Distribution Center (KDC) server that uses the krb5-server library.

• Kerberos packages for version 5

• krb5-libs

• krb5-workstation

• Greenplum Database capable of supporting Kerberos

• A configuration that allows the Kerberos server and the Greenplum Database
master to communicate with each other.

• Red Hat Enterprise Linux 6.x requires Java 1.7.0_17 or later.

• Red Hat Enterprise Linux 5.x requires Java 1.6.0_21 or later.

• Red Hat Enterprise Linux 4.x requires Java 1.6.0_21 or later.

Notes
The dates and times on the Kerberos server and clients must be synchronized.
Authentication fails if the time difference between the Kerberos server and a client too
large. The maximum time difference is configurable, 5 minutes is the default.

The Kerberos server and client must be configured so that they can ping each other
using their host names.

The Kerberos authentication itself is secure, but the data sent over the database
connection is transmitted in clear text unless SSL is used.
Requirements for using Kerberos with Greenplum Database 88

Greenplum Database System Administrator Guide 4.3 – Chapter 9: Kerberos Authentication
Installing and Configuring a Kerberos KDC Server
The following steps install and configure a Kerberos Key Distribution Center (KDC)
server:

1. Install the Kerberos packages for the Kerberos server:
krb5-libs
krb5-server
krb5-workstation

2. Edit the /etc/krb5.conf configuration file. See “krb5.conf Configuration File”
on page 93 for sample configuration file parameters.

When you create a KDC database, the parameters in the /etc/krb5.conf file
specify that the realm KRB.GREENPLUM.COM is created. You use this realm
when you create the Kerberos principals that are Greenplum Database roles.

If you have an existing Kerberos server you might need to edit the kdc.conf file.
See the Kerberos documentation for information the kdc.conf file.

3. To create a Kerberos KDC database, run the kdb5_util. For example:

kdb5_util create -s

The create option creates the database to store keys for the Kerberos realms that
are managed by this KDC server. The -s option creates a stash file. Without the
stash file, every time the KDC server starts it requests a password.

4. The Kerberos utility kadmin uses Kerberos to authenticate to the server. Before
using kadmin, add an administrative user to KDC database with kadmin.local.
kadmin.local is local to the server and does not use Kerberos authentication. To
add the user gpadmin as an administrative user to the KDC database, run the
following command:

kadmin.local -q "addprinc gpadmin/admin"

Note: Most users do not need administrative access to the Kerberos server. They
can use kadmin to manage their own principals (for example, to change their own
password). For information about kadmin, see the Kerberos documentation.

5. If needed, edit the /var/kerberos/krb5kdc/kadm5.acl file to grant the
appropriate permissions to gpadmin.

6. Start the Kerberos daemons with the following commands:

/sbin/service krb5kdc start
/sbin/service kadmin start

If you want to start Kerberos automatically upon restart, run the following
commands:

/sbin/chkconfig krb5kdc on
/sbin/chkconfig kadmin on

Creating Greenplum Database Roles in the KDC Database
After you have set up a Kerberos KDC and have created a realm for Greenplum
Database, you add principals to the realm.
Installing and Configuring a Kerberos KDC Server 89

Greenplum Database System Administrator Guide 4.3 – Chapter 9: Kerberos Authentication
1. Create principals in the Kerberos database with kadmin.local.

Using kadmin.local in interactive mode, the following commands add users:

addprinc gpadmin/kerberos-gpdb@KRB.GREENPLUM.COM

addprinc postgres/master.test.com@KRB.GREENPLUM.COM

The first addprinc command creates a Greenplum Database user as a principal.
In this example, the principal is gpadmin/kerberos-gpdb. See “Setting up
Greenplum Database with Kerberos for PSQL” on page 91 for information on
modifying the file pg_hba.conf so The Greenplum Database user
gpadmin/kerberos-gpdb uses Kerberos authentication to access Greenplum
Database from the master host.

The second addprinc command creates the postgres process as principal in the
Kerberos KDC. This principal is required when using Kerberos authentication
with Greenplum Database. The syntax for the principal is
postgres/GPDB_master_host. The GPDB_master_host is the host name of the
Greenplum Database master.

2. Create a Kerberos keytab file with kadmin.local. The following example
creates a keytab file gpdb-kerberos.keytab with authentication information for
the two principals.

xst -k gpdb-kerberos.keytab
 gpadmin/kerberos-gpdb@KRB.GREENPLUM.COM
 postgres/master.test.com@KRB.GREENPLUM.COM

You use the keytab file gpdb-kerberos.keytab on the Greenplum Database master.

Installing and Configuring the Kerberos Client
Install the Kerberos client libraries on the Greenplum Database master and configure
the Kerberos client:

1. Install the Kerberos packages on the Greenplum Database master.
krb5-libs
krb5-workstation

2. Ensure that the /etc/krb5.conf file is the same as the one that is on the
Kerberos server.

3. Copy the gpdb-kerberos.keytab that was generated on the Kerberos server to
Greenplum Database master.

4. Remove any existing tickets with the Kerberos utility kdestroy. As root, run the
utility.

kdestroy

5. Use the Kerberos utility kinit to request a ticket using the keytab file on the
Greenplum Database master for
gpadmin/kerberos-gpdb@KRB.GREENPLUM.COM. The -t option specifies the
keytab file on the Greenplum Database master.

kinit -k -t gpdb-kerberos.keytab
gpadmin/kerberos-gpdb@KRB.GREENPLUM.COM
Installing and Configuring the Kerberos Client 90

Greenplum Database System Administrator Guide 4.3 – Chapter 9: Kerberos Authentication
Use the Kerberos utility klist to display the contents of the Kerberos ticket cache on
the Greenplum Database master. The following is example klist output:

klist

Ticket cache: FILE:/tmp/krb5cc_108061

Default principal: gpadmin/kerberos-gpdb@KRB.GREENPLUM.COM

Valid starting Expires Service principal

03/28/13 14:50:26 03/29/13 14:50:26 krbtgt/KRB.GREENPLUM.COM
 @KRB.GREENPLUM.COM

 renew until 03/28/13 14:50:26

Setting up Greenplum Database with Kerberos for PSQL
After you have set up Kerberos on the Greenplum Database master, you can configure
a Greenplum database to use Kerberos. For information on setting up the Greenplum
Database master, see “Installing and Configuring the Kerberos Client” on page 90.

1. Create a Greenplum Database administrator role in the database template1 for the
Kerberos principal that is used as the database administrator. The following
example uses gpamin/kerberos-gpdb.

psql template1 -c 'create role "gpadmin/kerberos-gpdb" login
superuser;'

Note: The role you create in the database template1 will be available in any new
Greenplum database that you create.

2. Modify postgresql.conf to specify the location of the keytab file. For example,
adding this line to the postgresql.conf specifies the folder /home/gpadmin as
the location of the keytab file gpdb-kerberos.keytab.

krb_server_keyfile = '/home/gpadmin/gpdb-kerberos.keytab'

3. Modify the Greenplum Database file pg_hba.conf to enable Kerberos support.
Then restart Greenplum Database (gpstop -ar). For example, adding the
following line to pg_hba.conf adds GSSAPI and Kerberos support. The value
for krb_realm is the Kerberos realm that is used for authentication to Greenplum
Database.

host all all 0.0.0.0/0 gss include_realm=0 krb_realm=KRB.GREENPLUM.COM

For information about the pg_hba.conf file, see the Postgres documentation:
http://www.postgresql.org/docs/8.4/static/auth-pg-hba-conf.html

4. Create a ticket using kinit and show the tickets in the Kerberos ticket cache with
klist.

5. As a test, login into the database as the gpadmin role with the Kerberos credentials
gpadmin/kerberos-gpdb:

psql -U "gpadmin/kerberos-gpdb" -h master.test template1
Installing and Configuring the Kerberos Client 91

http://www.postgresql.org/docs/8.4/static/auth-pg-hba-conf.html

Greenplum Database System Administrator Guide 4.3 – Chapter 9: Kerberos Authentication
Notes
• A username map can be defined in the pg_ident.conf file and specified in the

pg_hba.conf file to simplify logging into Greenplum Database. For example,
this psql command logs into the default Greenplum Database on mdw.proddb as
the Kerberos principal adminuser/mdw.proddb:
$ psql -U "adminuser/mdw.proddb" -h mdw.proddb

If the default user is adminuser, the pg_ident.conf file and the pg_hba.conf
file can be configured so that the adminuser can log into the database as the
Kerberos principal adminuser/mdw.proddb without specifying the -U option:

$ psql -h mdw.proddb

The following username map is defined in the Greenplum Database file
$MASTER_DATA_DIRECTORY/pg_ident.conf:

MAPNAME SYSTEM-USERNAME GP-USERNAME
mymap /^(.*)mdw\.proddb$ adminuser

The map can be specified in the pg_hba.conf file as part of the line that enables
Kerberos support:

host all all 0.0.0.0/0 krb5 include_realm=0 krb_realm=proddb
 map=mymap

For more information on specifying username maps see the Postgres
documentation:
http://www.postgresql.org/docs/8.4/static/auth-username-maps.html

• If a Kerberos principal is not a Greenplum Database user, a message is similar to
the following is displayed from the psql command line when the user attempts to
log into the database:
psql: krb5_sendauth: Bad response

The principal must be added as a Greenplum Database user.

Setting up Greenplum Database with Kerberos for JDBC
You can configure Greenplum Database to use Kerberos to run user-defined Java
functions.

1. Ensure that a Kerberos is installed and configured on the Greenplum Database
master. See “Installing and Configuring the Kerberos Client” on page 90.

2. Create the file .java.login.config in the folder /home/gpadmin and add the
following text to the file:

pgjdbc {
 com.sun.security.auth.module.Krb5LoginModule required
 doNotPrompt=true
 useTicketCache=true
 debug=true
 client=true;
};
Installing and Configuring the Kerberos Client 92

http://www.postgresql.org/docs/8.4/static/auth-username-maps.html

Greenplum Database System Administrator Guide 4.3 – Chapter 9: Kerberos Authentication
3. Create a Java application that connects to Greenplum Database using Kerberos
authentication.

The this example database connection URL uses a PostgreSQL JDBC driver and
specifies parameters for Kerberos authentication.

jdbc:postgresql://mdw:5432/mytest?kerberosServerName=
postgres&jaasApplicationName=pgjdbc&user=
gpadmin/kerberos-gpdb

The parameter names and values specified depend on how the Java application
performs Kerberos authentication.

4. Test the Kerberos login by running a sample Java application from Greenplum
Database.

Sample Kerberos Configuration File
This sample krb5.conf Kerberos configuration file is used in the example that
configures Greenplum Database to use Kerberos authentication.

krb5.conf Configuration File
[logging]

 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]

 default_realm = KRB.GREENPLUM.COM
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = yes
 default_tgs_enctypes = aes128-cts des3-hmac-sha1 des-cbc-crc
des-cbc-md5

 default_tkt_enctypes = aes128-cts des3-hmac-sha1 des-cbc-crc
des-cbc-md5

 permitted_enctypes = aes128-cts des3-hmac-sha1 des-cbc-crc
des-cbc-md5

[realms]

 KRB.GREENPLUM.COM = {
 kdc = kerberos-gpdb:88
 admin_server = kerberos-gpdb:749
 default_domain = kerberos-gpdb
 }
Sample Kerberos Configuration File 93

Greenplum Database System Administrator Guide 4.3 – Chapter 9: Kerberos Authentication
[domain_realm]

 .kerberos-gpdb = KRB.GREENPLUM.COM
 kerberos-gpdb = KRB.GREENPLUM.COM

[appdefaults]

 pam = {
 debug = false
 ticket_lifetime = 36000
 renew_lifetime = 36000
 forwardable = true
 krb4_convert = false
 }
Sample Kerberos Configuration File 94

	Preface
	About This Guide
	About the Greenplum Database Documentation Set
	Document Conventions
	Text Conventions
	Command Syntax Conventions

	Getting Support
	Product information
	Technical support

	1. About the Greenplum Architecture
	About the Greenplum Master
	About the Greenplum Segments
	About the Greenplum Interconnect
	About Redundancy and Failover in Greenplum Database
	About Segment Mirroring
	About Master Mirroring
	About Interconnect Redundancy

	About Parallel Data Loading
	About Management and Monitoring

	2. Starting and Stopping Greenplum
	Overview
	Starting Greenplum Database
	Restarting Greenplum Database
	Uploading Configuration File Changes Only
	Starting the Master in Maintenance Mode

	Stopping Greenplum Database

	3. Configuring Your Greenplum System
	About Greenplum Master and Local Parameters
	Setting Configuration Parameters
	Setting a Local Configuration Parameter
	Setting a Master Configuration Parameter

	Viewing Server Configuration Parameter Settings
	Configuration Parameter Categories
	Connection and Authentication Parameters
	System Resource Consumption Parameters
	Query Tuning Parameters
	Error Reporting and Logging Parameters
	System Monitoring Parameters
	Runtime Statistics Collection Parameters
	Automatic Statistics Collection Parameters
	Client Connection Default Parameters
	Lock Management Parameters
	Workload Management Parameters
	External Table Parameters
	Append-Optimized Table Parameters
	Database and Tablespace/Filespace Parameters
	Past PostgreSQL Version Compatibility Parameters
	Greenplum Array Configuration Parameters
	Greenplum Master Mirroring Parameters

	4. Enabling High Availability Features
	Overview of High Availability in Greenplum Database
	Overview of Segment Mirroring
	Overview of Master Mirroring
	Overview of Fault Detection and Recovery

	Enabling Mirroring in Greenplum Database
	Enabling Segment Mirroring
	Enabling Master Mirroring

	Detecting a Failed Segment
	Enabling Alerts and Notifications
	Checking for Failed Segments
	Checking the Log Files

	Recovering a Failed Segment
	Recovering From Segment Failures

	Recovering a Failed Master
	Restoring Master Mirroring After a Recovery

	5. Backing Up and Restoring Databases
	Backup and Restore Operations
	Parallel Backup Support
	Non-Parallel Backup Support
	Parallel Restores
	Non-Parallel Restores

	Backing Up a Database
	Incremental Backup Support
	Using Direct I/O
	Using Data Domain Boost
	Using Named Pipes
	Backing Up a Database with gp_dump
	Automating Parallel Backups with gpcrondump

	Restoring From Parallel Backup Files
	Restoring a Database with gp_restore
	Restoring a Database Using gpdbrestore
	Restoring to a Different Greenplum System Configuration

	6. Expanding a Greenplum System
	Planning Greenplum System Expansion
	System Expansion Overview
	System Expansion Checklist
	Planning New Hardware Platforms
	Planning New Segment Initialization
	Planning Table Redistribution

	Preparing and Adding Nodes
	Adding New Nodes to the Trusted Host Environment
	Verifying OS Settings
	Validating Disk I/O and Memory Bandwidth
	Integrating New Hardware into the System

	Initializing New Segments
	Creating an Input File for System Expansion
	Running gpexpand to Initialize New Segments
	Rolling Back an Failed Expansion Setup

	Redistributing Tables
	Ranking Tables for Redistribution
	Redistributing Tables Using gpexpand
	Monitoring Table Redistribution

	Removing the Expansion Schema

	7. Monitoring a Greenplum System
	Monitoring Database Activity and Performance
	Monitoring System State
	Enabling System Alerts and Notifications
	Checking System State
	Checking Disk Space Usage
	Checking for Data Distribution Skew
	Viewing Metadata Information about Database Objects
	Viewing Query Workfile Usage Information

	Viewing the Database Server Log Files
	Log File Format
	Searching the Greenplum Database Server Log Files

	Using gp_toolkit

	8. Routine System Maintenance Tasks
	Routine Vacuum and Analyze
	Transaction ID Management
	System Catalog Maintenance
	Vacuum and Analyze for Query Optimization

	Routine Reindexing
	Managing Greenplum Database Log Files
	Database Server Log Files
	Management Utility Log Files

	9. Kerberos Authentication
	Requirements for using Kerberos with Greenplum Database
	Installing and Configuring a Kerberos KDC Server
	Creating Greenplum Database Roles in the KDC Database

	Installing and Configuring the Kerberos Client
	Setting up Greenplum Database with Kerberos for PSQL
	Setting up Greenplum Database with Kerberos for JDBC

	Sample Kerberos Configuration File
	krb5.conf Configuration File

