
PRODUCT DOCUMENTATION
Greenplum® Database
Version 4.3

Database Administrator Guide
Rev: A01

© 2013 GoPivotal, Inc.

Copyright © 2013 GoPivotal, Inc. All rights reserved.

GoPivotal, Inc. believes the information in this publication is accurate as of its publication date. The
information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED "AS IS." GOPIVOTAL, INC. ("Pivotal") MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION IN THIS
PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any Pivotal software described in this publication requires an applicable
software license.

All trademarks used herein are the property of Pivotal or their respective owners.

Revised November 2013 (4.3.0.0)

Greenplum Database DBA Guide 4.3 - Contents
Greenplum Database DBA Guide 4.3 - Contents
Preface ... 1

About This Guide.. 1
About the Greenplum Database Documentation Set 1
Document Conventions .. 2

Text Conventions.. 2
Command Syntax Conventions ... 3

Getting Support ... 3
Product information .. 3
Technical support ... 4

Chapter 1: Introduction to Greenplum 5

Chapter 2: Accessing the Database .. 6
Establishing a Database Session .. 6
Supported Client Applications... 7

Greenplum Database Client Applications..................................... 8
pgAdmin III for Greenplum Database ... 9
Database Application Interfaces...12
Third-Party Client Tools ...13

Troubleshooting Connection Problems ...14

Chapter 3: Configuring Client Authentication.........................15
Allowing Connections to Greenplum Database.................................15

Editing the pg_hba.conf File...17
Limiting Concurrent Connections ...18
Encrypting Client/Server Connections ...19

Chapter 4: Managing Roles and Privileges21
Security Best Practices for Roles and Privileges...............................21
Creating New Roles (Users)...22

Altering Role Attributes..22
Role Membership...23
Managing Object Privileges ...24

Simulating Row and Column Level Access Control25
Encrypting Data ..26
Encrypting Passwords..26

Enabling SHA-256 Encryption ..26
Time-based Authentication..28

Chapter 5: Defining Database Objects......................................29
Creating and Managing Databases ..29

About Template Databases ..29
Creating a Database ..29
Viewing the List of Databases ..30
Altering a Database ...30
Dropping a Database ...31

Creating and Managing Tablespaces..31
Creating a Filespace...31
Moving the Location of Temporary or Transaction Files..............32
Creating a Tablespace ...33
Using a Tablespace to Store Database Objects33
Table of Contents iii

Greenplum Database DBA Guide 4.3 - Contents
Viewing Existing Tablespaces and Filespaces34
Dropping Tablespaces and Filespaces ..34

Creating and Managing Schemas...34
The Default “Public” Schema..35
Creating a Schema ..35
Schema Search Paths ..35
Dropping a Schema ...36
System Schemas ...36

Creating and Managing Tables ..36
Creating a Table ..36

Choosing the Table Storage Model ..39
Heap Storage...40
Append-Optimized Storage ..40
Choosing Row or Column-Oriented Storage41
Using Compression (Append-Optimized Tables Only).................42
Checking the Compression and Distribution of an Append-Optimized

Table ...43
Support for Run-length Encoding...44
Adding Column-level Compression...44
Altering a Table ...49
Dropping a Table ...50

Partitioning Large Tables...51
Table Partitioning in Greenplum Database52
Deciding on a Table Partitioning Strategy52
Creating Partitioned Tables..53
Loading Partitioned Tables ...56
Verifying Your Partition Strategy..57
Viewing Your Partition Design ..57
Maintaining Partitioned Tables ...58

Creating and Using Sequences ..61
Creating a Sequence..62
Using a Sequence ..62
Altering a Sequence...62
Dropping a Sequence...62

Using Indexes in Greenplum Database ..62
Index Types...64
Creating an Index..65
Examining Index Usage ...66
Managing Indexes ...66
Dropping an Index...67

Creating and Managing Views..67
Creating Views...67
Dropping Views..67

Chapter 6: Managing Data ...68
About Concurrency Control in Greenplum Database68
Inserting Rows ..69
Updating Existing Rows ...70
Deleting Rows ...70

Truncating a Table...70
Table of Contents iv

Greenplum Database DBA Guide 4.3 - Contents
Working With Transactions..71
Transaction Isolation Levels...71

Vacuuming the Database ..72
Configuring the Free Space Map ..72

Chapter 7: Loading and Unloading Data74
Greenplum Database Loading Tools Overview74

External Tables..74
gpload ...75
COPY...75

Loading Data into Greenplum Database ..76
Accessing File-Based External Tables...76
Using the Greenplum Parallel File Server (gpfdist)80

Using Hadoop Distributed File System (HDFS) Tables......................82
One-time HDFS Protocol Installation..83
Creating and Using Web External Tables....................................89
Loading Data Using an External Table..91
Loading and Writing Non-HDFS Custom Data.............................91
Using a Custom Format ...91
Using a Custom Protocol ..93
Creating External Tables - Examples..94
Handling Load Errors ...97
Loading Data ...100
Optimizing Data Load and Query Performance.........................102

Unloading Data from Greenplum Database....................................102
Defining a File-Based Writable External Table103
Defining a Command-Based Writable External Web Table........104
Unloading Data Using a Writable External Table105
Unloading Data Using COPY ...105

Transforming XML Data...106
XML Transformation Examples...114

Formatting Data Files ..117
Formatting Rows..117
Formatting Columns ..117
Representing NULL Values ...118
Escaping ..118
Character Encoding..119

Example Custom Data Access Protocol ..120
Notes...120
Installing the External Table Protocol.......................................121

Chapter 8: About Greenplum Query Processing128
Understanding Query Planning and Dispatch128
Understanding Greenplum Query Plans ...129
Understanding Parallel Query Execution ..130

Chapter 9: Querying Data ..132
Defining Queries ...132

SQL Lexicon...132
SQL Value Expressions ..132

Using Functions and Operators..142
Table of Contents v

Greenplum Database DBA Guide 4.3 - Contents
Using Functions in Greenplum Database143
User-Defined Functions..143
Built-in Functions and Operators..144
Window Functions..146
Advanced Analytic Functions..147

Query Performance ...159
Query Profiling ..159

Reading EXPLAIN Output ...159
Reading EXPLAIN ANALYZE Output ..161
Examining Query Plans to Solve Problems162

Chapter 10: Managing Workload and Resources164
Overview of Greenplum Workload Management164

How Resource Queues Work in Greenplum Database...............164
Steps to Enable Workload Management168

Configuring Workload Management...169
Creating Resource Queues ..170

Creating Queues with an Active Query Limit171
Creating Queues with Memory Limits.......................................171
Creating Queues with a Query Planner Cost Limits172
Setting Priority Levels..173

Assigning Roles (Users) to a Resource Queue................................173
Removing a Role from a Resource Queue174

Modifying Resource Queues...174
Altering a Resource Queue...174
Dropping a Resource Queue ..174

Checking Resource Queue Status ..174
Viewing Queued Statements and Resource Queue Status175
Viewing Resource Queue Statistics ..175
Viewing the Roles Assigned to a Resource Queue175
Viewing the Waiting Queries for a Resource Queue..................176
Clearing a Waiting Statement From a Resource Queue176
Viewing the Priority of Active Statements177
Resetting the Priority of an Active Statement...........................177

Chapter 11: Defining Database Performance178
Understanding the Performance Factors ..178

System Resources ...178
Workload ...178
Throughput..178
Contention...179
Optimization ..179

Determining Acceptable Performance ..179
Baseline Hardware Performance ..179
Performance Benchmarks ..179

Chapter 12: Common Causes of Performance Issues.........180
Identifying Hardware and Segment Failures180
Managing Workload...181
Avoiding Contention ..181
Maintaining Database Statistics...181
Table of Contents vi

Greenplum Database DBA Guide 4.3 - Contents
Identifying Statistics Problems in Query Plans181
Tuning Statistics Collection ..182

Optimizing Data Distribution ...182
Optimizing Your Database Design..182

Greenplum Database Maximum Limits.....................................183

Chapter 13: Investigating a Performance Problem184
Checking System State ...184
Checking Database Activity ...184

Checking for Active Sessions (Workload)184
Checking for Locks (Contention) ..184
Checking Query Status and System Utilization.........................185

Troubleshooting Problem Queries ..185
Investigating Error Messages ..185

Gathering Information for Greenplum Support.........................186
Table of Contents vii

Greenplum Database DBA Guide 4.3 – Preface
Preface
This guide provides information for database administrators and database superusers
responsible for administering a Greenplum Database system.

• About This Guide

• Document Conventions

• Getting Support

About This Guide
This guide explains how clients connect to a Greenplum Database system, how to
configure access control and workload management, perform basic administration
tasks such as defining database objects, loading and unloading data, writing queries,
and managing data, and provides guidance on identifying and troubleshooting
common performance issues.

This guide assumes knowledge of database management systems, database
administration, and structured query language (SQL).

Because Greenplum Database is based on PostgreSQL 8.2.15, this guide assumes
some familiarity with PostgreSQL. References to PostgreSQL documentation are
provided for features that are similar to those in Greenplum Database.

About the Greenplum Database Documentation Set
The Greenplum Database 4.3 documentation set consists of the following guides.

Table 1 Greenplum Database documentation set

Guide Name Description

Greenplum Database Database
Administrator Guide

Every day DBA tasks such as configuring access control and
workload management, writing queries, managing data,
defining database objects, and performance troubleshooting.

Greenplum Database System
Administrator Guide

Describes the Greenplum Database architecture and concepts
such as parallel processing, and system administration tasks
for Greenplum Database such as configuring the server,
monitoring system activity, enabling high-availability, backing
up and restoring databases, and expanding the system.

Greenplum Database Reference
Guide

Reference information for Greenplum Database systems: SQL
commands, system catalogs, environment variables, character
set support, datatypes, the Greenplum MapReduce
specification, postGIS extension, server parameters, the
gp_toolkit administrative schema, and SQL 2008 support.

Greenplum Database Utility
Guide

Reference information for command-line utilities, client
programs, and Oracle compatibility functions.

Greenplum Database
Installation Guide

Information and instructions for installing and initializing a
Greenplum Database system.
About This Guide 1

Greenplum Database DBA Guide 4.3 – Preface
Document Conventions
The following conventions are used throughout the Greenplum Database
documentation to help you identify certain types of information.

• Text Conventions

• Command Syntax Conventions

Text Conventions

Table 2 Text Conventions

Text Convention Usage Examples

bold Button, menu, tab, page, and field
names in GUI applications

Click Cancel to exit the page without
saving your changes.

italics New terms where they are defined

Database objects, such as schema,
table, or columns names

The master instance is the postgres
process that accepts client
connections.

Catalog information for Greenplum
Database resides in the pg_catalog
schema.

monospace File names and path names

Programs and executables

Command names and syntax

Parameter names

Edit the postgresql.conf file.

Use gpstart to start Greenplum
Database.

monospace italics Variable information within file
paths and file names

Variable information within
command syntax

/home/gpadmin/config_file

COPY tablename FROM
'filename'

monospace bold Used to call attention to a particular
part of a command, parameter, or
code snippet.

Change the host name, port, and
database name in the JDBC
connection URL:

jdbc:postgresql://host:5432/m
ydb

UPPERCASE Environment variables

SQL commands

Keyboard keys

Make sure that the Java /bin
directory is in your $PATH.

SELECT * FROM my_table;

Press CTRL+C to escape.
Document Conventions 2

Greenplum Database DBA Guide 4.3 – Preface
Command Syntax Conventions

Table 3 Command Syntax Conventions

Text Convention Usage Examples

{ } Within command syntax, curly
braces group related command
options. Do not type the curly
braces.

FROM { 'filename' | STDIN }

[] Within command syntax, square
brackets denote optional
arguments. Do not type the
brackets.

TRUNCATE [TABLE] name

... Within command syntax, an ellipsis
denotes repetition of a command,
variable, or option. Do not type the
ellipsis.

DROP TABLE name [, ...]

| Within command syntax, the pipe
symbol denotes an “OR”
relationship. Do not type the pipe
symbol.

VACUUM [FULL | FREEZE]

$ system_command

root_system_command

=> gpdb_command

=# su_gpdb_command

Denotes a command prompt - do
not type the prompt symbol. $ and
denote terminal command
prompts. => and =# denote
Greenplum Database interactive
program command prompts (psql
or gpssh, for example).

$ createdb mydatabase

chown gpadmin -R /datadir

=> SELECT * FROM mytable;

=# SELECT * FROM pg_database;

Getting Support
EMC support, product, and licensing information can be obtained as follows.

Product information
For product-specific documentation, release notes, or software updates, go to the
EMC Online Support site at support.emc.com.

For information about EMC products, licensing, and service, go to the EMC
Powerlink website (registration required) at http://Powerlink.EMC.com.
Getting Support 3

http://Powerlink.EMC.com
http://support.emc.com/

Greenplum Database DBA Guide 4.3 – Preface
Technical support
For technical support, go to EMC Online Support. On the Support page, you will see
several options, including one for making a service request. Note that to open a service
request, you must have a valid support agreement. Please contact your EMC sales
representative for details about obtaining a valid support agreement or with questions
about your account.
Getting Support 4

http://support.emc.com/

5

Greenplum Database DBA Guide 4.3 – Chapter 1: Introduction to Greenplum

1. Introduction to Greenplum

Greenplum Database is a massively parallel processing (MPP) database server based
on PostgreSQL open-source technology. MPP (also known as a shared nothing
architecture) refers to systems with two or more processors that cooperate to carry out
an operation - each processor with its own memory, operating system and disks.
Greenplum uses this high-performance system architecture to distribute the load of
multi-terabyte data warehouses, and can use all of a system’s resources in parallel to
process a query.

Greenplum Database is essentially several PostgreSQL database instances acting
together as one cohesive database management system (DBMS). It is based on
PostgreSQL 8.2.15, and in most cases is very similar to PostgreSQL with regard to
SQL support, features, configuration options, and end-user functionality. Database
users interact with Greenplum Database as they would a regular PostgreSQL DBMS.

The internals of PostgreSQL have been modified or supplemented to support the
parallel structure of Greenplum Database. For example, the system catalog, query
planner, optimizer, query executor, and transaction manager components have been
modified and enhanced to be able to execute queries simultaneously across all of the
parallel PostgreSQL database instances. The Greenplum interconnect (the networking
layer) enables communication between the distinct PostgreSQL instances and allows
the system to behave as one logical database.

Greenplum Database also includes features designed to optimize PostgreSQL for
business intelligence (BI) workloads. For example, Greenplum has added parallel data
loading (external tables), resource management, query optimizations, and storage
enhancements, which are not found in standard PostgreSQL. Many features and
optimizations developed by Greenplum make their way into the PostgreSQL
community. For example, table partitioning is a feature first developed by Greenplum,
and it is now in standard PostgreSQL.

Greenplum Database DBA Guide 4.3 – Chapter 2: Accessing the Database
2. Accessing the Database

This chapter explains the various client tools you can use to connect to Greenplum
Database, and how to establish a database session. It contains the following topics:

• Establishing a Database Session

• Supported Client Applications

• Troubleshooting Connection Problems

Establishing a Database Session
Users can connect to Greenplum Database using a PostgreSQL-compatible client
program, such as psql. Users and administrators always connect to Greenplum
Database through the master - the segments cannot accept client connections.

In order to establish a connection to the Greenplum Database master, you will need to
know the following connection information and configure your client program
accordingly.

Table 2.1 Connection Parameters

Connection Parameter Description Environment Variable

Application name The application name that is
connecting to the database. The
default value, held in the
application_name connection
parameter is psql.

$PGAPPNAME

Database name The name of the database to which
you want to connect. For a newly
initialized system, use the
template1 database to connect
for the first time.

$PGDATABASE

Host name The host name of the Greenplum
Database master. The default host
is the local host.

$PGHOST
Establishing a Database Session 6

Greenplum Database DBA Guide 4.3 – Chapter 2: Accessing the Database
Supported Client Applications
Users can connect to Greenplum Database using various client applications:

• A number of Greenplum Database Client Applications are provided with your
Greenplum installation. The psql client application provides an interactive
command-line interface to Greenplum Database.

• pgAdmin III for Greenplum Database is an enhanced version of the popular
management tool pgAdmin III. Since version 1.10.0, the pgAdmin III client
available from PostgreSQL Tools includes support for Greenplum-specific
features. Installation packages are available for download from the pgAdmin
download site.

• Using standard Database Application Interfaces, such as ODBC and JDBC, users
can create their own client applications that interface to Greenplum Database.
Because Greenplum Database is based on PostgreSQL, it uses the standard
PostgreSQL database drivers.

• Most Third-Party Client Tools that use standard database interfaces, such as
ODBC and JDBC, can be configured to connect to Greenplum Database.

Port The port number that the
Greenplum Database master
instance is running on. The default
is 5432.

$PGPORT

User name The database user (role) name to
connect as. This is not necessarily
the same as your OS user name.
Check with your Greenplum
administrator if you are not sure
what you database user name is.
Note that every Greenplum
Database system has one
superuser account that is created
automatically at initialization time.
This account has the same name
as the OS name of the user who
initialized the Greenplum system
(typically gpadmin).

$PGUSER

Table 2.1 Connection Parameters

Connection Parameter Description Environment Variable
Supported Client Applications 7

http://www.pgadmin.org/download/
http://www.pgadmin.org/download/

Greenplum Database DBA Guide 4.3 – Chapter 2: Accessing the Database
Greenplum Database Client Applications
Greenplum Database comes installed with a number of client applications located in
$GPHOME/bin of your Greenplum Database master host installation. The following
are the most commonly used client applications:

Table 2.2 Commonly used client applications

Name Usage

createdb create a new database

createlang define a new procedural language

createuser define a new database role

dropdb remove a database

droplang remove a procedural language

dropuser remove a role

psql PostgreSQL interactive terminal

reindexdb reindex a database

vacuumdb garbage-collect and analyze a database

When using these client applications, you must connect to a database through the
Greenplum master instance. You will need to know the name of your target database,
the host name and port number of the master, and what database user name to connect
as. This information can be provided on the command-line using the options -d, -h,
-p, and -U respectively. If an argument is found that does not belong to any option, it
will be interpreted as the database name first.

All of these options have default values which will be used if the option is not
specified. The default host is the local host. The default port number is 5432. The
default user name is your OS system user name, as is the default database name. Note
that OS user names and Greenplum Database user names are not necessarily the same.

If the default values are not correct, you can set the environment variables
PGDATABASE, PGHOST, PGPORT, and PGUSER to the appropriate values, or use a psql
~/.pgpass file to contain frequently-used passwords. For information about
Greenplum Database environment variables, see the Greenplum Database Reference
Guide. For information about psql, see the Greenplum Database Utility Guide.

Connecting with psql
Depending on the default values used or the environment variables you have set, the
following examples show how to access a database via psql:

$ psql -d gpdatabase -h master_host -p 5432 -U gpadmin

$ psql gpdatabase

$ psql

If a user-defined database has not yet been created, you can access the system by
connecting to the template1 database. For example:
Supported Client Applications 8

Greenplum Database DBA Guide 4.3 – Chapter 2: Accessing the Database
$ psql template1

After connecting to a database, psql provides a prompt with the name of the database
to which psql is currently connected, followed by the string => (or =# if you are the
database superuser). For example:

gpdatabase=>

At the prompt, you may type in SQL commands. A SQL command must end with a ;
(semicolon) in order to be sent to the server and executed. For example:

=> SELECT * FROM mytable;

See the Greenplum Reference Guide for information about using the psql client
application and SQL commands and syntax.

pgAdmin III for Greenplum Database
If you prefer a graphic interface, use pgAdmin III for Greenplum Database. This GUI
client supports PostgreSQL databases with all standard pgAdmin III features, while
adding support for Greenplum-specific features.

pgAdmin III for Greenplum Database supports the following Greenplum-specific
features:

• External tables

• Append-optimized tables, including compressed append-optimized tables

• Table partitioning

• Resource queues

• Graphical EXPLAIN ANALYZE

• Greenplum server configuration parameters
Supported Client Applications 9

Greenplum Database DBA Guide 4.3 – Chapter 2: Accessing the Database
Figure 2.1 Greenplum Options in pgAdmin III

Installing pgAdmin III for Greenplum Database
The installation package for pgAdmin III for Greenplum Database is available for
download from the official pgAdmin III download site (http://www.pgadmin.org).
Installation instructions are included in the installation package.

Documentation for pgAdmin III for Greenplum Database
For general help on the features of the graphical interface, select Help contents from
the Help menu.

For help with Greenplum-specific SQL support, select Greenplum Database Help
from the Help menu. If you have an active internet connection, you will be directed to
online Greenplum SQL reference documentation. Alternately, you can install the
Greenplum Client Tools package. This package contains SQL reference
documentation that is accessible to the help links in pgAdmin III.

Performing Administrative Tasks with pgAdmin III
This section highlights two of the many Greenplum Database administrative tasks you
can perform with pgAdmin III: editing the server configuration, and viewing a
graphical representation of a query plan.
Supported Client Applications 10

http://www.pgadmin.org

Greenplum Database DBA Guide 4.3 – Chapter 2: Accessing the Database
Editing Server Configuration

The pgAdmin III interface provides two ways to update the server configuration in
postgresql.conf: locally, through the File menu, and remotely on the server
through the Tools menu. Editing the server configuration remotely may be more
convenient in many cases, because it does not require you to upload or copy
postgresql.conf.

To edit server configuration remotely

1. Connect to the server whose configuration you want to edit. If you are connected
to multiple servers, make sure that the correct server is highlighted in the object
browser in the left pane.

2. Select Tools > Server Configuration > postgresql.conf. The Backend
Configuration Editor opens, displaying the list of available and enabled server
configuration parameters.

3. Locate the parameter you want to edit, and double click on the entry to open the
Configuration settings dialog.

4. Enter the new value for the parameter, or select/deselect Enabled as desired and
click OK.

5. If the parameter can be enabled by reloading server configuration, click the green
reload icon, or select File > Reload server. Many parameters require a full restart
of the server.

Viewing a Graphical Query Plan

Using the pgAdmin III query tool, you can run a query with EXPLAIN to view the
details of the query plan. The output includes details about operations unique to
Greenplum distributed query processing such as plan slices and motions between
segments. You can view a graphical depiction of the plan as well as the text-based data
output.

To view a graphical query plan

1. With the correct database highlighted in the object browser in the left pane, select
Tools > Query tool.

2. Enter the query by typing in the SQL Editor, dragging objects into the Graphical
Query Builder, or opening a file.

3. Select Query > Explain options and verify the following options:

• Verbose — this must be deselected if you want to view a graphical depiction
of the query plan

• Analyze — select this option if you want to run the query in addition to
viewing the plan

4. Trigger the operation by clicking the Explain query option at the top of the pane,
or by selecting Query > Explain.

The query plan displays in the Output pane at the bottom of the screen. Select the
Explain tab to view the graphical output. For example:
Supported Client Applications 11

Greenplum Database DBA Guide 4.3 – Chapter 2: Accessing the Database
Figure 2.2 Graphical Query Plan in pgAdmin III

Database Application Interfaces
You may want to develop your own client applications that interface to Greenplum
Database. PostgreSQL provides a number of database drivers for the most commonly
used database application programming interfaces (APIs), which can also be used
with Greenplum Database. These drivers are not packaged with the Greenplum
Database base distribution. Each driver is an independent PostgreSQL development
project and must be downloaded, installed and configured to connect to Greenplum
Database. The following drivers are available:

Table 2.3 Greenplum Database Interfaces

API PostgreSQL Driver Download Link

ODBC pgodbc Available in the Greenplum Database
Connectivity package, which can be
downloaded from the EMC Download
Center.

JDBC pgjdbc Available in the Greenplum Database
Connectivity package, which can be
downloaded from the EMC Download
Center.

Perl DBI pgperl http://gborg.postgresql.org/project/pgperl

Python DBI pygresql http://www.pygresql.org
Supported Client Applications 12

http://gborg.postgresql.org/project/pgperl/projdisplay.php
http://www.pygresql.org/
https://emc.subscribenet.com
https://emc.subscribenet.com
https://emc.subscribenet.com
https://emc.subscribenet.com

Greenplum Database DBA Guide 4.3 – Chapter 2: Accessing the Database
General instructions for accessing a Greenplum Database with an API are:

1. Download your programming language platform and respective API from the
appropriate source. For example, you can get the Java development kit (JDK) and
JDBC API from Sun.

2. Write your client application according to the API specifications. When
programming your application, be aware of the SQL support in Greenplum
Database so you do not include any unsupported SQL syntax. See the Greenplum
Database Reference Guide for more information.

Download the appropriate PostgreSQL driver and configure connectivity to your
Greenplum Database master instance. Greenplum provides a client tools package that
contains the supported database drivers for Greenplum Database. Download the client
tools package and documentation from the EMC Download Center.

Third-Party Client Tools
Most third-party extract-transform-load (ETL) and business intelligence (BI) tools use
standard database interfaces, such as ODBC and JDBC, and can be configured to
connect to Greenplum Database. Greenplum has worked with the following tools on
previous customer engagements and is in the process of becoming officially certified:

• Business Objects

• Microstrategy

• Informatica Power Center

• Microsoft SQL Server Integration Services (SSIS) and Reporting Services (SSRS)

• Ascential Datastage

• SAS

• Cognos

Greenplum Professional Services can assist users in configuring their chosen
third-party tool for use with Greenplum Database.
Supported Client Applications 13

https://emc.subscribenet.com

Greenplum Database DBA Guide 4.3 – Chapter 2: Accessing the Database
Troubleshooting Connection Problems
A number of things can prevent a client application from successfully connecting to
Greenplum Database. This section explains some of the common causes of connection
problems and how to correct them.

Table 2.4 Common connection problems

Problem Solution

No pg_hba.conf entry for
host or user

To enable Greenplum Database to accept remote client connections,
you must configure your Greenplum Database master instance so
that connections are allowed from the client hosts and database
users that will be connecting to Greenplum Database. This is done by
adding the appropriate entries to the pg_hba.conf configuration file
(located in the master instance’s data directory). For more detailed
information, see “Allowing Connections to Greenplum Database” on
page 15.

Greenplum Database is not
running

If the Greenplum Database master instance is down, users will not be
able to connect. You can verify that the Greenplum Database system
is up by running the gpstate utility on the Greenplum master host.

Network problems

Interconnect timeouts

If users connect to the Greenplum master host from a remote client,
network problems can prevent a connection (for example, DNS host
name resolution problems, the host system is down, and so on.). To
ensure that network problems are not the cause, connect to the
Greenplum master host from the remote client host. For example:
ping hostname

If the system cannot resolve the host names and IP addresses of the
hosts involved in Greenplum Database, queries and connections will
fail. For some operations, connections to the Greenplum Database
master use localhost and others use the actual host name, so you
must be able to resolve both. If you encounter this error, first make
sure you can connect to each host in your Greenplum Database
array from the master host over the network. In the /etc/hosts file
of the master and all segments, make sure you have the correct host
names and IP addresses for all hosts involved in the Greenplum
Database array. The 127.0.0.1 IP must resolve to localhost.

Too many clients already By default, Greenplum Database is configured to allow a maximum of
250 concurrent user connections on the master and 750 on a
segment. A connection attempt that causes that limit to be exceeded
will be refused. This limit is controlled by the max_connections
parameter in the postgresql.conf configuration file of the
Greenplum Database master. If you change this setting for the
master, you must also make appropriate changes at the segments.
Troubleshooting Connection Problems 14

Greenplum Database DBA Guide 4.3 – Chapter 3: Configuring Client Authentication
3. Configuring Client Authentication

When a Greenplum Database system is first initialized, the system contains one
predefined superuser role. This role will have the same name as the operating system
user who initialized the Greenplum Database system. This role is referred to as
gpadmin. By default, the system is configured to only allow local connections to the
database from the gpadmin role. If you want to allow any other roles to connect, or if
you want to allow connections from remote hosts, you have to configure Greenplum
Database to allow such connections. This chapter explains how to configure client
connections and authentication to Greenplum Database.

• Allowing Connections to Greenplum Database

• Limiting Concurrent Connections

For information about enabling Kerberos authentication to control access to
Greenplum Database, see “Kerberos Authentication” in the Greenplum Database
System Administrator Guide.

Allowing Connections to Greenplum Database
Client access and authentication is controlled by the standard PostgreSQL host-based
authentication file, pg_hba.conf. In Greenplum Database, the pg_hba.conf file of the
master instance controls client access and authentication to your Greenplum system.
Greenplum segments have pg_hba.conf files that are configured to allow only client
connections from the master host and never accept client connections. Do not alter the
pg_hba.conf file on your segments.

See The pg_hba.conf File in the PostgreSQL documentation for more information.

The general format of the pg_hba.conf file is a set of records, one per line.
Greenplum ignores blank lines and any text after the # comment character. A record
consists of a number of fields that are separated by spaces and/or tabs. Fields can
contain white space if the field value is quoted. Records cannot be continued across
lines. Each remote client access record has the following format:

host database role CIDR-address authentication-method

Each UNIX-domain socket access record has the following format:

local database role authentication-method
Allowing Connections to Greenplum Database 15

http://www.postgresql.org/docs/9.0/interactive/auth-pg-hba-conf.html

Greenplum Database DBA Guide 4.3 – Chapter 3: Configuring Client Authentication
The following table describes meaning of each field.

Table 3.1 pg_hba.conf Fields

Field Description

local Matches connection attempts using UNIX-domain sockets. Without a
record of this type, UNIX-domain socket connections are disallowed.

host Matches connection attempts made using TCP/IP. Remote TCP/IP
connections will not be possible unless the server is started with an
appropriate value for the listen_addresses server configuration
parameter.

hostssl Matches connection attempts made using TCP/IP, but only when the
connection is made with SSL encryption. SSL must be enabled at
server start time by setting the ssl configuration parameter

hostnossl Matches connection attempts made over TCP/IP that do not use
SSL.

database Specifies which database names this record matches. The value all
specifies that it matches all databases. Multiple database names can
be supplied by separating them with commas. A separate file
containing database names can be specified by preceding the file
name with @.

role Specifies which database role names this record matches. The value
all specifies that it matches all roles. If the specified role is a group
and you want all members of that group to be included, precede the
role name with a +. Multiple role names can be supplied by
separating them with commas. A separate file containing role names
can be specified by preceding the file name with @.

CIDR-address Specifies the client machine IP address range that this record
matches. It contains an IP address in standard dotted decimal
notation and a CIDR mask length. IP addresses can only be
specified numerically, not as domain or host names. The mask length
indicates the number of high-order bits of the client IP address that
must match. Bits to the right of this must be zero in the given IP
address. There must not be any white space between the IP
address, the /, and the CIDR mask length.

Typical examples of a CIDR-address are 172.20.143.89/32 for a
single host, or 172.20.143.0/24 for a small network, or 10.6.0.0/16 for
a larger one. To specify a single host, use a CIDR mask of 32 for
IPv4 or 128 for IPv6. In a network address, do not omit trailing
zeroes.

IP-address

IP-mask

These fields can be used as an alternative to the CIDR-address
notation. Instead of specifying the mask length, the actual mask is
specified in a separate column. For example, 255.0.0.0 represents
an IPv4 CIDR mask length of 8, and 255.255.255.255 represents a
CIDR mask length of 32. These fields only apply to host, hostssl, and
hostnossl records.

authentication-method Specifies the authentication method to use when connecting.
Greenplum supports the authentication methods supported by
Postgre 9.0.
Allowing Connections to Greenplum Database 16

http://www.postgresql.org/docs/9.0/static/auth-methods.html

Greenplum Database DBA Guide 4.3 – Chapter 3: Configuring Client Authentication
Editing the pg_hba.conf File
This example shows how to edit the pg_hba.conf file of the master to allow remote
client access to all databases from all roles using encrypted password authentication.

Note: For a more secure system, consider removing all connections that use trust
authentication from your master pg_hba.conf. Trust authentication means the role is
granted access without any authentication, therefore bypassing all security. Replace
trust entries with ident authentication if your system has an ident service available.

Editing pg_hba.conf

1. Open the file $MASTER_DATA_DIRECTORY/pg_hba.conf in a text editor.

2. Add a line to the file for each type of connection you want to allow. Records are
read sequentially, so the order of the records is significant. Typically, earlier
records will have tight connection match parameters and weaker authentication
methods, while later records will have looser match parameters and stronger
authentication methods. For example:

allow the gpadmin user local access to all databases

using ident authentication

local all gpadmin ident sameuser

host all gpadmin 127.0.0.1/32 ident

host all gpadmin ::1/128 ident

allow the 'dba' role access to any database from any

host with IP address 192.168.x.x and use md5 encrypted

passwords to authenticate the user

Note that to use SHA-256 encryption, replace md5 with
password in the line below

host all dba 192.168.0.0/32 md5

allow all roles access to any database from any

host and use ldap to authenticate the user. Greenplum role

names must match the LDAP common name.

host all all 192.168.0.0/32 ldap ldapserver=usldap1
ldapport=1389 ldapprefix="cn="
ldapsuffix=",ou=People,dc=company,dc=com"

3. Save and close the file.

4. Reload the pg_hba.conf configuration file for your changes to take effect:

$ gpstop -u

Note: Note that you can also control database access by setting object privileges as
described in “Managing Object Privileges” on page 24. The pg_hba.conf file just
controls who can initiate a database session and how those connections are
authenticated.
Allowing Connections to Greenplum Database 17

Greenplum Database DBA Guide 4.3 – Chapter 3: Configuring Client Authentication
Limiting Concurrent Connections
To limit the number of active concurrent sessions to your Greenplum Database
system, you can configure the max_connections server configuration parameter.
This is a local parameter, meaning that you must set it in the postgresql.conf file
of the master, the standby master, and each segment instance (primary and mirror).
Pivotal recommends that the value of max_connections on segments be 5-10 times
the value on the master.

When you set max_connections, you must also set the dependent parameter
max_prepared_transactions. This value must be at least as large as the value of
max_connections on the master, and segment instances should be set to the same
value as the master.

For example:

In $MASTER_DATA_DIRECTORY/postgresql.conf (including standby master):

max_connections=100
max_prepared_transactions=100

In SEGMENT_DATA_DIRECTORY/postgresql.conf for all segment instances:

max_connections=500
max_prepared_transactions=100

The following task sets the parameter values with the Greenplum Database utility
gpconfig. For information about gpconfig, see the Greenplum Database Utility
Guide.

To change the number of allowed connections

1. Log into the Greenplum Database master host as the Greenplum Database
administrator and source the file $GPHOME/greenplum_path.sh.

2. Set the value of the max_connections parameter. This gpconfig command sets
the value on the segments to 100 and the value on the master to 500.

$ gpconfig -c max_connections -v 100 -m 500

Note: Pivotal recommends that value of max_connections on segments be 5-10
times the value on the master.

3. Set the value of the max_prepared_transactions parameter. This gpconfig
command sets the value to 100 on the master and all segments.

$ gpconfig -c max_prepared_transactions -v 100

Note: The value of max_prepared_transactions must be greater than or equal
to max_connections on the master.

4. Stop and restart your Greenplum Database system.

$ gpstop -r

5. You can check the value of parameters on the master and segments with the
gpconfig utility -s option. This gpconfig command displays the values of the
max_connections parameter.

$ gpconfig -s max_connections
Limiting Concurrent Connections 18

Greenplum Database DBA Guide 4.3 – Chapter 3: Configuring Client Authentication
Note: Raising the values of these parameters may cause Greenplum Database to
request more shared memory. To mitigate this effect, consider decreasing other
memory-related parameters such as gp_cached_segworkers_threshold.

Encrypting Client/Server Connections
Greenplum Database has native support for SSL connections between the client and
the master server. SSL connections prevent third parties from snooping on the packets,
and also prevent man-in-the-middle attacks. SSL should be used whenever the client
connection goes through an insecure link, and must be used whenever client certificate
authentication is used.

To enable SSL requires that OpenSSL be installed on both the client and the master
server systems. Greenplum can be started with SSL enabled by setting the server
configuration parameter ssl=on in the master postgresql.conf. When starting in
SSL mode, the server will look for the files server.key (server private key) and
server.crt (server certificate) in the master data directory. These files must be set
up correctly before an SSL-enabled Greenplum system can start.

Important: Do not protect the private key with a passphrase. The server does not
prompt for a passphrase for the private key, and the database startup fails with an error
if one is required.

A self-signed certificate can be used for testing, but a certificate signed by a certificate
authority (CA) should be used in production, so the client can verify the identity of the
server. Either a global or local CA can be used. If all the clients are local to the
organization, a local CA is recommended.

Creating a Self-signed Certificate without a Passphrase for Testing Only

To create a quick self-signed certificate for the server for testing, use the following
OpenSSL command:

openssl req -new -text -out server.req

Fill out the information that openssl asks for. Be sure to enter the local host name as
Common Name. The challenge password can be left blank.

The program will generate a key that is passphrase protected, and does not accept a
passphrase that is less than four characters long.

To use this certificate with Greenplum Database, remove the passphrase with the
following commands:

openssl rsa -in privkey.pem -out server.key

rm privkey.pem

Enter the old passphrase when prompted to unlock the existing key.

Then, enter the following command to turn the certificate into a self-signed certificate
and to copy the key and certificate to a location where the server will look for them.

openssl req -x509 -in server.req -text -key server.key -out server.crt

Finally, change the permissions on the key with the following command. The server
will reject the file if the permissions are less restrictive than these.
Encrypting Client/Server Connections 19

Greenplum Database DBA Guide 4.3 – Chapter 3: Configuring Client Authentication
chmod og-rwx server.key

For more details on how to create your server private key and certificate, refer to the
OpenSSL documentation.
Encrypting Client/Server Connections 20

Greenplum Database DBA Guide 4.3 – Chapter 4: Managing Roles and Privileges
4. Managing Roles and Privileges

Greenplum Database manages database access permissions using the concept of roles.
The concept of roles subsumes the concepts of users and groups. A role can be a
database user, a group, or both. Roles can own database objects (for example, tables)
and can assign privileges on those objects to other roles to control access to the
objects. Roles can be members of other roles, thus a member role can inherit the
object privileges of its parent role.

Every Greenplum Database system contains a set of database roles (users and groups).
Those roles are separate from the users and groups managed by the operating system
on which the server runs. However, for convenience you may want to maintain a
relationship between operating system user names and Greenplum Database role
names, since many of the client applications use the current operating system user
name as the default.

In Greenplum Database, users log in and connect through the master instance, which
then verifies their role and access privileges. The master then issues out commands to
the segment instances behind the scenes as the currently logged in role.

Roles are defined at the system level, meaning they are valid for all databases in the
system.

In order to bootstrap the Greenplum Database system, a freshly initialized system
always contains one predefined superuser role (also referred to as the system user).
This role will have the same name as the operating system user that initialized the
Greenplum Database system. Customarily, this role is named gpadmin. In order to
create more roles you first have to connect as this initial role.

Security Best Practices for Roles and Privileges
• Secure the gpadmin system user. Greenplum requires a UNIX user id to install

and initialize the Greenplum Database system. This system user is referred to as
gpadmin in the Greenplum documentation. This gpadmin user is the default
database superuser in Greenplum Database, as well as the file system owner of the
Greenplum installation and its underlying data files. This default administrator
account is fundamental to the design of Greenplum Database. The system cannot
run without it, and there is no way to limit the access of this gpadmin user id. Use
roles to manage who has access to the database for specific purposes. You should
only use the gpadmin account for system maintenance tasks such as expansion
and upgrade. Anyone who logs on to a Greenplum host as this user id can read,
alter or delete any data; including system catalog data and database access rights.
Therefore, it is very important to secure the gpadmin user id and only provide
access to essential system administrators. Administrators should only log in to
Greenplum as gpadmin when performing certain system maintenance tasks (such
as upgrade or expansion). Database users should never log on as gpadmin, and
ETL or production workloads should never run as gpadmin.
Security Best Practices for Roles and Privileges 21

Greenplum Database DBA Guide 4.3 – Chapter 4: Managing Roles and Privileges
• Assign a distinct role to each user that logs in. For logging and auditing
purposes, each user that is allowed to log in to Greenplum Database should be
given their own database role. For applications or web services, consider creating
a distinct role for each application or service. See “Creating New Roles (Users)”
on page 22.

• Use groups to manage access privileges. See “Role Membership” on page 23.

• Limit users who have the SUPERUSER role attribute. Roles that are
superusers bypass all access privilege checks in Greenplum Database, as well as
resource queuing. Only system administrators should be given superuser rights.
See “Altering Role Attributes” on page 22.

Creating New Roles (Users)
A user-level role is considered to be a database role that can log in to the database and
initiate a database session. Therefore, when you create a new user-level role using the
CREATE ROLE command, you must specify the LOGIN privilege. For example:

=# CREATE ROLE jsmith WITH LOGIN;

A database role may have a number of attributes that define what sort of tasks that role
can perform in the database. You can set these attributes when you create the role, or
later using the ALTER ROLE command. See Table 4.1, “Role Attributes” on page 22
for a description of the role attributes you can set.

Altering Role Attributes
A database role may have a number of attributes that define what sort of tasks that role
can perform in the database.

Table 4.1 Role Attributes

Attributes Description

SUPERUSER | NOSUPERUSER Determines if the role is a superuser. You must yourself be a
superuser to create a new superuser. NOSUPERUSER is the default.

CREATEDB | NOCREATEDB Determines if the role is allowed to create databases. NOCREATEDB
is the default.

CREATEROLE | NOCREATEROLE Determines if the role is allowed to create and manage other roles.
NOCREATEROLE is the default.

INHERIT | NOINHERIT Determines whether a role inherits the privileges of roles it is a
member of. A role with the INHERIT attribute can automatically use
whatever database privileges have been granted to all roles it is
directly or indirectly a member of. INHERIT is the default.

LOGIN | NOLOGIN Determines whether a role is allowed to log in. A role having the
LOGIN attribute can be thought of as a user. Roles without this
attribute are useful for managing database privileges (groups).
NOLOGIN is the default.

CONNECTION LIMIT connlimit If role can log in, this specifies how many concurrent connections the
role can make. -1 (the default) means no limit.
Creating New Roles (Users) 22

Greenplum Database DBA Guide 4.3 – Chapter 4: Managing Roles and Privileges
You can set these attributes when you create the role, or later using the ALTER ROLE
command. For example:

=# ALTER ROLE jsmith WITH PASSWORD 'passwd123';
=# ALTER ROLE admin VALID UNTIL 'infinity';
=# ALTER ROLE jsmith LOGIN;
=# ALTER ROLE jsmith RESOURCE QUEUE adhoc;
=# ALTER ROLE jsmith DENY DAY 'Sunday';

A role can also have role-specific defaults for many of the server configuration
settings. For example, to set the default schema search path for a role:

=# ALTER ROLE admin SET search_path TO myschema, public;

Role Membership
It is frequently convenient to group users together to ease management of object
privileges: that way, privileges can be granted to, or revoked from, a group as a whole.
In Greenplum Database this is done by creating a role that represents the group, and
then granting membership in the group role to individual user roles.

Use the CREATE ROLE SQL command to create a new group role. For example:

=# CREATE ROLE admin CREATEROLE CREATEDB;

Once the group role exists, you can add and remove members (user roles) using the
GRANT and REVOKE commands. For example:

=# GRANT admin TO john, sally;

PASSWORD ‘password’ Sets the role’s password. If you do not plan to use password
authentication you can omit this option. If no password is specified,
the password will be set to null and password authentication will
always fail for that user. A null password can optionally be written
explicitly as PASSWORD NULL.

ENCRYPTED | UNENCRYPTED Controls whether the password is stored encrypted in the system
catalogs. The default behavior is determined by the configuration
parameter password_encryption (currently set to md5, for
SHA-256 encryption, change this setting to password). If the
presented password string is already in encrypted format, then it is
stored encrypted as-is, regardless of whether ENCRYPTED or
UNENCRYPTED is specified (since the system cannot decrypt the
specified encrypted password string). This allows reloading of
encrypted passwords during dump/restore.

VALID UNTIL ‘timestamp’ Sets a date and time after which the role’s password is no longer
valid. If omitted the password will be valid for all time.

RESOURCE QUEUE queue_name Assigns the role to the named resource queue for workload
management. Any statement that role issues is then subject to the
resource queue’s limits. Note that the RESOURCE QUEUE attribute
is not inherited; it must be set on each user-level (LOGIN) role.

DENY {deny_interval | deny_point} Restricts access during an interval, specified by day or day and time.
For more information see “Time-based Authentication” on page 28.

Table 4.1 Role Attributes

Attributes Description
Role Membership 23

Greenplum Database DBA Guide 4.3 – Chapter 4: Managing Roles and Privileges
=# REVOKE admin FROM bob;

For managing object privileges, you would then grant the appropriate permissions to
the group-level role only (see Table 4.2, “Object Privileges” on page 24). The
member user roles then inherit the object privileges of the group role. For example:

=# GRANT ALL ON TABLE mytable TO admin;

=# GRANT ALL ON SCHEMA myschema TO admin;

=# GRANT ALL ON DATABASE mydb TO admin;

The role attributes LOGIN, SUPERUSER, CREATEDB, and CREATEROLE are never
inherited as ordinary privileges on database objects are. User members must actually
SET ROLE to a specific role having one of these attributes in order to make use of the
attribute. In the above example, we gave CREATEDB and CREATEROLE to the admin
role. If sally is a member of admin, she could issue the following command to
assume the role attributes of the parent role:

=> SET ROLE admin;

Managing Object Privileges
When an object (table, view, sequence, database, function, language, schema, or
tablespace) is created, it is assigned an owner. The owner is normally the role that
executed the creation statement. For most kinds of objects, the initial state is that only
the owner (or a superuser) can do anything with the object. To allow other roles to use
it, privileges must be granted. Greenplum Database supports the following privileges
for each object type:

Table 4.2 Object Privileges

Object Type Privileges

Tables, Views, Sequences SELECT

INSERT

UPDATE

DELETE

RULE

ALL

External Tables SELECT

RULE

ALL

Databases CONNECT

CREATE

TEMPORARY | TEMP

ALL

Functions EXECUTE

Procedural Languages USAGE
Managing Object Privileges 24

Greenplum Database DBA Guide 4.3 – Chapter 4: Managing Roles and Privileges
Note: Privileges must be granted for each object individually. For example, granting
ALL on a database does not grant full access to the objects within that database. It
only grants all of the database-level privileges (CONNECT, CREATE,
TEMPORARY) to the database itself.

Use the GRANT SQL command to give a specified role privileges on an object. For
example:

=# GRANT INSERT ON mytable TO jsmith;

To revoke privileges, use the REVOKE command. For example:

=# REVOKE ALL PRIVILEGES ON mytable FROM jsmith;

You can also use the DROP OWNED and REASSIGN OWNED commands for managing
objects owned by deprecated roles (Note: only an object’s owner or a superuser can
drop an object or reassign ownership). For example:

=# REASSIGN OWNED BY sally TO bob;

=# DROP OWNED BY visitor;

Simulating Row and Column Level Access Control
Row-level or column-level access is not supported, nor is labeled security. Row-level
and column-level access can be simulated using views to restrict the columns and/or
rows that are selected. Row-level labels can be simulated by adding an extra column
to the table to store sensitivity information, and then using views to control row-level
access based on this column. Roles can then be granted access to the views rather than
the base table.

Schemas CREATE

USAGE

ALL

Custom Protocol SELECT

INSERT

UPDATE

DELETE

RULE

ALL

Table 4.2 Object Privileges

Object Type Privileges
Managing Object Privileges 25

Greenplum Database DBA Guide 4.3 – Chapter 4: Managing Roles and Privileges
Encrypting Data
PostgreSQL provides an optional package of encryption/decryption functions called
pgcrypto, which can also be installed and used in Greenplum Database. The
pgcrypto package is not installed by default with Greenplum Database, however you
can download a pgcrypto package from the EMC Download Center, then use the
Greenplum Package Manager (gppkg) to install pgcrypto across your entire cluster .

The pgcrypto functions allow database administrators to store certain columns of
data in encrypted form. This adds an extra layer of protection for sensitive data, as
data stored in Greenplum Database in encrypted form cannot be read by users who do
not have the encryption key, nor be read directly from the disks.

It is important to note that the pgcrypto functions run inside database server. That
means that all the data and passwords move between pgcrypto and the client
application in clear-text. For optimal security, consider also using SSL connections
between the client and the Greenplum master server.

Encrypting Passwords
In Greenplum Database versions before 4.2.1, passwords were encrypted using MD5
hashing by default. Since some customers require cryptographic algorithms that meet
the Federal Information Processing Standard140-2, as of version 4.2.1, Greenplum
Database features RSA’s BSAFE implementation that lets customers store passwords
hashed using SHA-256 encryption.
To use SHA-256 encryption, you must set a parameter either at the system or the
session level. This technical note outlines how to use a server parameter to implement
SHA-256 encrypted password storage. Note that in order to use SHA-256 encryption
for storage, the client authentication method must be set to password rather than the
default, MD5. (See “Encrypting Client/Server Connections” on page 19 for more
details.) This means that the password is transmitted in clear text over the network, so
we highly recommend that you set up SSL to encrypt the client server communication
channel.

Enabling SHA-256 Encryption
You can set your chosen encryption method system-wide or on a per-session basis.
There are three encryption methods available: SHA-256, SHA-256-FIPS, and MD5 (for
backward compatibility). The SHA-256-FIPS method requires that FIPS compliant
libraries are used.

System-wide

To set the password_hash_algorithm server parameter on a complete Greenplum
system (master and its segments):

1. Log into your Greenplum Database instance as a superuser.

2. Execute gpconfig with the password_hash_algorithm set to SHA-256 (or
SHA-256-FIPS to use the FIPS-compliant libraries for SHA-256)

$ gpconfig -c password_hash_algorithm -v 'SHA-256'

or:
Encrypting Data 26

https://emc.subscribenet.com

Greenplum Database DBA Guide 4.3 – Chapter 4: Managing Roles and Privileges
$ gpconfig -c password_hash_algorithm -v 'SHA-256-FIPS'

3. Verify the setting:

$ gpconfig -s

You will see:

Master value: SHA-256

Segment value: SHA-256

or:

Master value: SHA-256-FIPS

Segment value: SHA-256-FIPS

Individual Session

To set the password_hash_algorithm server parameter for an individual session:

1. Log into your Greenplum Database instance as a superuser.

2. Set the password_hash_algorithm to SHA-256 (or SHA-256-FIPS to use the
FIPS-compliant libraries for SHA-256):

set password_hash_algorithm = 'SHA-256'

SET

or:

set password_hash_algorithm = 'SHA-256-FIPS'

SET

3. Verify the setting:

show password_hash_algorithm;

password_hash_algorithm

You will see:

SHA-256

or:

SHA-256-FIPS

Example

Following is an example of how the new setting works:

1. Login in as a super user and verify the password hash algorithm setting:

show password_hash_algorithm

password_hash_algorithm

SHA-256-FIPS

2. Create a new role with password that has login privileges.

create role testdb with password 'testdb12345#' LOGIN;

3. Change the client authentication method to allow for storage of SHA-256
encrypted passwords:
Encrypting Passwords 27

Greenplum Database DBA Guide 4.3 – Chapter 4: Managing Roles and Privileges
Open the pg_hba.conf file on the master and add the following line:

host all testdb 0.0.0.0/0 password

4. Restart the cluster.

5. Login to the database as user just created testdb.

psql -U testdb

6. Enter the correct password at the prompt.

7. Verify that the password is stored as a SHA-256 hash.

Note that password hashes are stored in pg_authid.rolpasswod

a. Login as the super user.

b. Execute the following:
select rolpassword from pg_authid where rolname =
'testdb';

Rolpassword

sha256<64 hexidecimal characters>

Time-based Authentication
Greenplum Database enables the administrator to restrict access to certain times by
role. Use the CREATE ROLE or ALTER ROLE commands to specify time-based
constraints.

For details, refer to the Greenplum Database Security Configuration Guide.
Time-based Authentication 28

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
5. Defining Database Objects

This chapter covers data definition language (DDL) in Greenplum Database and how
to create and manage database objects.

• Creating and Managing Databases

• Creating and Managing Tablespaces

• Creating and Managing Schemas

• Creating and Managing Tables

• Partitioning Large Tables

• Creating and Using Sequences

• Using Indexes in Greenplum Database

• Creating and Managing Views

Creating and Managing Databases
A Greenplum Database system is a single instance of Greenplum Database. There can
be several separate Greenplum Database systems installed, but usually just one is
selected by environment variable settings. See your Greenplum administrator for
details.

There can be multiple databases in a Greenplum Database system. This is different
from some database management systems (such as Oracle) where the database
instance is the database. Although you can create many databases in a Greenplum
system, client programs can connect to and access only one database at a time — you
cannot cross-query between databases.

About Template Databases
Each new database you create is based on a template. Greenplum provides a default
database, template1. Use template1 to connect to Greenplum Database for the first
time. Greenplum Database uses template1 to create databases unless you specify
another template. Do not create any objects in template1 unless you want those
objects to be in every database you create.

Greenplum uses two other database templates, template0 and postgres, internally.
Do not drop or modify template0 or postgres. You can use template0 to create
a completely clean database containing only the standard objects predefined by
Greenplum Database at initialization, especially if you modified template1.

Creating a Database
The CREATE DATABASE command creates a new database. For example:

=> CREATE DATABASE new_dbname;
Creating and Managing Databases 29

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
To create a database, you must have privileges to create a database or be a Greenplum
superuser. If you do not have the correct privileges, you cannot create a database.
Contact your Greenplum administrator to either give you the necessary privilege or to
create a database for you.

You can also use the client program createdb to create a database. For example,
running the following command in a command line terminal connects to Greenplum
Database using the provided host name and port and creates a database named
mydatabase:

$ createdb -h masterhost -p 5432 mydatabase

The host name and port must match the host name and port of the installed Greenplum
Database system.

Some objects, such as roles, are shared by all the databases in a Greenplum Database
system. Other objects, such as tables that you create, are known only in the database in
which you create them.

Cloning a Database
By default, a new database is created by cloning the standard system database
template, template1. Any database can be used as a template when creating a new
database, thereby providing the capability to ‘clone’ or copy an existing database and
all objects and data within that database. For example:

=> CREATE DATABASE new_dbname TEMPLATE old_dbname;

Viewing the List of Databases
If you are working in the psql client program, you can use the \l meta-command to
show the list of databases and templates in your Greenplum Database system. If using
another client program and you are a superuser, you can query the list of databases
from the pg_database system catalog table. For example:

=> SELECT datname from pg_database;

Altering a Database
The ALTER DATABASE command changes database attributes such as owner, name, or
default configuration attributes. For example, the following command alters a
database by setting its default schema search path (the search_path configuration
parameter):

=> ALTER DATABASE mydatabase SET search_path TO myschema,
public, pg_catalog;

To alter a database, you must be the owner of the database or a superuser.
Creating and Managing Databases 30

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
Dropping a Database
The DROP DATABASE command drops (or deletes) a database. It removes the system
catalog entries for the database and deletes the database directory on disk that contains
the data. You must be the database owner or a superuser to drop a database, and you
cannot drop a database while you or anyone else is connected to it. Connect to
template1 (or another database) before dropping a database. For example:

=> \c template1

=> DROP DATABASE mydatabase;

You can also use the client program dropdb to drop a database. For example, the
following command connects to Greenplum Database using the provided host name
and port and drops the database mydatabase:

$ dropdb -h masterhost -p 5432 mydatabase

Warning: Dropping a database cannot be undone.

Creating and Managing Tablespaces
Tablespaces allow database administrators to have multiple file systems per machine
and decide how to best use physical storage to store database objects. They are named
locations within a filespace in which you can create objects. Tablespaces allow you to
assign different storage for frequently and infrequently used database objects or to
control the I/O performance on certain database objects. For example, place
frequently-used tables on file systems that use high performance solid-state drives
(SSD), and place other tables on standard hard drives.

A tablespace requires a file system location to store its database files. In Greenplum
Database, the master and each segment (primary and mirror) require a distinct storage
location. The collection of file system locations for all components in a Greenplum
system is a filespace. Filespaces can be used by one or more tablespaces.

Creating a Filespace
A filespace sets aside storage for your Greenplum system. A filespace is a symbolic
storage identifier that maps onto a set of locations in your Greenplum hosts’ file
systems. To create a filespace, prepare the logical file systems on all of your
Greenplum hosts, then use the gpfilespace utility to define the filespace. You must
be a database superuser to create a filespace.

Note: Greenplum Database is not directly aware of the file system boundaries on your
underlying systems. It stores files in the directories that you tell it to use. You cannot
control the location on disk of individual files within a logical file system.

To create a filespace using gpfilespace

1. Log in to the Greenplum Database master as the gpadmin user.

$ su - gpadmin

2. Create a filespace configuration file:
Creating and Managing Tablespaces 31

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
$ gpfilespace -o gpfilespace_config

3. At the prompt, enter a name for the filespace, the primary segment file system
locations, the mirror segment file system locations, and a master file system
location. For example, if your configuration has 2 primary and 2 mirror segments
per host:

Enter a name for this filespace> fastdisk

primary location 1> /gpfs1/seg1

primary location 2> /gpfs1/seg2

mirror location 1> /gpfs2/mir1

mirror location 2> /gpfs2/mir2

master location> /gpfs1/master

4. gpfilespace creates a configuration file. Examine the file to verify that the
gpfilespace configuration is correct.

5. Run gpfilespace again to create the filespace based on the configuration file:

$ gpfilespace -c gpfilespace_config

Moving the Location of Temporary or Transaction Files
You can move temporary or transaction files to a specific filespace to improve
database performance when running queries, creating backups, and to store data more
sequentially.

The dedicated filespace for temporary and transaction files is tracked in two separate
flat files called gp_temporary_files_filespace and
gp_transaction_files_filespace. These are located in the pg_system
directory on each primary and mirror segment, and on master and standby. You must
be a superuser to move temporary or transaction files. Only the gpfilespace utility
can write to this file.

About Temporary and Transaction Files
Unless otherwise specified, temporary and transaction files are stored together with all
user data. The default location of temporary files,
<filespace_directory>/<tablespace_oid>/<database_oid>/pgsql_tmp
is changed when you use gpfilespace --movetempfiles for the first time.

Also note the following information about temporary or transaction files:

• You can dedicate only one filespace for temporary or transaction files, although
you can use the same filespace to store other types of files.

• You cannot drop a filespace if it used by temporary files.

• You must create the filespace in advance. See “Creating a Filespace”.

To move temporary files using gpfilespace

1. Check that the filespace exists and is different from the filespace used to store all
other user data.

2. Issue smart shutdown to bring the Greenplum Database offline.
Creating and Managing Tablespaces 32

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
Note: If any connections are still in progess,the gpfilespace
--movetempfiles utility will fail.

3. Bring Greenplum Database online with no active session and run the following
command:

gpfilespace --movetempfilespace filespace_name

Note: The location of the temporary files is stored in the segment configuration
shared memory (PMModuleState) and used whenever temporary files are
created, opened, or dropped.

To move transaction files using gpfilespace

1. Check that the filespace exists and is different from the filespace used to store all
other user data.

2. Issue smart shutdown to bring the Greenplum Database offline.

Note: If any connections are still in progess,the gpfilespace
--movetransfiles utility will fail.

3. Bring Greenplum Database online with no active session and run the following
command:

gpfilespace --movetransfilespace filespace_name

Note: The location of the transaction files is stored in the segment configuration
shared memory (PMModuleState) and used whenever transaction files are
created, opened, or dropped.

Creating a Tablespace
After you create a filespace, use the CREATE TABLESPACE command to define a
tablespace that uses that filespace. For example:

=# CREATE TABLESPACE fastspace FILESPACE fastdisk;

Database superusers define tablespaces and grant access to database users with the
GRANT CREATE command. For example:

=# GRANT CREATE ON TABLESPACE fastspace TO admin;

Using a Tablespace to Store Database Objects
Users with the CREATE privilege on a tablespace can create database objects in that
tablespace, such as tables, indexes, and databases. The command is:

CREATE TABLE tablename(options) TABLESPACE spacename

For example, the following command creates a table in the tablespace space1:

CREATE TABLE foo(i int) TABLESPACE space1;

You can also use the default_tablespace parameter to specify the default
tablespace for CREATE TABLE and CREATE INDEX commands that do not specify a
tablespace:

SET default_tablespace = space1;

CREATE TABLE foo(i int);
Creating and Managing Tablespaces 33

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
The tablespace associated with a database stores that database’s system catalogs,
temporary files created by server processes using that database, and is the default
tablespace selected for tables and indexes created within the database, if no
TABLESPACE is specified when the objects are created. If you do not specify a
tablespace when you create a database, the database uses the same tablespace used by
its template database.

You can use a tablespace from any database if you have appropriate privileges.

Viewing Existing Tablespaces and Filespaces
Every Greenplum Database system has the following default tablespaces.

• pg_global for shared system catalogs.

• pg_default, the default tablespace. Used by the template1 and template0
databases.

These tablespaces use the system default filespace, pg_system, the data directory
location created at system initialization.

To see filespace information, look in the pg_filespace and pg_filespace_entry catalog
tables. You can join these tables with pg_tablespace to see the full definition of a
tablespace. For example:

=# SELECT spcname as tblspc, fsname as filespc,

 fsedbid as seg_dbid, fselocation as datadir

 FROM pg_tablespace pgts, pg_filespace pgfs,

 pg_filespace_entry pgfse

WHERE pgts.spcfsoid=pgfse.fsefsoid

AND pgfse.fsefsoid=pgfs.oid

ORDER BY tblspc, seg_dbid;

Dropping Tablespaces and Filespaces
To drop a tablespace, you must be the tablespace owner or a superuser. You cannot
drop a tablespace until all objects in all databases using the tablespace are removed.

Only a superuser can drop a filespace. A filespace cannot be dropped until all
tablespaces using that filespace are removed.

The DROP TABLESPACE command removes an empty tablespace.

The DROP FILESPACE command removes an empty filespace.

Note: You cannot drop a filespace if it stores temporary or transaction files.

Creating and Managing Schemas
Schemas logically organize objects and data in a database. Schemas allow you to have
more than one object (such as tables) with the same name in the database without
conflict if the objects are in different schemas.
Creating and Managing Schemas 34

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
The Default “Public” Schema
Every database has a default schema named public. If you do not create any schemas,
objects are created in the public schema. All database roles (users) have CREATE and
USAGE privileges in the public schema. When you create a schema, you grant
privileges to your users to allow access to the schema.

Creating a Schema
Use the CREATE SCHEMA command to create a new schema. For example:

=> CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the
schema name and table name separated by a period. For example:

myschema.table

See “Schema Search Paths” on page 35 for information about accessing a schema.

You can create a schema owned by someone else, for example, to restrict the activities
of your users to well-defined namespaces. The syntax is:

=> CREATE SCHEMA schemaname AUTHORIZATION username;

Schema Search Paths
To specify an object’s location in a database, use the schema-qualified name. For
example:

=> SELECT * FROM myschema.mytable;

You can set the search_path configuration parameter to specify the order in which to
search the available schemas for objects. The schema listed first in the search path
becomes the default schema. If a schema is not specified, objects are created in the
default schema.

Setting the Schema Search Path
The search_path configuration parameter sets the schema search order. The ALTER
DATABASE command sets the search path. For example:

=> ALTER DATABASE mydatabase SET search_path TO myschema,
public, pg_catalog;

You can also set search_path for a particular role (user) using the ALTER ROLE
command. For example:

=> ALTER ROLE sally SET search_path TO myschema, public,
pg_catalog;

Viewing the Current Schema
Use the current_schema() function to view the current schema. For example:

=> SELECT current_schema();

Use the SHOW command to view the current search path. For example:
Creating and Managing Schemas 35

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
=> SHOW search_path;

Dropping a Schema
Use the DROP SCHEMAcommand to drop (delete) a schema. For example:

=> DROP SCHEMA myschema;

By default, the schema must be empty before you can drop it. To drop a schema and
all of its objects (tables, data, functions, and so on) use:

=> DROP SCHEMA myschema CASCADE;

System Schemas
The following system-level schemas exist in every database:

• pg_catalog contains the system catalog tables, built-in data types, functions, and
operators. It is always part of the schema search path, even if it is not explicitly
named in the search path.

• information_schema consists of a standardized set of views that contain
information about the objects in the database. These views get system information
from the system catalog tables in a standardized way.

• pg_toast stores large objects such as records that exceed the page size. This
schema is used internally by the Greenplum Database system.

• pg_bitmapindex stores bitmap index objects such as lists of values. This schema
is used internally by the Greenplum Database system.

• pg_aoseg stores append-optimized table objects. This schema is used internally
by the Greenplum Database system.

• gp_toolkit is an administrative schema that contains external tables, views, and
functions that you can access with SQL commands. All database users can access
gp_toolkit to view and query the system log files and other system metrics.

Creating and Managing Tables
Greenplum Database tables are similar to tables in any relational database, except that
table rows are distributed across the different segments in the system. When you
create a table, you specify the table’s distribution policy.

Creating a Table
The CREATE TABLE command creates a table and defines its structure. When you
create a table, you define:

• The columns of the table and their associated data types. See “Choosing Column
Data Types” on page 37.

• Any table or column constraints to limit the data that a column or table can
contain. See “Setting Table and Column Constraints” on page 37.
Creating and Managing Tables 36

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
• The distribution policy of the table, which determines how Greenplum divides
data is across the segments. See “Choosing the Table Distribution Policy” on page
38.

• The way the table is stored on disk. See “Choosing the Table Storage Model” on
page 39.

• The table partitioning strategy for large tables. See “Partitioning Large Tables” on
page 51.

Choosing Column Data Types
The data type of a column determines the types of data values the column can contain.
Choose the data type that uses the least possible space but can still accommodate your
data and that best constrains the data. For example, use character data types for
strings, date or timestamp data types for dates, and numeric data types for numbers.

There are no performance differences among the character data types CHAR, VARCHAR,
and TEXT apart from the increased storage size when you use the blank-padded type.
In most situations, use TEXT or VARCHAR rather than CHAR.

Use the smallest numeric data type that will accomodate your numeric data and allow
for future expansion. For example, using BIGINT for data that fits in INT or SMALLINT
wastes storage space. If you expect that your data values will expand over time,
consider that changing from a smaller datatype to a larger datatype after loading large
amounts of data is costly. For example, if your current data values fit in a SMALLINT
but it is likely that the values will expand, INT is the better long-term choice.

Use the same data types for columns that you plan to use in cross-table joins.
Cross-table joins usually use the primary key in one table and a foreign key in the
other table. When the data types are different, the database must convert one of them
so that the data values can be compared correctly, which adds unnecessary overhead.

Greenplum Database has a rich set of native data types available to users. See the
Greenplum Database Reference Guide for information about the built-in data types.

Setting Table and Column Constraints
You can define constraints on columns and tables to restrict the data in your tables.
Greenplum Database support for constraints is the same as PostgreSQL with some
limitations, including:

• CHECK constraints can refer only to the table on which they are defined.

• UNIQUE and PRIMARY KEY constraints must be compatible with their tableʼs
distribution key and partitioning key, if any.

• FOREIGN KEY constraints are allowed, but not enforced.

• Constraints that you define on partitioned tables apply to the partitioned table as a
whole. You cannot define constraints on the individual parts of the table.

Check Constraints

Check constraints allow you to specify that the value in a certain column must satisfy
a Boolean (truth-value) expression. For example, to require positive product prices:

=> CREATE TABLE products
 (product_no integer,
Creating and Managing Tables 37

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
 name text,
 price numeric CHECK (price > 0));

Not-Null Constraints

Not-null constraints specify that a column must not assume the null value. A not-null
constraint is always written as a column constraint. For example:

=> CREATE TABLE products
 (product_no integer NOT NULL,
 name text NOT NULL,
 price numeric);

Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is
unique with respect to all the rows in the table. The table must be hash-distributed (not
DISTRIBUTED RANDOMLY), and the constraint columns must be the same as (or a
superset of) the table’s distribution key columns. For example:

=> CREATE TABLE products
 (product_no integer UNIQUE,
 name text,
 price numeric)

 DISTRIBUTED BY (product_no);

Primary Keys

A primary key constraint is a combination of a UNIQUE constraint and a NOT NULL
constraint. The table must be hash-distributed (not DISTRIBUTED RANDOMLY), and the
primary key columns must be the same as (or a superset of) the table’s distribution key
columns. If a table has a primary key, this column (or group of columns) is chosen as
the distribution key for the table by default. For example:

=> CREATE TABLE products
 (product_no integer PRIMARY KEY,
 name text,
 price numeric)

 DISTRIBUTED BY (product_no);

Foreign Keys

Foreign keys are not supported. You can declare them, but referential integrity is not
enforced.

Foreign key constraints specify that the values in a column or a group of columns
must match the values appearing in some row of another table to maintain referential
integrity between two related tables. Referential integrity checks cannot be enforced
between the distributed table segments of a Greenplum database.

Choosing the Table Distribution Policy
All Greenplum Database tables are distributed. When you create or alter a table, you
optionally specify DISTRIBUTED BY (hash distribution) or DISTRIBUTED RANDOMLY
(round-robin distribution) to determine the table row distribution.

Consider the following points when deciding on a table distribution policy.
Creating and Managing Tables 38

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
• Even Data Distribution — For the best possible performance, all segments
should contain equal portions of data. If the data is unbalanced or skewed, the
segments with more data must work harder to perform their portion of the query
processing. Choose a distribution key that is unique for each record, such as the
primary key.

• Local and Distributed Operations — Local operations are faster than
distributed operations. Query processing is fastest if the work associated with join,
sort, or aggregation operations is done locally, at the segment-level. Work done at
the system-level requires distributing tuples across the segments, which is less
efficient. When tables share a common distribution key, the work of joining or
sorting on their shared distribution key columns is done locally. With a random
distribution policy, local join operations are not an option.

• Even Query Processing — For best performance, all segments should handle an
equal share of the query workload. Query workload can be skewed if a table’s data
distribution policy and the query predicates are not well matched. For example,
suppose that a sales transactions table is distributed based on a column that
contains corporate names (the distribution key), and the hashing algorithm
distributes the data based on those values. If a predicate in a query references a
single value from the distribution key, query processing runs on only one segment.
This works if your query predicates usually select data on a criteria other than
corporation name. For queries that use corporation name in their predicates, it’s
possible that only one segment instance will handle the query workload.

Declaring Distribution Keys

CREATE TABLE’s optional clauses DISTRIBUTED BY and DISTRIBUTED RANDOMLY
specify the distribution policy for a table. The default is a hash distribution policy that
uses either the PRIMARY KEY (if the table has one) or the first column of the table as
the distribution key. Columns with geometric or user-defined data types are not
eligible as Greenplum distribution key columns. If a table does not have an eligible
column, Greenplum distributes the rows randomly or in round-robin fashion.

To ensure even distribution of data, choose a distribution key that is unique for each
record. If that is not possible, choose DISTRIBUTED RANDOMLY. For example:

=> CREATE TABLE products
 (name varchar(40),
 prod_id integer,
 supplier_id integer)
 DISTRIBUTED BY (prod_id);

=> CREATE TABLE random_stuff
 (things text,
 doodads text,
 etc text)
 DISTRIBUTED RANDOMLY;

Choosing the Table Storage Model
Greenplum Database supports several storage models and a mix of storage models.
When you create a table, you choose how to store its data. This section explains the
options for table storage and how to choose the best storage model for your workload.
Choosing the Table Storage Model 39

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
• Heap Storage

• Append-Optimized Storage

• Choosing Row or Column-Oriented Storage

• Using Compression (Append-Optimized Tables Only)

• Checking the Compression and Distribution of an Append-Optimized Table

Heap Storage
By default, Greenplum Database uses the same heap storage model as PostgreSQL.
Heap table storage works best with OLTP-type workloads where the data is often
modified after it is initially loaded. UPDATE and DELETE operations require storing
row-level versioning information to ensure reliable database transaction processing.
Heap tables are best suited for smaller tables, such as dimension tables, that are often
updated after they are initially loaded.

Append-Optimized Storage
Append-optimized table storage works best with denormalized fact tables in a data
warehouse environment. Denormalized fact tables are typically the largest tables in
the system. Fact tables are usually loaded in batches and accessed by read-only
queries. Moving large fact tables to an append-optimized storage model eliminates the
storage overhead of the per-row update visibility information, saving about 20 bytes
per row. This allows for a leaner and easier-to-optimize page structure. The storage
model of append-optimized tables is optimized for bulk data loading. Single row
INSERT statements are not recommended.

To create a heap table

Row-oriented heap tables are the default storage type.

=> CREATE TABLE foo (a int, b text) DISTRIBUTED BY (a);

To create an append-optimized table

Use the WITH clause of the CREATE TABLE command to declare the table storage
options. The default is to create the table as a regular row-oriented heap-storage table.
For example, to create an append-optimized table with no compression:

=> CREATE TABLE bar (a int, b text)

 WITH (appendonly=true)

 DISTRIBUTED BY (a);

UPDATE and DELETE are not allowed on append-optimized tables in a serializable
transaction and will cause the transaction to abort. CLUSTER, DECLARE...FOR
UPDATE, and triggers are not supported with append-optimized tables.
Choosing the Table Storage Model 40

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
Choosing Row or Column-Oriented Storage
Greenplum provides a choice of storage orientation models: row, column, or a
combination of both. This section provides general guidelines for choosing the
optimum storage orientation for a table. Evaluate performance using your own data
and query workloads.

• Row-oriented storage: good for OLTP types of workloads with many interative
transactions and many columns of a single row needed all at once, so retrieving is
efficient.

• Column-oriented storage: good for data warehouse workloads with aggregations
of data computed over a small number of columns, or for single columns that
require regular updates without modifying other column data.

For most general purpose or mixed workloads, row-oriented storage offers the best
combination of flexibility and performance. However, there are use cases where a
column-oriented storage model provides more efficient I/O and storage. Consider the
following requirements when deciding on the storage orientation model for a table:

• Updates of table data. If you load and update the table data frequently, choose a
row-oriented heap table. Column-oriented table storage is only available on
append-optimized tables. See “Heap Storage” on page 40 for more information.

• Frequent INSERTs. If rows are frequently inserted into the table, consider a
row-oriented model. Column-oriented tables are not optimized for write
operations, as column values for a row must be written to different places on disk.

• Number of columns requested in queries. If you typically request all or the
majority of columns in the SELECT list or WHERE clause of your queries, consider a
row-oriented model. Column-oriented tables are best suited to queries that
aggregate many values of a single column where the WHERE or HAVING predicate
is also on the aggregate column. For example:

SELECT SUM(salary)...

SELECT AVG(salary)... WHERE salary > 10000

Or where the WHERE predicate is on a single column and returns a relatively small
number of rows. For example:

SELECT salary, dept ... WHERE state='CA'

• Number of columns in the table. Row-oriented storage is more efficient when
many columns are required at the same time, or when the row-size of a table is
relatively small. Column-oriented tables can offer better query performance on
tables with many columns where you access a small subset of columns in your
queries.

• Compression. Column data has the same data type, so storage size optimizations
are available in column-oriented data that are not available in row-oriented data.
For example, many compression schemes use the similarity of adjacent data to
compress. However, the greater adjacent compression achieved, the more difficult
random access can become, as data must be uncompressed to be read.
Choosing the Table Storage Model 41

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
To create a column-oriented table

The WITH clause of the CREATE TABLE command specifies the table’s storage options.
The default is a row-oriented heap table. Tables that use column-oriented storage must
be append-optimized tables. For example, to create a column-oriented table:

=> CREATE TABLE bar (a int, b text)

 WITH (appendonly=true, orientation=column)

 DISTRIBUTED BY (a);

Using Compression (Append-Optimized Tables Only)
There are two types of in-database compression available in the Greenplum Database
for append-optimized tables:

• Table-level compression is applied to an entire table.

• Column-level compression is applied to a specific column. You can apply
different column-level compression algorithms to different columns.

The following table summarizes the available compression algorithms.

Table 5.1 Compression Algorithms for Append-Optimized Tables

Table Orientation Available Compression
Types

Supported
Algorithms

Row Table ZLIB and QUICKLZ

Column Column and Table RLE_TYPE, ZLIB, and
QUICKLZ

When choosing a compression type and level for append-optimized tables, consider
these factors:

• CPU usage. Your segment systems must have the available CPU power to
compress and uncompress the data.

• Compression ratio/disk size. Minimizing disk size is one factor, but also consider
the time and CPU capacity required to compress and scan data. Find the optimal
settings for efficiently compressing data without causing excessively long
compression times or slow scan rates.

• Speed of compression. QuickLZ compression generally uses less CPU capacity
and compresses data faster at a lower compression ratio than zlib. zlib provides
higher compression ratios at lower speeds.
For example, at compression level 1 (compresslevel=1), QuickLZ and zlib
have comparable compression ratios, though at different speeds. Using zlib with
compresslevel=6 can significantly increase the compression ratio compared to
QuickLZ, though with lower compression speed.

• Speed of decompression/scan rate. Performance with compressed
append-optimized tables depends on hardware, query tuning settings, and other
factors. Perform comparison testing to determine the actual performance in your
environment.
Choosing the Table Storage Model 42

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
Note: Do not use compressed append-optimized tables on file systems that use
compression. If the file system on which your segment data directory resides is a
compressed file system, your append-optimized table must not use compression.

Performance with compressed append-optimized tables depends on hardware, query
tuning settings, and other factors. Greenplum recommends performing comparison
testing to determine the actual performance in your environment.

Note: QuickLZ compression level can only be set to level 1; no other options are
available. Compression level with zlib can be set at any value from 1 - 9.
Note: When an ENCODING clause conflicts with a WITH clause, the ENCODING clause
has higher precedence than the WITH clause.

To create a compressed table

The WITH clause of the CREATE TABLE command declares the table storage options.
Tables that use compression must be append-optimized tables. For example, to create
an append-optimized table with zlib compression at a compression level of 5:

=> CREATE TABLE foo (a int, b text)

 WITH (appendonly=true, compresstype=zlib,

 compresslevel=5);

Checking the Compression and Distribution of an
Append-Optimized Table
Greenplum provides built-in functions to check the compression ratio and the
distribution of an append-optimized table. The functions take either the object ID or a
table name. You can qualify the table name with a schema name.

Table 5.2 Functions for compressed append-optimized table metadata

Function Return Type Description

get_ao_distribution(name)

get_ao_distribution(oid)

Set of (dbid,
tuplecount) rows

Shows the distribution of an
append-optimized table’s rows across the
array. Returns a set of rows, each of which
includes a segment dbid and the number of
tuples stored on the segment.

get_ao_compression_ratio(name)

get_ao_compression_ratio(oid)

float8 Calculates the compression ratio for a
compressed append-optimized table. If
information is not available, this function
returns a value of -1.

The compression ratio is returned as a common ratio. For example, a returned value of
3.19, or 3.19:1, means that the uncompressed table is slightly larger than three times
the size of the compressed table.

The distribution of the table is returned as a set of rows that indicate how many tuples
are stored on each segment. For example, in a system with four primary segments with
dbid values ranging from 0 - 3, the function returns four rows similar to the following:

=# SELECT get_ao_distribution('lineitem_comp');

 get_ao_distribution

(0,7500721)
Choosing the Table Storage Model 43

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
(1,7501365)

(2,7499978)

(3,7497731)

(4 rows)

Support for Run-length Encoding
Greenplum Database supports Run-length Encoding (RLE) for column-level
compression. RLE data compression stores repeated data as a single data value and a
count. For example, in a table with two columns, a date and a description, that
contains 200,000 entries containing the value date1 and 400,000 entries containing
the value date2, RLE compression for the date field is similar to
date1 200000 date2 400000. RLE is not useful with files that do not have large
sets of repeated data as it can greatly increase the file size.

There are four levels of RLE compression available.The levels progressively increase
the compression ratio, but decrease the compression speed.

Greenplum Database versions 4.2.1 and later support column-oriented RLE
compression. To backup a table with RLE compression and restore it to an earlier
version of Greenplum Database, alter the table to have no compression or a
compression type supported in the earlier version (ZLIB or QUICKLZ) before you start
the backup operation.

Adding Column-level Compression
You can add the following storage directives to a column for append-optimized tables
with row or column orientation:

• Compression type

• Compression level

• Block size for a column

Add storage directives using the CREATE TABLE, ALTER TABLE, and CREATE TYPE
commands.

The following table details the types of storage directives and possible values for each.

Table 5.3 Storage Directives for Column-level Compression

Name Definition Values Comment

COMPRESSTYPE Type of compression. • zlib: deflate algorithm
• quicklz: (ast compression
• RLE_TYPE: run-length encoding
• none: no compression

Values are not case-sensitive.
Choosing the Table Storage Model 44

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
The following is the format for adding storage directives.

[ENCODING (storage_directive [,…])]

where the word ENCODING is required and the storage directive has three parts:

• The name of the directive

• An equals sign

• The specification

Separate multiple storage directives with a comma. Apply a storage directive to a
single column or designate it as the default for all columns, as shown in the following
CREATE TABLE clauses.

General Usage:

column_name data_type ENCODING (storage_directive [, …]), …

COLUMN column_name ENCODING (storage_directive [, …]), …

DEFAULT COLUMN ENCODING (storage_directive [, …])

Example:

C1 char ENCODING (compresstype=quicklz, blocksize=65536)

COLUMN C1 ENCODING (compresstype=quicklz, blocksize=65536)

DEFAULT COLUMN ENCODING (compresstype=quicklz)

Default Compression Values

If the compression type, compression level and block size are not defined, the default
is no compression , and the block size is set to the Server Configuration Parameter
block_size.

COMPRESSLEVEL Compression level. zlib compression: 1-9 1 is the fastest method with the
least compression. 1 is the
default.

9 is the slowest method with
the most compression.

QuickLZ compression:

1 – use compression

1 is the default.

RLE_TYPE compression: 1 – 4

• 1 - apply RLE only
• 2 - apply RLE then apply zlib

compression level 1
• 3 - apply RLE then apply zlib

compression level 5
• 4 - apply RLE then apply zlib

compression level 9

1 is the fastest method with the
least compression.

4 is the slowest method with

the most compression. 1 is the
default.

BLOCKSIZE The size in bytes for
each block in the table

8192 – 2097152 The value must be a multiple of
8192.

Table 5.3 Storage Directives for Column-level Compression

Name Definition Values Comment
Choosing the Table Storage Model 45

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
Precedence of Compression Settings

Column compression settings are inherited from the table level to the partition level to
the subpartition level. The lowest-level settings have priority.

• Column compression settings specified for subpartitions override any
compression settings at the partition, column or table levels.

• Column compression settings specified for partitions override any compression
settings at the column or table levels.

• Column compression settings specified at the table level override any
compression settings for the entire table.

• When an ENCODING clause conflicts with a WITH clause, the ENCODING clause has
higher precedence than the WITH clause.

Note: The INHERITS clause is not allowed in a table that contains a storage directive
or a column reference storage directive.
Tables created using the LIKE clause ignore storage directive and column reference
storage directives.

Optimal Location for Column Compression Settings

The best practice is to set the column compression settings at the level where the data
resides. See “Example 5” on page 47, which shows a table with a partition depth of 2.
RLE_TYPE compression is added to a column at the subpartition level.

Storage Directives Examples

The following examples show the use of storage directives in CREATE TABLE
statements.

Example 1

In this example, column c1 is compressed using zlib and uses the block size defined
by the system. Column c2 is compressed with quicklz, and uses a block size of
65536. Column c3 is not compressed and uses the block size defined by the system.

CREATE TABLE T1 (c1 int ENCODING (compresstype=zlib),
 c2 char ENCODING (compresstype=quicklz, blocksize=65536),

 c3 char)
 WITH (appendonly=true, orientation=column);

Example 2

In this example, column c1 is compressed using zlib and uses the block size defined
by the system. Column c2 is compressed with quicklz, and uses a block size of
65536. Column c3 is compressed using RLE_TYPE and uses the block size defined by
the system.

CREATE TABLE T2 (c1 int ENCODING (compresstype=zlib),
 c2 char ENCODING (compresstype=quicklz, blocksize=65536),
 c3 char,
 COLUMN c3 ENCODING (RLE_TYPE)
)
 WITH (appendonly=true, orientation=column)
Choosing the Table Storage Model 46

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
Example 3

In this example, column c1 is compressed using zlib and uses the block size defined
by the system. Column c2 is compressed with quicklz, and uses a block size of
65536. Column c3 is compressed using zlib and uses the block size defined by the
system. Note that column c3 uses zlib (not RLE_TYPE) in the partitions, because the
column storage in the partition clause has precedence over the storage directive in the
column definition for the table.

CREATE TABLE T3 (c1 int ENCODING (compresstype=zlib),
 c2 char ENCODING (compresstype=quicklz, blocksize=65536),
 c3 char,
COLUMN c3 ENCODING (compresstype=RLE_TYPE)
)
 WITH (appendonly=true, orientation=column)
 PARTITION BY RANGE (c3) (START ('1900-01-01'::DATE)
 END ('2100-12-31'::DATE),
 COLUMN c3 ENCODING (zlib));

Example 4

In this example, CREATE TABLE assigns a storage directive to c1. Column c2 has no
storage directive and inherits the compression type (quicklz) and block size (65536)
from the DEFAULT COLUMN ENCODING clause.

Column c3’s ENCODING clause defines its compression type, RLE_TYPE. The DEFAULT
COLUMN ENCODING clause defines c3’s block size, 65536.

The ENCODING clause defined for a specific column overrides the DEFAULT ENCODING
clause, so column c4 has a compress type of none and the default block size.

CREATE TABLE T4 (c1 int ENCODING (compresstype=zlib),
 c2 char,
 c3 char,
 c4 smallint ENCODING (compresstype=none),
 DEFAULT COLUMN ENCODING (compresstype=quicklz,
 blocksize=65536),
 COLUMN c3 ENCODING (compresstype=RLE_TYPE)
)
 WITH (appendonly=true, orientation=column);

Example 5

This example creates an append-optimized, column-oriented table, T5. T5 has two
partitions, p1 and p2, each of which has subpartitions. Each subpartition has
ENCODING clauses:

• The ENCODING clause for partition p1’s subpartition sp1 defines column i’s
compression type as zlib and block size as 65536.

• The ENCODING clauses for partition p2’s subpartition sp1 defines column i’s
compression type as rle_type and block size is the default value. Column k uses
the default compression and its block size is 8192.

create table T5(i int, j int, k int, l int)
with (appendonly=true, orientation=column)

partition by range(i) subpartition by range(j)

(

 partition p1 start(1) end(2)
Choosing the Table Storage Model 47

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
(subpartition sp1 start(1) end(2)

 column i encoding(compresstype=zlib, blocksize=65536)

),

 partition p2 start(2) end(3)

 (subpartition sp1 start(1) end(2)

 column i encoding(compresstype=rle_type)

 column k encoding(blocksize=8192)

)

);

For an example showing how to add a compressed column to an existing table with
the ALTER TABLE command, see “Adding a Compressed Column to Table” on page
50.

Adding Compression in a TYPE Command

You can define a compression type to simplify column compression statements. For
example, the following CREATE TYPE command defines a compression type,
comptype, that specifies quicklz compression.

where comptype is defined as:

CREATE TYPE comptype (
 internallength = 4,
 input = comptype_in,
 output = comptype_out,
 alignment = int4,
 default = 123,
 passedbyvalue,
 compresstype="quicklz",
 blocksize=65536,
 compresslevel=1
);

You can then use comptype in a CREATE TABLE command to specify quicklz
compression for a column:

CREATE TABLE t2 (c1 comptype)
 WITH (APPENDONLY=true, ORIENTATION=column);

For information about creating and adding compression parameters to a type, see
CREATE TYPE. For information about changing compression specifications in a type,
see ALTER TYPE.

Choosing Block Size

The blocksize is the size, in bytes, for each block in a table. Block sizes must be
between 8192 and 2097152 bytes, and be a multiple of 8192. The default is 32768.

Specifying large block sizes can consume large amounts of memory. Block size
determines buffering in the storage layer. Greenplum maintains a buffer per partition,
and per column in column-oriented tables. Tables with many partitions or columns
consume large amounts of memory.
Choosing the Table Storage Model 48

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
Altering a Table
The ALTER TABLE command changes the definition of a table. Use ALTER TABLE to
change table attributes such as column definitions, distribution policy, storage model,
and partition structure (see also “Maintaining Partitioned Tables” on page 58). For
example, to add a not-null constraint to a table column:

=> ALTER TABLE address ALTER COLUMN street SET NOT NULL;

Altering Table Distribution
ALTER TABLE provides options to change a table’s distribution policy . When the table
distribution options change, the table data is redistributed on disk, which can be
resource intensive. You can also redistribute table data using the existing distribution
policy.

Changing the Distribution Policy
For partitioned tables, changes to the distribution policy apply recursively to the child
partitions. This operation preserves the ownership and all other attributes of the table.
For example, the following command redistributes the table sales across all
segments using the customer_id column as the distribution key:

ALTER TABLE sales SET DISTRIBUTED BY (customer_id);

When you change the hash distribution of a table, table data is automatically
redistributed. Changing the distribution policy to a random distribution does not cause
the data to be redistributed. For example:

ALTER TABLE sales SET DISTRIBUTED RANDOMLY;

Redistributing Table Data
To redistribute table data for tables with a random distribution policy (or when the
hash distribution policy has not changed) use REORGANIZE=TRUE. Reorganizing data
may be necessary to correct a data skew problem, or when segment resources are
added to the system. For example, the following command redistributes table data
across all segments using the current distribution policy, including random
distribution.

ALTER TABLE sales SET WITH (REORGANIZE=TRUE);

Altering the Table Storage Model
Table storage, compression, and orientation can be declared only at creation. To
change the storage model, you must create a table with the correct storage options,
load the original table data into the new table, drop the original table, and rename the
new table with the original table’s name. You must also re-grant any table
permissions. For example:

CREATE TABLE sales2 (LIKE sales)

WITH (appendonly=true, compresstype=quicklz,
compresslevel=1, orientation=column);

INSERT INTO sales2 SELECT * FROM sales;

DROP TABLE sales;
Choosing the Table Storage Model 49

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
ALTER TABLE sales2 RENAME TO sales;

GRANT ALL PRIVILEGES ON sales TO admin;

GRANT SELECT ON sales TO guest;

See “Exchanging a Partition” on page 60 to learn how to change the storage model of
a partitioned table.

Adding a Compressed Column to Table

Use ALTER TABLE command to add a compressed column to a table. All of the options
and constraints for compressed columns described in “Adding Column-level
Compression” on page 44 apply to columns added with the ALTER TABLE command.

The following example shows how to add a column with zlib compression to a table,
T1.

ALTER TABLE T1
 ADD COLUMN c4 int DEFAULT 0
 ENCODING (COMPRESSTYPE=zlib);

Inheritance of Compression Settings

A partition that is added to a table that has subpartitions with compression settings
inherits the compression settings from the subpartition.The following example shows
how to create a table with subpartition encodings, then alter it to add a partition.

CREATE TABLE ccddl (i int, j int, k int, l int)
 WITH
 (APPENDONLY = TRUE, ORIENTATION=COLUMN)
 PARTITION BY range(j)
 SUBPARTITION BY list (k)
 SUBPARTITION template(
 SUBPARTITION sp1 values(1, 2, 3, 4, 5),
 COLUMN i ENCODING(COMPRESSTYPE=ZLIB),
 COLUMN j ENCODING(COMPRESSTYPE=QUICKLZ),
 COLUMN k ENCODING(COMPRESSTYPE=ZLIB),
 COLUMN l ENCODING(COMPRESSTYPE=ZLIB))
 (PARTITION p1 START(1) END(10),
 PARTITION p2 START(10) END(20))
;

ALTER TABLE ccddl
 ADD PARTITION p3 START(20) END(30)
;

Running the ALTER TABLE command creates partitions of table ccddl named
ccddl_1_prt_p3 and ccddl_1_prt_p3_2_prt_sp1. Partition ccddl_1_prt_p3
inherits the different compression encodings of subpartition sp1.

Dropping a Table
The DROP TABLE command removes tables from the database. For example:

DROP TABLE mytable;

To empty a table of rows without removing the table definition, use DELETE or
TRUNCATE. For example:
Choosing the Table Storage Model 50

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
DELETE FROM mytable;

TRUNCATE mytable;

DROP TABLE always removes any indexes, rules, triggers, and constraints that exist
for the target table. Specify CASCADE to drop a table that is referenced by a view.
CASCADE removes dependent views.

Partitioning Large Tables
Table partitioning enables supporting very large tables, such as fact tables, by
logically dividing them into smaller, more manageable pieces. Partitioned tables can
improve query performance by allowing the Greenplum Database query planner to
scan only the data needed to satisfy a given query instead of scanning all the contents
of a large table.

Partitioning does not change the physical distribution of table data across the
segments. Table distribution is physical: Greenplum Database physicially divides
partitioned tables and non-partitioned tables across segments to enable parallel query
processing. Table partitioning is logical: Greenplum Database logically divides big
tables to improve query performance and facilitate data warehouse maintenance tasks,
such as rolling old data out of the data warehouse.

Greenplum Database supports:

• range partitioning: division of data based on a numerical range, such as date or
price.

• list partitioning: division of data based on a list of values, such as sales territory or
product line.

• A combination of both types.

Figure 5.1 Example Multi-level Partition Design
Partitioning Large Tables 51

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
Table Partitioning in Greenplum Database
Greenplum Database divides tables into parts (also known as partitions) to enable
massively parallel processing. Tables are partitioned during CREATE TABLE using the
PARTITION BY (and optionally the SUBPARTITION BY) clause. When you partition a
table in Greenplum Database, you create a top-level (or parent) table with one or more
levels of sub-tables (or child tables). Internally, Greenplum Database creates an
inheritance relationship between the top-level table and its underlying partitions,
similar to the functionality of the INHERITS clause of PostgreSQL.

Greenplum uses the partition criteria defined during table creation to create each
partition with a distinct CHECK constraint, which limits the data that table can contain.
The query planner uses CHECK constraints to determine which table partitions to scan
to satisfy a given query predicate.

The Greenplum system catalog stores partition hierarchy information so that rows
inserted into the top-level parent table propagate correctly to the child table partitions.
To change the partition design or table structure, alter the parent table using ALTER
TABLE with the PARTITION clause.

Execution of INSERT, UPDATE and DELETE commands directly on a specific partition
(child table) of a partitioned table is not supported. Instead, these commands must be
executed on the root partitioned table, the table created with the CREATE TABLE
command.

Deciding on a Table Partitioning Strategy
Not all tables are good candidates for partitioning. If the answer is yes to all or most of
the following questions, table partitioning is a viable database design strategy for
improving query performance. If the answer is no to most of the following questions,
table partitioning is not the right solution for that table. Test your design strategy to
ensure that query performance improves as expected.

• Is the table large enough? Large fact tables are good candidates for table
partitioning. If you have millions or billions of records in a table, you will see
performance benefits from logically breaking that data up into smaller chunks. For
smaller tables with only a few thousand rows or less, the administrative overhead
of maintaining the partitions will outweigh any performance benefits you might
see.

• Are you experiencing unsatisfactory performance? As with any performance
tuning initiative, a table should be partitioned only if queries against that table are
producing slower response times than desired.

• Do your query predicates have identifiable access patterns? Examine the
WHERE clauses of your query workload and look for table columns that are
consistently used to access data. For example, if most of your queries tend to look
up records by date, then a monthly or weekly date-partitioning design might be
beneficial. Or if you tend to access records by region, consider a list-partitioning
design to divide the table by region.
Partitioning Large Tables 52

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
• Does your data warehouse maintain a window of historical data? Another
consideration for partition design is your organization’s business requirements for
maintaining historical data. For example, your data warehouse may require that
you keep data for the past twelve months. If the data is partitioned by month, you
can easily drop the oldest monthly partition from the warehouse and load current
data into the most recent monthly partition.

• Can the data be divided into somewhat equal parts based on some defining
criteria? Choose partitioning criteria that will divide your data as evenly as
possible. If the partitions contain a relatively equal number of records, query
performance improves based on the number of partitions created. For example, by
dividing a large table into 10 partitions, a query will execute 10 times faster than it
would against the unpartitioned table, provided that the partitions are designed to
support the query’s criteria.

Creating Partitioned Tables
You partition tables when you create them with CREATE TABLE. This section provides
examples of SQL syntax for creating a table with various partition designs.

To partition a table:

1. Decide on the partition design: date range, numeric range, or list of values.

2. Choose the column(s) on which to partition the table.

3. Decide how many levels of partitions you want. For example, you can create a
date range partition table by month and then subpartition the monthly partitions by
sales region.

• Defining Date Range Table Partitions

• Defining Numeric Range Table Partitions

• Defining List Table Partitions

• Defining Multi-level Partitions

• Partitioning an Existing Table

Defining Date Range Table Partitions
A date range partitioned table uses a single date or timestamp column as the
partition key column. You can use the same partition key column to create
subpartitions if necessary, for example, to partition by month and then subpartition by
day. Consider partitioning by the most granular level. For example, for a table
partitioned by date, you can partition by day and have 365 daily partitions, rather than
partition by year then subpartition by month then subpartition by day. A multi-level
design can reduce query planning time, but a flat partition design runs faster.

You can have Greenplum Database automatically generate partitions by giving a
START value, an END value, and an EVERY clause that defines the partition increment
value. By default, START values are always inclusive and END values are always
exclusive. For example:

CREATE TABLE sales (id int, date date, amt decimal(10,2))

DISTRIBUTED BY (id)
Partitioning Large Tables 53

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
PARTITION BY RANGE (date)

(START (date '2008-01-01') INCLUSIVE

 END (date '2009-01-01') EXCLUSIVE

 EVERY (INTERVAL '1 day'));

You can also declare and name each partition individually. For example:

CREATE TABLE sales (id int, date date, amt decimal(10,2))

DISTRIBUTED BY (id)

PARTITION BY RANGE (date)

(PARTITION Jan08 START (date '2008-01-01') INCLUSIVE ,

 PARTITION Feb08 START (date '2008-02-01') INCLUSIVE ,

 PARTITION Mar08 START (date '2008-03-01') INCLUSIVE ,

 PARTITION Apr08 START (date '2008-04-01') INCLUSIVE ,

 PARTITION May08 START (date '2008-05-01') INCLUSIVE ,

 PARTITION Jun08 START (date '2008-06-01') INCLUSIVE ,

 PARTITION Jul08 START (date '2008-07-01') INCLUSIVE ,

 PARTITION Aug08 START (date '2008-08-01') INCLUSIVE ,

 PARTITION Sep08 START (date '2008-09-01') INCLUSIVE ,

 PARTITION Oct08 START (date '2008-10-01') INCLUSIVE ,

 PARTITION Nov08 START (date '2008-11-01') INCLUSIVE ,

 PARTITION Dec08 START (date '2008-12-01') INCLUSIVE

 END (date '2009-01-01') EXCLUSIVE);

You do not have to declare an END value for each partition, only the last one. In this
example, Jan08 ends where Feb08 starts.

Defining Numeric Range Table Partitions
A numeric range partitioned table uses a single numeric data type column as the
partition key column. For example:

CREATE TABLE rank (id int, rank int, year int, gender
char(1), count int)

DISTRIBUTED BY (id)

PARTITION BY RANGE (year)

(START (2001) END (2008) EVERY (1),

 DEFAULT PARTITION extra);

For more information about default partitions, see “Adding a Default Partition” on
page 60.

Defining List Table Partitions
A list partitioned table can use any data type column that allows equality comparisons
as its partition key column. A list partition can also have a multi-column (composite)
partition key, whereas a range partition only allows a single column as the partition
key. For list partitions, you must declare a partition specification for every partition
(list value) you want to create. For example:

CREATE TABLE rank (id int, rank int, year int, gender
Partitioning Large Tables 54

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
char(1), count int)

DISTRIBUTED BY (id)

PARTITION BY LIST (gender)

(PARTITION girls VALUES ('F'),

 PARTITION boys VALUES ('M'),

 DEFAULT PARTITION other);

For more information about default partitions, see “Adding a Default Partition” on
page 60.

Defining Multi-level Partitions
You can create a multi-level partition design with subpartitions of partitions. Using a
subpartition template ensures that every partition has the same subpartition design,
including partitions that you add later. For example, the following SQL creates the
two-level partition design shown in Figure 5.1, “Example Multi-level Partition
Design” on page 51:

CREATE TABLE sales (trans_id int, date date, amount
decimal(9,2), region text)

DISTRIBUTED BY (trans_id)

PARTITION BY RANGE (date)

SUBPARTITION BY LIST (region)

SUBPARTITION TEMPLATE

(SUBPARTITION usa VALUES ('usa'),

 SUBPARTITION asia VALUES ('asia'),

 SUBPARTITION europe VALUES ('europe'),

 DEFAULT SUBPARTITION other_regions)

 (START (date '2011-01-01') INCLUSIVE

 END (date '2012-01-01') EXCLUSIVE

 EVERY (INTERVAL '1 month'),

 DEFAULT PARTITION outlying_dates);

The following example shows a three-level partition design where the sales table is
partitioned by year, then month, then region. The SUBPARTITION TEMPLATE
clauses ensure that each yearly partition has the same subpartition structure. The
example declares a DEFAULT partition at each level of the hierarchy.

CREATE TABLE p3_sales (id int, year int, month int, day int,
region text)

DISTRIBUTED BY (id)

PARTITION BY RANGE (year)

 SUBPARTITION BY RANGE (month)

 SUBPARTITION TEMPLATE (

 START (1) END (13) EVERY (1),

 DEFAULT SUBPARTITION other_months)

 SUBPARTITION BY LIST (region)

 SUBPARTITION TEMPLATE (
Partitioning Large Tables 55

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
 SUBPARTITION usa VALUES ('usa'),

 SUBPARTITION europe VALUES ('europe'),

 SUBPARTITION asia VALUES ('asia'),

 DEFAULT SUBPARTITION other_regions)

(START (2002) END (2012) EVERY (1),

 DEFAULT PARTITION outlying_years);

Partitioning an Existing Table
Tables can be partitioned only at creation. If you have a table that you want to
partition, you must create a partitioned table, load the data from the original table into
the new table, drop the original table, and rename the partitioned table with the
original table’s name. You must also re-grant any table permissions. For example:

CREATE TABLE sales2 (LIKE sales)

PARTITION BY RANGE (date)

(START (date '2008-01-01') INCLUSIVE

 END (date '2009-01-01') EXCLUSIVE

 EVERY (INTERVAL '1 month'));

INSERT INTO sales2 SELECT * FROM sales;

DROP TABLE sales;

ALTER TABLE sales2 RENAME TO sales;

GRANT ALL PRIVILEGES ON sales TO admin;

GRANT SELECT ON sales TO guest;

Limitations of Partitioned Tables
A primary key or unique constraint on a partitioned table must contain all the
partitioning columns. A unique index can omit the partitioning columns; however, it
is enforced only on the parts of the partitioned table, not on the partitioned table as a
whole.

Loading Partitioned Tables
After you create the partitioned table structure, top-level parent tables are empty. Data
is routed to the bottom-level child table partitions. In a multi-level partition design,
only the subpartitions at the bottom of the hierarchy can contain data.

Rows that cannot be mapped to a child table partition are rejected and the load fails.
To avoid unmapped rows being rejected at load time, define your partition hierarchy
with a DEFAULT partition. Any rows that do not match a partition’s CHECK constraints
load into the DEFAULT partition. See“Adding a Default Partition” on page 60.

At runtime, the query planner scans the entire table inheritance hierarchy and uses the
CHECK table constraints to determine which of the child table partitions to scan to
satisfy the query’s conditions. The DEFAULT partition (if your hierarchy has one) is
always scanned. DEFAULT partitions that contain data slow down the overall scan time.

When you use COPY or INSERT to load data into a parent table, the data is
automatically rerouted to the correct partition, just like a regular table.
Partitioning Large Tables 56

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
Best practice for loading data into partitioned tables is to create an intermediate
staging table, load it, and then exchange it into your partition design. See “Exchanging
a Partition” on page 60.

Verifying Your Partition Strategy
When a table is partitioned based on the query predicate, you can use EXPLAIN to
verify that the query planner scans only the relevant data to examine the query plan.

For example, suppose a sales table is date-range partitioned by month and
subpartitioned by region as shown in Figure 5.1, “Example Multi-level Partition
Design” on page 51. For the following query:

EXPLAIN SELECT * FROM sales WHERE date='01-07-12' AND
region='usa';

The query plan for this query should show a table scan of only the following tables:

• the default partition returning 0-1 rows (if your partition design has one)

• the January 2012 partition (sales_1_prt_1) returning 0-1 rows

• the USA region subpartition (sales_1_2_prt_usa) returning some number of rows.

The following example shows the relevant portion of the query plan.

-> Seq Scan on sales_1_prt_1 sales (cost=0.00..0.00 rows=0
 width=0)

Filter: "date"=01-07-08::date AND region='USA'::text

-> Seq Scan on sales_1_2_prt_usa sales (cost=0.00..9.87
rows=20
 width=40)

Ensure that the query planner does not scan unnecessary partitions or subpartitions
(for example, scans of months or regions not specified in the query predicate), and that
scans of the top-level tables return 0-1 rows.

Troubleshooting Selective Partition Scanning
The following limitations can result in a query plan that shows a non-selective scan of
your partition hierarchy.

• The query planner can selectively scan partitioned tables only when the query
contains a direct and simple restriction of the table using immutable operators
such as:
= < <= > >= <>

• Selective scanning recognizes STABLE and IMMUTABLE functions, but does not
recognize VOLATILE functions within a query. For example, WHERE clauses such
as date > CURRENT_DATE cause the query planner to selectively scan partitioned
tables, but time > TIMEOFDAY does not.

Viewing Your Partition Design
You can look up information about your partition design using the pg_partitions view.
For example, to see the partition design of the sales table:

SELECT partitionboundary, partitiontablename, partitionname,
Partitioning Large Tables 57

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
partitionlevel, partitionrank FROM pg_partitions WHERE
tablename='sales';

The following table and views show information about partitioned tables.

• pg_partition - Tracks partitioned tables and their inheritance level relationships.

• pg_partition_templates - Shows the subpartitions created using a subpartition
template.

• pg_partition_columns - Shows the partition key columns used in a partition
design.

For information about Greenplum Database system catalog tables and views, see the
Greenplum Database Reference Guide.

Maintaining Partitioned Tables
To maintain a partitioned table, use the ALTER TABLE command against the top-level
parent table. The most common scenario is to drop old partitions and add new ones to
maintain a rolling window of data in a range partition design. You can convert
(exchange) older partitions to the append-optimized compressed storage format to
save space. If you have a default partition in your partition design, you add a partition
by splitting the default partition.

• Adding a Partition

• Renaming a Partition

• Adding a Default Partition

• Dropping a Partition

• Truncating a Partition

• Exchanging a Partition

• Splitting a Partition

• Modifying a Subpartition Template
Important: When defining and altering partition designs, use the given partition
name, not the table object name. Although you can query and load any table
(including partitioned tables) directly using SQL commands, you can only modify the
structure of a partitioned table using the ALTER TABLE...PARTITION clauses.
Partitions are not required to have names. If a partition does not have a name, use one
of the following expressions to specify a part: PARTITION FOR (value) or
PARTITION FOR(RANK(number)).

Adding a Partition
You can add a partition to a partition design with the ALTER TABLE command. If the
original partition design included subpartitions defined by a subpartition template, the
newly added partition is subpartitioned according to that template. For example:

ALTER TABLE sales ADD PARTITION

 START (date '2009-02-01') INCLUSIVE

 END (date '2009-03-01') EXCLUSIVE;

If you did not use a subpartition template when you created the table, you define
subpartitions when adding a partition:
Partitioning Large Tables 58

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
ALTER TABLE sales ADD PARTITION

 START (date '2009-02-01') INCLUSIVE

 END (date '2009-03-01') EXCLUSIVE

 (SUBPARTITION usa VALUES ('usa'),
 SUBPARTITION asia VALUES ('asia'),
 SUBPARTITION europe VALUES ('europe'));

When you add a subpartition to an existing partition, you can specify the partition to
alter. For example:

ALTER TABLE sales ALTER PARTITION FOR (RANK(12))

 ADD PARTITION africa VALUES ('africa');

Note: You cannot add a partition to a partition design that has a default partition. You
must split the default partition to add a partition. See “Splitting a Partition” on page
61.

Renaming a Partition
Partitioned tables use the following naming convention. Partitioned subtable names
are subject to uniqueness requirements and length limitations.

<parentname>_<level>_prt_<partition_name>

For example:

sales_1_prt_jan08

For auto-generated range partitions, where a number is assigned when no name is
given):

sales_1_prt_1

To rename a partitioned child table, rename the top-level parent table. The
<parentname> changes in the table names of all associated child table partitions. For
example, the following command:

ALTER TABLE sales RENAME TO globalsales;

Changes the associated table names:

globalsales_1_prt_1

You can change the name of a partition to make it easier to identify. For example:

ALTER TABLE sales RENAME PARTITION FOR ('2008-01-01') TO
jan08;

Changes the associated table name as follows:

sales_1_prt_jan08

When altering partitioned tables with the ALTER TABLE command, always refer to the
tables by their partition name (jan08) and not their full table name
(sales_1_prt_jan08).

Note: The table name cannot be a partition name in an ALTER TABLE statement. For
example, ALTER TABLE sales... is correct,
ALTER TABLE sales_1_part_jan08... is not allowed.
Partitioning Large Tables 59

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
Adding a Default Partition
You can add a default partition to a partition design with the ALTER TABLE command.

ALTER TABLE sales ADD DEFAULT PARTITION other;

If your partition design is multi-level, each level in the hierarchy must have a default
partition. For example:

ALTER TABLE sales ALTER PARTITION FOR (RANK(1)) ADD DEFAULT
PARTITION other;

ALTER TABLE sales ALTER PARTITION FOR (RANK(2)) ADD DEFAULT
PARTITION other;

ALTER TABLE sales ALTER PARTITION FOR (RANK(3)) ADD DEFAULT
PARTITION other;

If incoming data does not match a partition’s CHECK constraint and there is no default
partition, the data is rejected. Default partitions ensure that incoming data that does
not match a partition is inserted into the default partition.

Dropping a Partition
You can drop a partition from your partition design using the ALTER TABLE command.
When you drop a partition that has subpartitions, the subpartitions (and all data in
them) are automatically dropped as well. For range partitions, it is common to drop
the older partitions from the range as old data is rolled out of the data warehouse. For
example:

ALTER TABLE sales DROP PARTITION FOR (RANK(1));

Truncating a Partition
You can truncate a partition using the ALTER TABLE command. When you truncate a
partition that has subpartitions, the subpartitions are automatically truncated as well.

ALTER TABLE sales TRUNCATE PARTITION FOR (RANK(1));

Exchanging a Partition
You can exchange a partition using the ALTER TABLE command. Exchanging a
partition swaps one table in place of an existing partition. You can exchange partitions
only at the lowest level of your partition hierarchy (only partitions that contain data
can be exchanged).

Partition exchange can be useful for data loading. For example, load a staging table
and swap the loaded table into your partition design. You can use partition exchange to
change the storage type of older partitions to append-optimized tables. For example:

CREATE TABLE jan12 (LIKE sales) WITH (appendonly=true);

INSERT INTO jan12 SELECT * FROM sales_1_prt_1 ;

ALTER TABLE sales EXCHANGE PARTITION FOR (DATE '2012-01-01')
WITH TABLE jan12;

Note: This example refers to the single-level definition of the table sales, before
partitions were added and altered in the previous examples.
Partitioning Large Tables 60

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
Splitting a Partition
Splitting a partition divides a partition into two partitions. You can split a partition
using the ALTER TABLE command. You can split partitions only at the lowest level of
your partition hierarchy: only partitions that contain data can be split. The split value
you specify goes into the latter partition.

For example, to split a monthly partition into two with the first partition containing
dates January 1-15 and the second partition containing dates January 16-31:

ALTER TABLE sales SPLIT PARTITION FOR ('2008-01-01')

AT ('2008-01-16')

INTO (PARTITION jan081to15, PARTITION jan0816to31);

If your partition design has a default partition, you must split the default partition to
add a partition.

When using the INTO clause, specify the current default partition as the second
partition name. For example, to split a default range partition to add a new monthly
partition for January 2009:

ALTER TABLE sales SPLIT DEFAULT PARTITION

START ('2009-01-01') INCLUSIVE

END ('2009-02-01') EXCLUSIVE

INTO (PARTITION jan09, default partition);

Modifying a Subpartition Template
Use ALTER TABLE SET SUBPARTITION TEMPLATE to modify the subpartition
template for an existing partition. Partitions added after you set a new subpartition
template have the new partition design. Existing partitions are not modified.

For example, to modify the subpartition design shown in Figure 5.1, “Example
Multi-level Partition Design” on page 51:

ALTER TABLE sales SET SUBPARTITION TEMPLATE

(SUBPARTITION usa VALUES ('usa'),
 SUBPARTITION asia VALUES ('asia'),
 SUBPARTITION europe VALUES ('europe'),
 SUBPARTITION africa VALUES ('africa')
 DEFAULT SUBPARTITION other);

When you add a date-range partition of the table sales, it includes the new regional
list subpartition for Africa. For example, the following command creates the
subpartitions usa, asia, europe, africa, and a default partition named other:

ALTER TABLE sales ADD PARTITION sales_prt_3
 START ('2009-03-01') INCLUSIVE
 END ('2009-04-01') EXCLUSIVE);

To remove a subpartition template, use SET SUBPARTITION TEMPLATE with empty
parentheses. For example, to clear the sales table subpartition template:

ALTER TABLE sales SET SUBPARTITION TEMPLATE ()
Partitioning Large Tables 61

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
Creating and Using Sequences
You can use sequences to auto-increment unique ID columns of a table whenever a
record is added. Sequences are often used to assign unique identification numbers to
rows added to a table. You can declare an identifier column of type SERIAL to
implicitly create a sequence for use with a column.

Creating a Sequence
The CREATE SEQUENCE command creates and initializes a special single-row
sequence generator table with the given sequence name. The sequence name must be
distinct from the name of any other sequence, table, index, or view in the same
schema. For example:

CREATE SEQUENCE myserial START 101;

Using a Sequence
After you create a sequence generator table using CREATE SEQUENCE, you can use the
nextval function to operate on the sequence. For example, to insert a row into a table
that gets the next value of a sequence:

INSERT INTO vendors VALUES (nextval('myserial'), 'acme');

You can also use the setval function to reset a sequence’s counter value. For
example:

SELECT setval('myserial', 201);

A nextval operation is never rolled back. Afetched value is considered used, even if
the transaction that performed the nextval fails. This means that failed transactions
can leave unused holes in the sequence of assigned values. setval operations are
never rolled back.

Note that the nextval function is not allowed in UPDATE or DELETE statements if
mirroring is enabled, and the currval and lastval functions are not supported in
Greenplum Database.

To examine the current settings of a sequence, query the sequence table:

SELECT * FROM myserial;

Altering a Sequence
The ALTER SEQUENCE command changes the parameters of an existing sequence
generator. For example:

ALTER SEQUENCE myserial RESTART WITH 105;

Any parameters not set in the ALTER SEQUENCE command retain their prior settings.

Dropping a Sequence
The DROP SEQUENCE command removes a sequence generator table. For example:
Creating and Using Sequences 62

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
DROP SEQUENCE myserial;

Using Indexes in Greenplum Database
In most traditional databases, indexes can greatly improve data access times.
However, in a distributed database such as Greenplum, indexes should be used more
sparingly. Greenplum Database performs very fast sequential scans; indexes use a
random seek pattern to locate records on disk. Greenplum data is distributed across the
segments, so each segment scans a smaller portion of the overall data to get the result.
With table partitioning, the total data to scan may be even smaller. Because business
intelligence (BI) query workloads generally return very large data sets, using indexes
is not efficient.

Greenplum recommends trying your query workload without adding indexes. Indexes
are more likely to improve performance for OLTP workloads, where the query is
returning a single record or a small subset of data. Indexes can also improve
performance on compressed append-optimized tables for queries that return a targeted
set of rows, as the optimizer can use an index access method rather than a full table
scan when appropriate. For compressed data, an index access method means only the
necessary rows are uncompressed.

Greenplum Database automatically creates PRIMARY KEY constraints for tables with
primary keys. To create an index on a partitioned table, index each partitioned child
table. Indexes on the parent table do not apply to child table partitions.

Note that a UNIQUE CONSTRAINT (such as a PRIMARY KEY CONSTRAINT) implicitly
creates a UNIQUE INDEX that must include all the columns of the distribution key and
any partitioning key. The UNIQUE CONSTRAINT is enforced across the entire table,
including all table partitions (if any).

Indexes add some database overhead — they use storage space and must be
maintained when the table is updated. Ensure that the query workload uses the indexes
that you create, and check that the indexes you add improve query performance (as
compared to a sequential scan of the table). To determine whether indexes are being
used, examine the query EXPLAIN plans. See “Query Profiling” on page 159.

Consider the following points when you create indexes.

• Your Query Workload. Indexes improve performance for workloads where
queries return a single record or a very small data set, such as OLTP workloads.

• Compressed Tables. Indexes can improve performance on compressed
append-optimized tables for queries that return a targeted set of rows. For
compressed data, an index access method means only the necessary rows are
uncompressed.

• Avoid indexes on frequently updated columns. Creating an index on a column
that is frequently updated increases the number of writes required when the
column is updated.
Using Indexes in Greenplum Database 63

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
• Create selective B-tree indexes. Index selectivity is a ratio of the number of
distinct values a column has divided by the number of rows in a table. For
example, if a table has 1000 rows and a column has 800 distinct values, the
selectivity of the index is 0.8, which is considered good. Unique indexes always
have a selectivity ratio of 1.0, which is the best possible. Greenplum Database
allows unique indexes only on distribution key columns.

• Use Bitmap indexes for low selectivity columns. The Greenplum Database
Bitmap index type is not available in regular PostgreSQL. See “About Bitmap
Indexes” on page 65.

• Index columns used in joins. An index on a column used for frequent joins (such
as a foreign key column) can improve join performance by enabling more join
methods for the query planner to use.

• Index columns frequently used in predicates. Columns that are frequently
referenced in WHERE clauses are good candidates for indexes.

• Avoid overlapping indexes. Indexes that have the same leading column are
redundant.

• Drop indexes for bulk loads. For mass loads of data into a table, consider
dropping the indexes and re-creating them after the load completes. This is often
faster than updating the indexes.

• Consider a clustered index. Clustering an index means that the records are
physically ordered on disk according to the index. If the records you need are
distributed randomly on disk, the database has to seek across the disk to fetch the
records requested. If the records are stored close together, the fetching operation is
more efficient. For example, a clustered index on a date column where the data is
ordered sequentially by date. A query against a specific date range results in an
ordered fetch from the disk, which leverages fast sequential access.

To cluster an index in Greenplum Database
Using the CLUSTER command to physically reorder a table based on an index can
take a long time with very large tables. To achieve the same results much faster,
you can manually reorder the data on disk by creating an intermediate table and
loading the data in the desired order. For example:

CREATE TABLE new_table (LIKE old_table)
 AS SELECT * FROM old_table ORDER BY myixcolumn;

DROP old_table;

ALTER TABLE new_table RENAME TO old_table;

CREATE INDEX myixcolumn_ix ON old_table;

VACUUM ANALYZE old_table;

Index Types
Greenplum Database supports the Postgres index types B-tree and GiST. Hash and
GIN indexes are not supported. Each index type uses a different algorithm that is best
suited to different types of queries. B-tree indexes fit the most common situations and
are the default index type. See Index Types in the PostgreSQL documentation for a
description of these types.
Using Indexes in Greenplum Database 64

http://www.postgresql.org/docs/8.2/static/indexes-types.html

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
Note: Greenplum Database allows unique indexes only if the columns of the index
key are the same as (or a superset of) the Greenplum distribution key. Unique indexes
are not supported on append-optimized tables. On partitioned tables, a unique index
cannot be enforced across all child table partitions of a partitioned table. A unique
index is supported only within a partition.

About Bitmap Indexes
Greenplum Database provides the Bitmap index type. Bitmap indexes are best suited
to data warehousing applications and decision support systems with large amounts of
data, many ad hoc queries, and few data modification (DML) transactions.

An index provides pointers to the rows in a table that contain a given key value. A
regular index stores a list of tuple IDs for each key corresponding to the rows with that
key value. Bitmap indexes store a bitmap for each key value. Regular indexes can be
several times larger than the data in the table, but bitmap indexes provide the same
functionality as a regular index and use a fraction of the size of the indexed data.

Each bit in the bitmap corresponds to a possible tuple ID. If the bit is set, the row with
the corresponding tuple ID contains the key value. A mapping function converts the
bit position to a tuple ID. Bitmaps are compressed for storage. If the number of
distinct key values is small, bitmap indexes are much smaller, compress better, and
save considerable space compared with a regular index. The size of a bitmap index is
proportional to the number of rows in the table times the number of distinct values in
the indexed column.

Bitmap indexes are most effective for queries that contain multiple conditions in the
WHERE clause. Rows that satisfy some, but not all, conditions are filtered out before the
table is accessed. This improves response time, often dramatically.

When to Use Bitmap Indexes

Bitmap indexes are best suited to data warehousing applications where users query the
data rather than update it. Bitmap indexes perform best for columns that have between
100 and 100,000 distinct values and when the indexed column is often queried in
conjunction with other indexed columns. Columns with fewer than 100 distinct
values, such as a gender column with two distinct values (male and female), usually
do not benefit much from any type of index. On a column with more than 100,000
distinct values, the performance and space efficiency of a bitmap index decline.

Bitmap indexes can improve query performance for ad hoc queries. AND and OR
conditions in the WHERE clause of a query can be resolved quickly by performing the
corresponding Boolean operations directly on the bitmaps before converting the
resulting bitmap to tuple ids. If the resulting number of rows is small, the query can be
answered quickly without resorting to a full table scan.

When Not to Use Bitmap Indexes

Do not use bitmap indexes for unique columns or columns with high cardinality data,
such as customer names or phone numbers. The performance gains and disk space
advantages of bitmap indexes start to diminish on columns with 100,000 or more
unique values, regardless of the number of rows in the table.

Bitmap indexes are not suitable for OLTP applications with large numbers of
concurrent transactions modifying the data.
Using Indexes in Greenplum Database 65

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
Use bitmap indexes sparingly. Test and compare query performance with and without
an index. Add an index only if query performance improves with indexed columns.

Creating an Index
The CREATE INDEX command defines an index on a table. A B-tree index is the
default index type. For example, to create a B-tree index on the column gender in the
table employee:

CREATE INDEX gender_idx ON employee (gender);

To create a bitmap index on the column title in the table films:

CREATE INDEX title_bmp_idx ON films USING bitmap (title);

Examining Index Usage
Greenplum Database indexes do not require maintenance and tuning. You can check
which indexes are used by the real-life query workload. Use the EXPLAIN command to
examine index usage for a query.

The query plan shows the steps or plan nodes that the database will take to answer a
query and time estimates for each plan node. To examine the use of indexes, look for
the following query plan node types in your EXPLAIN output:

• Index Scan - A scan of an index.

• Bitmap Heap Scan - Retrieves all

• from the bitmap generated by BitmapAnd, BitmapOr, or BitmapIndexScan and
accesses the heap to retrieve the relevant rows.

• Bitmap Index Scan - Compute a bitmap by OR-ing all bitmaps that satisfy the
query predicates from the underlying index.

• BitmapAnd or BitmapOr - Takes the bitmaps generated from multiple
BitmapIndexScan nodes, ANDs or ORs them together, and generates a new
bitmap as its output.

You have to experiment to determine the indexes to create. Consider the following
points.

• Run ANALYZE after you create or update an index. ANALYZE collects table
statistics. The query planner uses table statistics to estimate the number of rows
returned by a query and to assign realistic costs to each possible query plan.

• Use real data for experimentation. Using test data for setting up indexes tells you
what indexes you need for the test data, but that is all.

• Do not use very small test data sets as the results can be unrealistic or skewed.

• Be careful when developing test data. Values that are similar, completely random,
or inserted in sorted order will skew the statistics away from the distribution that
real data would have.
Using Indexes in Greenplum Database 66

Greenplum Database DBA Guide 4.3 – Chapter 5: Defining Database Objects
• You can force the use of indexes for testing purposes by using run-time
parameters to turn off specific plan types. For example, turn off sequential scans
(enable_seqscan) and nested-loop joins (enable_nestloop), the most basic
plans, to force the system to use a different plan. Time your query with and
without indexes and use the EXPLAIN ANALYZE command to compare the results.

Managing Indexes
Use the REINDEX command to rebuild a poorly-performing index. REINDEX rebuilds
an index using the data stored in the index’s table, replacing the old copy of the index.

Update and delete operations do not update bitmap indexes. Rebuild bitmap indexes
with the REINDEX command.

To rebuild all indexes on a table

REINDEX my_table;

To rebuild a particular index

REINDEX my_index;

Dropping an Index
The DROP INDEX command removes an index. For example:

DROP INDEX title_idx;

When loading data, it can be faster to drop all indexes, load, then recreate the indexes.

Creating and Managing Views
Views enable you to save frequently used or complex queries, then access them in a
SELECT statement as if they were a table. A view is not physically materialized on
disk: the query runs as a subquery when you access the view.

If a subquery is associated with a single query, consider using the WITH clause of the
SELECT command instead of creating a seldom-used view.

Creating Views
The CREATE VIEW command defines a view of a query. For example:

CREATE VIEW comedies AS SELECT * FROM films WHERE kind =
'comedy';

Views ignore ORDER BY and SORT operations stored in the view.

Dropping Views
The DROP VIEW command removes a view. For example:

DROP VIEW topten;
Creating and Managing Views 67

Greenplum Database DBA Guide 4.3 – Chapter 6: Managing Data
6. Managing Data

This chapter provides information about managing data and concurrent access in
Greenplum Database. It contains the following topics:

• About Concurrency Control in Greenplum Database

• Inserting Rows

• Updating Existing Rows

• Deleting Rows

• Working With Transactions

• Vacuuming the Database

About Concurrency Control in Greenplum Database
Greenplum Database and PostgreSQL do not use locks for concurrency control. They
maintain data consistency using a multiversion model, Multiversion Concurrency
Control (MVCC). MVCC achieves transaction isolation for each database session, and
each query transaction sees a snapshot of data. This ensures the transaction sees
consistent data that is not affected by other concurrent transactions.

Because MVCC does not use explicit locks for concurrency control, lock contention is
minimized and Greenplum Database maintains reasonable performance in multiuser
environments. Locks acquired for querying (reading) data do not conflict with locks
acquired for writing data.

Greenplum Database provides multiple lock modes to control concurrent access to
data in tables. Most Greenplum Database SQL commands automatically acquire the
appropriate locks to ensure that referenced tables are not dropped or modified in
incompatible ways while a command executes. For applications that cannot adapt
easily to MVCC behavior, you can use the LOCK command to acquire explicit locks.
However, proper use of MVCC generally provides better performance.

Table 6.1 Lock Modes in Greenplum Database

Lock Mode Associated SQL Commands Conflicts With

ACCESS SHARE SELECT ACCESS EXCLUSIVE

ROW SHARE SELECT FOR UPDATE, SELECT FOR
SHARE

EXCLUSIVE, ACCESS EXCLUSIVE

ROW EXCLUSIVE INSERT, COPY SHARE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, ACCESS EXCLUSIVE

SHARE UPDATE
EXCLUSIVE

VACUUM (without FULL), ANALYZE SHARE UPDATE EXCLUSIVE, SHARE,
SHARE ROW EXCLUSIVE, EXCLUSIVE,
ACCESS EXCLUSIVE

SHARE CREATE INDEX ROW EXCLUSIVE, SHARE UPDATE
EXCLUSIVE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, ACCESS EXCLUSIVE
About Concurrency Control in Greenplum Database 68

Greenplum Database DBA Guide 4.3 – Chapter 6: Managing Data
Inserting Rows
Use the INSERT command to create rows in a table. This command requires the table
name and a value for each column in the table; you may optionally specify the column
names in any order. If you do not specify column names, list the data values in the
order of the columns in the table, separated by commas.

For example, to specify the column names and the values to insert:

INSERT INTO products (name, price, product_no) VALUES
('Cheese', 9.99, 1);

For example, to specify only the values to insert:

INSERT INTO products VALUES (1, 'Cheese', 9.99);

Usually, the data values are literals (constants), but you can also use scalar
expressions. For example:

INSERT INTO films SELECT * FROM tmp_films WHERE date_prod <
'2004-05-07';

You can insert multiple rows in a single command. For example:

INSERT INTO products (product_no, name, price) VALUES

 (1, 'Cheese', 9.99),

 (2, 'Bread', 1.99),

 (3, 'Milk', 2.99);

To insert large amounts of data, use external tables or the COPY command. These load
mechanisms are more efficient than INSERT for inserting large quantities of rows. See
“Loading and Unloading Data” on page 74 for more information about bulk data
loading.

The storage model of append-optimized tables is optimized for bulk data loading.
Greenplum does not recommend single row INSERT statements for append-optimized
tables.

SHARE ROW EXCLUSIVE ROW EXCLUSIVE, SHARE UPDATE
EXCLUSIVE, SHARE, SHARE ROW
EXCLUSIVE, EXCLUSIVE, ACCESS
EXCLUSIVE

EXCLUSIVE DELETE, UPDATE1 ROW SHARE, ROW EXCLUSIVE, SHARE
UPDATE EXCLUSIVE, SHARE, SHARE
ROW EXCLUSIVE, EXCLUSIVE, ACCESS
EXCLUSIVE

ACCESS EXCLUSIVE ALTER TABLE, DROP TABLE,
TRUNCATE, REINDEX, CLUSTER,
VACUUM FULL

ACCESS SHARE, ROW SHARE, ROW
EXCLUSIVE, SHARE UPDATE
EXCLUSIVE, SHARE, SHARE ROW
EXCLUSIVE, EXCLUSIVE, ACCESS
EXCLUSIVE

1. In Greenplum Database, UPDATE and DELETE acquire the more restrictive lock EXCLUSIVE rather than ROW EXCLUSIVE.

Table 6.1 Lock Modes in Greenplum Database

Lock Mode Associated SQL Commands Conflicts With
Inserting Rows 69

Greenplum Database DBA Guide 4.3 – Chapter 6: Managing Data
Updating Existing Rows
The UPDATE command updates rows in a table. You can update all rows, a subset of all
rows, or individual rows in a table. You can update each column separately without
affecting other columns.

To perform an update, you need:

• The name of the table and columns to update

• The new values of the columns

• A condition(s) specifying the row(s) to be updated.

For example, the following command updates all products that have a price of 5 to
have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

Using UPDATE in Greenplum Database has the following restrictions:

• The Greenplum distribution key columns may not be updated.

• If mirrors are enabled, you cannot use STABLE or VOLATILE functions in an
UPDATE statement.

• Greenplum Database does not support the RETURNING clause.

• Greenplum Database partitioning columns cannot be updated.

Deleting Rows
The DELETE command deletes rows from a table. Specify a WHERE clause to delete
rows that match certain criteria. If you do not specify a WHERE clause, all rows in the
table are deleted. The result is a valid, but empty, table. For example, to remove all
rows from the products table that have a price of 10:

DELETE FROM products WHERE price = 10;

To delete all rows from a table:

DELETE FROM products;

Using DELETE in Greenplum Database has similar restrictions to using UPDATE:

• If mirrors are enabled, you cannot use STABLE or VOLATILE functions in an
UPDATE statement.

• The RETURNING clause is not supported in Greenplum Database.

Truncating a Table
Use the TRUNCATE command to quickly remove all rows in a table. For example:

TRUNCATE mytable;

This command empties a table of all rows in one operation. Note that TRUNCATE does
not scan the table, therefore it does not process inherited child tables or ON DELETE
rewrite rules. The command truncates only rows in the named table.
Updating Existing Rows 70

Greenplum Database DBA Guide 4.3 – Chapter 6: Managing Data
Working With Transactions
Transactions allow you to bundle multiple SQL statements in one all-or-nothing
operation.

The following are the Greenplum Database SQL transaction commands:

• BEGIN or START TRANSACTION starts a transaction block.

• END or COMMIT commits the results of a transaction.

• ROLLBACK abandons a transaction without making any changes.

• SAVEPOINT marks a place in a transaction and enables partial rollback. You can
roll back commands executed after a savepoint while maintaining commands
executed before the savepoint.

• ROLLBACK TO SAVEPOINT rolls back a transaction to a savepoint.

• RELEASE SAVEPOINT destroys a savepoint within a transaction.

Transaction Isolation Levels
Greenplum Database accepts the standard SQL transaction levels as follows:

• read uncommitted and read committed behave like the standard read
committed

• serializable and repeatable read behave like the standard serializable

The following information describes the behavior of the Greenplum transaction levels:

• read committed/read uncommitted — Provides fast, simple, partial transaction
isolation. With read committed and read uncommitted transaction isolation,
SELECT, UPDATE, and DELETE transactions operate on a snapshot of the database
taken when the query started.

A SELECT query:

• Sees data committed before the query starts.

• Sees updates executed within the transaction.

• Does not see uncommitted data outside the transaction.

• Can possibly see changes that concurrent transactions made if the concurrent
transaction is commited after the initial read in its own transaction.

Successive SELECT queries in the same transaction can see different data if other
concurrent transactions commit changes before the queries start. UPDATE and
DELETE commands find only rows committed before the commands started.

Read committed or read uncommitted transaction isolation allows concurrent
transactions to modify or lock a row before UPDATE or DELETE finds the row. Read
committed or read uncommitted transaction isolation may be inadequate for
applications that perform complex queries and updates and require a consistent
view of the database.
Working With Transactions 71

Greenplum Database DBA Guide 4.3 – Chapter 6: Managing Data
• serializable/repeatable read — Provides strict transaction isolation in which
transactions execute as if they run one after another rather than concurrently.
Applications on the serializable or repeatable read level must be designed to retry
transactions in case of serialization failures.

A SELECT query:

• Sees a snapshot of the data as of the start of the transaction (not as of the start
of the current query within the transaction).

• Sees only data committed before the query starts.

• Sees updates executed within the transaction.

• Does not see uncommitted data outside the transaction.

• Does not see changes that concurrent transactions made.
Successive SELECT commands within a single transaction always see the same
data.

UPDATE, DELETE, SELECT FOR UPDATE, and SELECT FOR SHARE commands
find only rows committed before the command started. If a concurrent transaction
has already updated, deleted, or locked a target row when the row is found, the
serializable or repeatable read transaction waits for the concurrent transaction to
update the row, delete the row, or roll back.

If the concurrent transaction updates or deletes the row, the serializable or
repeatable read transaction rolls back. If the concurrent transaction rolls back,
then the serializable or repeatable read transaction updates or deletes the row.

The default transaction isolation level in Greenplum Database is read committed. To
change the isolation level for a transaction, declare the isolation level when you BEGIN
the transaction or use the SET TRANSACTION command after the transaction starts.

Vacuuming the Database
Deleted or updated data rows occupy physical space on disk even though new
transactions cannot see them. Periodically running the VACUUM command removes
these expired rows. For example:

VACUUM mytable;

The VACUUM command collects table-level statistics such as the number of rows and
pages. Vacuum all tables after loading data, including append-optimized tables. For
information about recommended routine vacuum operations, see the Greenplum
Database System Administration Guide.

Configuring the Free Space Map
Expired rows are held in the free space map. The free space map must be sized large
enough to hold all expired rows in your database. If not, a regular VACUUM command
cannot reclaim space occupied by expired rows that overflow the free space map.
Vacuuming the Database 72

Greenplum Database DBA Guide 4.3 – Chapter 6: Managing Data
VACUUM FULL reclaims all expired row space, but it is an expensive operation and can
take an unacceptably long time to finish on large, distributed Greenplum Database
tables. If the free space map overflows, you can recreate the table with a CREATE
TABLE AS statement and drop the old table. Greenplum recommends not using
VACUUM FULL.

Size the free space map with the following server configuration parameters:

max_fam_pages

max_fam_relations
Vacuuming the Database 73

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
7. Loading and Unloading Data

Greenplum supports parallel data loading and unloading for large amounts of data, as
well as single file, non-parallel import and export for small amounts of data. This
chapter covers the following topics:

• Greenplum Database Loading Tools Overview

• Loading Data into Greenplum Database

• Unloading Data from Greenplum Database

• Transforming XML Data

• Formatting Data Files

The first sections of this chapter describe methods for loading and writing data into
and out of a Greenplum Database. The last section describes how to format data files.

Greenplum Database Loading Tools Overview
Greenplum provides the following tools for loading and unloading data.

• External Tables enable accessing external files as if they are regular database
tables.

• gpload provides an interface to the Greenplum Database parallel loader.

• COPY is the standard PostgreSQL non-parallel data loading tool.

External Tables
External tables enable accessing external files as if they are regular database tables.
Used with gpfdist, Greenplum’s parallel file distribution program, external tables
provide full parallelism by using the resources of all Greenplum segments to load or
unload data. Greenplum Database leverages the parallel architecture of the Hadoop
Distributed File System to access files on that system.

You can query external table data directly and in parallel using SQL commands such
as SELECT, JOIN, or SORT EXTERNAL TABLE DATA, and you can create views for
external tables.

The steps for using external tables are:

1. Define the external table.

2. Do one of the following:

• Start the Greenplum files server(s) if you plan to use the gpfdist or gpdists
protocols.

• Verify that you have already set up the required one-time configuration for
gphdfs.

3. Place the data files in the correct location.
Greenplum Database Loading Tools Overview 74

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
4. Query the external table with SQL commands.

Greenplum Database provides readable and writable external tables:

• Readable external tables for data loading. Readable external tables support basic
extraction, transformation, and loading (ETL) tasks common to data warehousing.
Greenplum Database segment instances read external table data in parallel to
optimize large load operations. You cannot modify readable external tables.

• Writable external tables for data unloading. Writable external tables support:

• Selecting data from database tables to insert into the writable external table.

• Sending data to an application as a stream of data. For example, unload data
from Greenplum Database and send it to an application that connects to
another database or ETL tool to load the data elsewhere.

• Receiving output from Greenplum parallel MapReduce calculations.
Writable external tables allow only INSERT operations.

External tables can be file-based or web-based. External tables using the file://
protocol are read-only tables.

• Regular (file-based) external tables access static flat files. Regular external tables
are rescannable: the data is static while the query runs.

• Web (web-based) external tables access dynamic data sources, either on a web
server with the http:// protocol or by executing OS commands or scripts. Web
external tables are not rescannable: the data can change while the query runs.

Dump and restore operate only on external and web external table definitions, not on
the data sources.

gpload

The gpload data loading utility is the interface to Greenplum’s external table parallel
loading feature. gpload uses a load specification defined in a YAML formatted
control file to load data into the target database as follows.

1. Invoke the Greenplum parallel file server program (gpfdist).

2. Create an external table definition based on the source data defined.

3. Load the source data into the target table in the database according to gpload
MODE (Insert, Update or Merge).

COPY

Greenplum Database offers the standard PostgreSQL COPY command for loading and
unloading data. COPY is a non-parallel load/unload mechanism: data is
loaded/unloaded in a single process using the Greenplum master database instance.
For small amounts of data, COPY offers a simple way to move data into or out of a
database in a single transaction, without the administrative overhead of setting up an
external table.
Greenplum Database Loading Tools Overview 75

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Loading Data into Greenplum Database
This section covers the following topics.

• Accessing File-Based External Tables

• Using the Greenplum Parallel File Server (gpfdist)

• Using Hadoop Distributed File System (HDFS) Tables

• Command-based Web External Tables

• URL-based Web External Tables

• Using a Custom Format

• Unloading Data from Greenplum Database

• Handling Load Errors

• Optimizing Data Load and Query Performance

• Loading Data with gpload

• Loading Data with COPY

• Optimizing Data Load and Query Performance

Accessing File-Based External Tables
To create an external table definition, you specify the format of your input files and
the location of your external data sources. For information about input file formats,
see “Formatting Data Files” on page 117.

Use one of the following protocols to access external table data sources. You cannot
mix protocols in CREATE EXTERNAL TABLE statements.

• gpfdist: points to a directory on the file host and serves external data files to all
Greenplum Database segments in parallel.

• gpfdists: the secure version of gpfdist.

• file:// accesses external data files on a segment host that the Greenplum
superuser (gpadmin) can access.

• gphdfs: accesses files on a Hadoop Distributed File System (HDFS).

gpfdist and gpfdists require a one-time setup during table creation.

gpfdist

gpfdist serves external data files from a directory on the file host to all Greenplum
Database segments in parallel. gpfdist uncompresses gzip (.gz) and bzip2
(.bz2) files automatically. Run gpfdist on the host on which the external data files
reside.

All primary segments access the external file(s) in parallel, subject to the number of
segments set in gp_external_max_segments. Use multiple gpfdist data sources in
a CREATE EXTERNAL TABLE statement to scale the external table’s scan performance.
For more information about configuring this, see “Controlling Segment Parallelism”
on page 81.
Loading Data into Greenplum Database 76

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
You can use the wildcard character (*) or other C-style pattern matching to denote
multiple files to get. The files specified are assumed to be relative to the directory that
you specified when you started gpfdist.

gpfdist is located in $GPHOME/bin on your Greenplum Database master host and on
each segment host. See the gpfdist reference documentation for more information
about using gpfdist with external tables.

gpfdists

The gpfdists protocol is a secure version of gpfdist. gpfdists enables encrypted
communication and secure identification of the file server and the Greenplum
Database to protect against attacks such as eavesdropping and man-in-the-middle
attacks.

gpfdists implements SSL security in a client/server scheme as follows.

• Client certificates are required.

• Multilingual certificates are not supported.

• A Certificate Revocation List (CRL) is not supported.

• The TLSv1 protocol is used with the TLS_RSA_WITH_AES_128_CBC_SHA
encryption algorithm.

• SSL parameters cannot be changed.

• SSL renegotiation is supported.

• The SSL ignore host mismatch parameter is set to false.

• Private keys containing a passphrase are not supported for the gpfdist file server
(server.key) and for the Greenplum Database (client.key).

• Issuing certificates that are appropriate for the operating system in use is the
user’s responsibility. Generally, converting certificates as shown in
https://www.sslshopper.com/ssl-converter.html is supported.

Note: A server started with the gpfdist --ssl option can only communicate with
the gpfdists protocol. A server that was started with gpfdist without the --ssl
option can only communicate with the gpfdist protocol.

Use one of the following methods to invoke the gpfdists protocol.

• Run gpfdist with the --ssl option and then use the gpfdists protocol in the
LOCATION clause of a CREATE EXTERNAL TABLE statement.

• Use a YAML Control File with the SSL option set to true and run gpload.
Running gpload starts the gpfdist server with the --ssl option, then uses the
gpfdists protocol.

Important: Do not protect the private key with a passphrase. The server does not
prompt for a passphrase for the private key, and loading data fails with an error if one
is required.

gpfdists requires that the following client certificates reside in the
$PGDATA/gpfdists directory on each segment.

• The client certificate file, client.crt

• The client private key file, client.key
Loading Data into Greenplum Database 77

https://www.sslshopper.com/ssl-converter.html
https://www.sslshopper.com/ssl-converter.html
https://www.sslshopper.com/ssl-converter.html

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
• The trusted certificate authorities, root.crt

For an example of loading data into an external table securely, see “Example 3—
Multiple gpfdists instances” on page 95.

file
The file:// protocol requires that the external data file(s) reside on a segment host
in a location accessible by the Greenplum superuser (gpadmin). The number of URIs
that you specify corresponds to the number of segment instances that will work in
parallel to access the external table. For example, if you have a Greenplum Database
system with 8 primary segments and you specify 2 external files, only 2 of the 8
segments will access the external table in parallel at query time. The number of
external files per segment host cannot exceed the number of primary segment
instances on that host. For example, if your array has 4 primary segment instances per
segment host, you can place 4 external files on each segment host. The host name used
in the URI must match the segment host name as registered in the
gp_segment_configuration system catalog table. Tables based on the file://
protocol can only be readable tables.

The system view pg_max_external_files shows how many external table files are
permitted per external table. This view lists the available file slots per segment host
when using the file:// protocol. The view is only applicable for the file://
protocol. For example:

SELECT * FROM pg_max_external_files;

gphdfs
This protocol specifies a path that can contain wild card characters on a Hadoop
Distributed File System. TEXT and custom formats are allowed for HDFS files.

When Greenplum links with HDFS files, all the data is read in parallel from the HDFS
data nodes into the Greenplum segments for rapid processing. Greenplum determines
the connections between the segments and nodes.
Loading Data into Greenplum Database 78

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Each Greenplum segment reads one set of Hadoop data blocks. For writing, each
Greenplum segment writes only the data contained on it.

Figure 7.1 External Table Located on a Hadoop Distributed File System

The FORMAT clause describes the format of the external table files. Valid file formats
are similar to the formatting options available with the PostgreSQL COPY command
and user-defined formats for the gphdfs protocol.

• Delimited text (TEXT) for all protocols.

• Comma separated values (CSV) format for gpfdist, gpfdists, and file
protocols.

If the data in the file does not use the default column delimiter, escape character, null
string and so on, you must specify the additional formatting options so that Greenplum
Database reads the data in the external file correctly.

The gphdfs protocol requires a one-time setup. See “One-time HDFS Protocol
Installation”.

Errors in External Table Data
By default, if external table data contains an error, the command fails and no data
loads into the target database table. Define the external table with single row error
handling to enable loading correctly-formatted rows and to isolate data errors in
external table data. See “Handling Load Errors”.

The gpfdist file server uses the HTTP protocol. External table queries that use LIMIT
end the connection after retrieving the rows, causing an HTTP socket error. If you use
LIMIT in queries of external tables that use the gpfdist:// or http:// protocols,
ignore these errors – data is returned to the database as expected.
Loading Data into Greenplum Database 79

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Using the Greenplum Parallel File Server (gpfdist)
The gpfdist protocol provides the best performance and is the easiest to set up.
gpfdist ensures optimum use of all segments in your Greenplum Database system
for external table reads.

This section describes the setup and management tasks for using gpfdist with
external tables.

• About gpfdist Setup and Performance

• Controlling Segment Parallelism

• Installing gpfdist

• Starting and Stopping gpfdist

• Troubleshooting gpfdist

About gpfdist Setup and Performance
Consider the following scenarios for optimizing your ETL network performance.

• Allow network traffic to use all ETL host Network Interface Cards (NICs)
simultaneously. Run one instance of gpfdist on the ETL host, then declare the
host name of each NIC in the LOCATION clause of your external table definition
(see “Creating External Tables - Examples” on page 94).

Figure 7.2 External Table Using Single gpfdist Instance with Multiple NICs
Loading Data into Greenplum Database 80

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
• Divide external table data equally among multiple gpfdist instances on the ETL
host. For example, on an ETL system with two NICs, run two gpfdist instances
(one on each NIC) to optimize data load performance and divide the external table
data files evenly between the two gpfdists.

Figure 7.3 External Tables Using Multiple gpfdist Instances with Multiple NICs

Note: Use pipes (|) to separate formatted text when you submit files to gpfdist.
Greenplum Database encloses comma-separated text strings in single or double
quotes. gpfdist has to remove the quotes to parse the strings. Using pipes to separate
formatted text avoids the extra step and improves performance.

Controlling Segment Parallelism
The gp_external_max_segs server configuration parameter controls the number of
segment instances that can access a single gpfdist instance simultaneously. 64 is the
default. You can set the number of segments such that some segments process external
data files and some perform other database processing. Set this parameter in the
postgresql.conf file of your master instance.

Installing gpfdist
gpfdist is installed in $GPHOME/bin of your Greenplum Database master host
installation. Run gpfdist from a machine other than the Greenplum Database master,
such as on a machine devoted to ETL processing. If you want to install gpfdist on your
ETL server, get it from the Greenplum Load Tools package and follow its installation
instructions.

Starting and Stopping gpfdist
You can start gpfdist in your current directory location or in any directory that you
specify. The default port is 8080.

From your current directory, type:

& gpfdist
Loading Data into Greenplum Database 81

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
From a different directory, specify the directory from which to serve files, and
optionally, the HTTP port to run on.

To start gpfdist in the background and log output messages and errors to a log file:

$ gpfdist -d /var/load_files -p 8081 -l /home/gpadmin/log &

For multiple gpfdist instances on the same ETL host (see Figure 7.3), use a different
base directory and port for each instance. For example:

$ gpfdist -d /var/load_files1 -p 8081 -l /home/gpadmin/log1 &

$ gpfdist -d /var/load_files2 -p 8082 -l /home/gpadmin/log2 &

To stop gpfdist when it is running in the background:

First find its process id:

$ ps –ef | grep gpfdist

Then kill the process, for example (where 3456 is the process ID in this example):

$ kill 3456

Troubleshooting gpfdist
The segments access gpfdist at runtime. Ensure that the Greenplum segment hosts
have network access to gpfdist. gpfdist is a web server: test connectivity by
running the following command from each host in the Greenplum array (segments and
master):

$ wget http://gpfdist_hostname:port/filename

The CREATE EXTERNAL TABLE definition must have the correct host name, port, and
file names for gpfdist. Specify file names and paths relative to the directory from
which gpfdist serves files (the directory path specified when gpfdist started). See
“Creating External Tables - Examples” on page 94.

If you start gpfdist on your system and IPv6 networking is disabled, gpfdist
displays this warning message when testing for an IPv6 port.

[WRN gpfdist.c:2050] Creating the socket failed

If the corresponding IPv4 port is available, gpfdist uses that port and the warning for
IPv6 port can be ignored. To see information about the ports that gpfdist tests, use
the -V option.

For information about IPv6 and IPv4 networking, see your operating system
documentation.

Using Hadoop Distributed File System (HDFS) Tables
Greenplum Database leverages the parallel architecture of a Hadoop Distributed File
System to read and write data files efficiently with the gphdfs protocol. There are
three components to using HDFS:

• One-time setup

• Grant privileges for the HDFS protocol

• Specify Hadoop Distributed File System data in an external table definition
Using Hadoop Distributed File System (HDFS) Tables 82

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
One-time HDFS Protocol Installation
Install and configure Hadoop for use with gphdfs as follows.

1. Install Java 1.6 or later on all segments.

2. Greenplum Database includes the following Greenplum HD targets:

• The Pivotal HD 1.0 target (gphd-2.0). A distribution of Hadoop 2.0.

• The Greenplum HD target (gphd-1.0, gphd-1.1, and gphd-1.2)
The default target. To use any other target, set the Server Configuration
Parameter to one of the values shown in Table 7.1, “Server Configuration
Parameters for Hadoop Targets” on page 84.

• The Greenplum MR target for MR v. 1.0 or 1.2 (gpmr-1.0 and gpmr-1.2)
If you are using gpmr-1.0 or gpmr-1.2, you can install the MapR client
program. For information about setting up the MapR client, see the MapR
documentation. http://doc.mapr.com/display/MapR/Home.

• The Greenplum Cloudera Hadoop Connect (cdh3u2 and cdh4.1).
For CDH 4.1, only CDH4 with MRv1 is supported.

3. After installation, ensure that the Greenplum system user (gpadmin) has read and
execute access to the Hadoop libraries or to the Greenplum MR client.

4. Set the following environment variables on all segments.

JAVA_HOME – the Java home directory

HADOOP_HOME – the Hadoop home directory

For example, add lines such as the following to the gpadmin user .bashrc
profile.

export JAVA_HOME=/opt/jdk1.6.0_21

export HADOOP_HOME=/bin/hadoop

Note: The variables must be set in .bashrc because Greenplum Database
always uses SSH.
Using Hadoop Distributed File System (HDFS) Tables 83

http://doc.mapr.com/display/MapR/Home

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
5. Set the following Server Configuration Parameters.

Table 7.1 Server Configuration Parameters for Hadoop Targets

Configuration Parameter Description Default Value Set
Classifications

gp_hadoop_target_version The Hadoop target. Choose one
of the following.

gphd-1.0

gphd-1.1

gphd-1.2

gphd-2.0

gpmr-1.0

gpmr-1.2

cdh3u2

cdh4.1

gphd-1.1 master

session

reload

gp_hadoop_home Same value as HADOOP_HOME. NULL master

session

reload

6. Restart the database.

Grant Privileges for the HDFS Protocol
To enable privileges required to create external tables that access files on HDFS:

1. Grant the following privileges on gphdfs to the owner of the external table.

• Grant SELECT privileges to enable creating readable external tables on HDFS.

• Grant INSERT privileges to enable creating writable external tables on HDFS.
Use the GRANT command to grant read privileges (SELECT) and, if needed, write
privileges (INSERT) on HDFS to the Greenplum system user (gpadmin).

GRANT INSERT ON PROTOCOL gphdfs TO gpadmin;

2. Greenplum Database uses Greenplum OS credentials to connect to HDFS. Grant
read privileges and, if needed, write privileges to HDFS to the Greenplum
administrative user (gpadmin OS user).

Specify HDFS Data in an External Table Definition
CREATE EXTERNAL TABLE’s LOCATION option for Hadoop files has the following
format:

LOCATION ('gphdfs://hdfs_host[:port]/path/filename.txt')

• For any connector except gpmr-1.0-gnet-1.0.0.1, specify a name node port.
Do not specify a port with the gpmr-1.0-gnet-1.0.0.1 connector.

Restrictions for HDFS files are as follows.

• You can specify one path for a readable external table with gphdfs. Wildcard
characters are allowed. If you specify a directory, the default is all files in the
directory.
You can specify only a directory for writable external tables.
Using Hadoop Distributed File System (HDFS) Tables 84

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
• Format restrictions are as follows.

 - Only TEXT format is allowed for readable and writable external tables.

 - Only the gphdfs_import formatter is allowed for readable external tables
with a custom format.

 - Only the gphdfs_export formatter is allowed for writable external tables
with a custom format.

• You can set compression only for writable external tables. Compression settings
are automatic for readable external tables.

Setting Compression Options for Hadoop Writable External Tables

Compression options for Hadoop Writable External Tables use the form of a URI
query and begin with a question mark. Specify multiple compression options with an
ampersand (&).

Table 7.2 Compression Options

Compression
Option Values Default Value

compress true or false false

compression_type BLOCK or RECORD RECORD

codec Codec class name GzipCodec for text format and
DefaultCodec for
gphdfs_export format.

Place compression options in the query portion of the URI.

HDFS Readable and Writable External Table Examples
The following code defines a readable external table for an HDFS file named
filename.txt on port 8081.

=# CREATE EXTERNAL TABLE ext_expenses (name text,

 date date, amount float4, category text, desc1 text)

 LOCATION ('gphdfs://hdfshost-1:8081/data/filename.txt')

 FORMAT 'TEXT' (DELIMITER ',');

Note: Omit the port number when using the gpmr-1.0-gnet-1.0.0.1 connector.

The following code defines a set of readable external tables that have a custom format
located in the same HDFS directory on port 8081.

=# CREATE EXTERNAL TABLE ext_expenses

 LOCATION ('gphdfs://hdfshost-1:8081/data/custdat*.dat')

 FORMAT 'custom' (formatter='gphdfs_import');

Note: Omit the port number when using the gpmr-1.0-gnet-1.0.0.1 connector.

The following code defines an HDFS directory for a writable external table on port
8081 with all compression options specified.

=# CREATE WRITABLE EXTERNAL TABLE ext_expenses

 LOCATION ('gphdfs://hdfshost-1:8081/data/
Using Hadoop Distributed File System (HDFS) Tables 85

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
 ?compress=true&compression_type=RECORD
 &codec=org.apache.hadoop.io.compress.DefaultCodec')
 FORMAT 'custom' (formatter='gphdfs_export');

Note: Omit the port number when using the gpmr-1.0-gnet-1.0.0.1 connector.

Because the previous code uses the default compression options for
compression_type and codec, the following command is equivalent.

=# CREATE WRITABLE EXTERNAL TABLE ext_expenses

 LOCATION ('gphdfs://hdfshost-1:8081/data?compress=true')

 FORMAT 'custom' (formatter='gphdfs_export');

Note: Omit the port number when using the gpmr-1.0-gnet-1.0.0.1 connector.

Reading and Writing Custom-Formatted HDFS Data
Use MapReduce and the CREATE EXTERNAL TABLE command to read and write data
with custom formats on HDFS.

To read custom-formatted data:

1. Author and run a MapReduce job that creates a copy of the data in a format
accessible to Greenplum Database.

2. Use CREATE EXTERNAL TABLE to read the data into Greenplum Database.

See “Example 1 - Read Custom-Formatted Data from HDFS” on page 87.

To write custom-formatted data:

1. Write the data.

2. Author and run a MapReduce program to convert the data to the custom format
and place it on the Hadoop Distributed File System.

See “Example 2 - Write Custom-Formatted Data from Greenplum Database to HDFS”
on page 88.

MapReduce is written in Java. Greenplum provides Java APIs for use in the
MapReduce code. The Javadoc is available in the $GPHOME/docs directory. To view
the Javadoc, expand the file gphd-xnet-1.0.0.0-javadoc.tgz and open index.html.
The Javadoc documents the following packages:

com.emc.greenplum.gpdb.hadoop.io
com.emc.greenplum.gpdb.hadoop.mapred
com.emc.greenplum.gpdb.hadoop.mapreduce.lib.input
com.emc.greenplum.gpdb.hadoop.mapreduce.lib.output

The HDFS cross-connect packages contain the Java library, which contains the
packages GPDBWritable, GPDBInputFormat, and GPDBOutputFormat. The Java
packages are available in $GPHOME/lib/hadoop. For Greenplum HD, compile and
run the MapReduce job with gphd_xnet_1.0.0.0.jar. For Greenplum MR,
compile and run the MapReduce job with gpmr_xnet_1.0.0.0.jar.

To make the Java library available to all Hadoop users, the Hadoop cluster
administrator should place the corresponding gphdfs connector jar in the
$HADOOP_HOME/lib directory and restart the job tracker. If this is not done, a Hadoop
user can still use the gphdfs connector jar; but with the distributed cache technique.
Using Hadoop Distributed File System (HDFS) Tables 86

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Example 1 - Read Custom-Formatted Data from HDFS
The sample code makes the following assumptions.

• The data is contained in HDFS directory /demo/data/temp and the name node is
running on port 8081.

• This code writes the data in Greenplum Database format to
/demo/data/MRTest1 on HDFS.

• The data contains the following columns, in order.

1. A long integer

2. A Boolean

3. A text string

Sample MapReduce Code
import com.emc.greenplum.gpdb.hadoop.io.GPDBWritable;
import com.emc.greenplum.gpdb.hadoop.mapreduce.lib.input.GPDBInputFormat;
import
com.emc.greenplum.gpdb.hadoop.mapreduce.lib.output.GPDBOutputFormat;

import java.io.*;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.output.*;
import org.apache.hadoop.mapreduce.lib.input.*;
import org.apache.hadoop.util.*;

public class demoMR {
 /*
 * Helper routine to create our generic record. This section shows the
 * format of the data. Modify as necessary.
 */
 public static GPDBWritable generateGenericRecord() throws
 IOException{
 int[] colType = new int[3];
 colType[0] = GPDBWritable.BIGINT;
 colType[1] = GPDBWritable.BOOLEAN;
 colType[2] = GPDBWritable.VARCHAR;

 /*
 * This section passes the values of the data. Modify as necessary.
 */
 GPDBWritable gw = new GPDBWritable(colType);
 gw.setLong (0, (long)12345);
 gw.setBoolean(1, true);
 gw.setString (2, "abcdef");

 return gw;
 }

 /*
 * DEMO Map/Reduce class test1
 * -- Regardless of the input, this section dumps the generic record
Using Hadoop Distributed File System (HDFS) Tables 87

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
 * into GPDBFormat/
 */
 public static class Map_test1 extends Mapper<LongWritable, Text,
 LongWritable, GPDBWritable> {
 private LongWritable word = new LongWritable(1);

 public void map(LongWritable key, Text value, Context context) throws
 IOException {
 try {
 GPDBWritable gw = generateGenericRecord();
 context.write(word, gw);
 } catch (Exception e) { throw new IOException (e.getMessage()); }
 }
 }

 public static void runTest1() throws Exception{
 Configuration conf = new Configuration(true);
 Job job = new Job(conf, "test1");

 job.setJarByClass(demoMR.class);

 job.setInputFormatClass(TextInputFormat.class);

 job.setOutputKeyClass (LongWritable.class);
 job.setOutputValueClass (GPDBWritable.class);
 job.setOutputFormatClass(GPDBOutputFormat.class);

 job.setMapperClass(Map_test1.class);

 FileInputFormat.setInputPaths (job, new Path("/demo/data/tmp"));
 GPDBOutputFormat.setOutputPath(job, new Path("/demo/data/MRTest1"));

 job.waitForCompletion(true);
 }

Run CREATE EXTERNAL TABLE

The Hadoop location corresponds to the output path in the MapReduce job.

=# CREATE EXTERNAL TABLE demodata

 LOCATION ('gphdfs://hdfshost-1:8081/demo/data/MRTest1')

 FORMAT 'custom' (formatter='gphdfs_import');

Note: Omit the port number when using the gpmr-1.0-gnet-1.0.0.1 connector.

Example 2 - Write Custom-Formatted Data from Greenplum
Database to HDFS
The sample code makes the following assumptions.

• The data in Greenplum Database format is located on the Hadoop Distributed File
System on /demo/data/writeFromGPDB_42 on port 8081.

• This code writes the data to /demo/data/MRTest2 on port 8081.

1. Run a SQL command to create the writable table.

=# CREATE WRITABLE EXTERNAL TABLE demodata

 LOCATION ('gphdfs://hdfshost-1:8081/demo/data/MRTest2')
Using Hadoop Distributed File System (HDFS) Tables 88

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
 FORMAT 'custom' (formatter='gphdfs_export');

2. Author and run code for a MapReduce job. Use the same import statements shown
in “Example 1 - Read Custom-Formatted Data from HDFS” on page 87.

Note: Omit the port number when using the gpmr-1.0-gnet-1.0.0.1 connector.

MapReduce Sample Code
/*
 * DEMO Map/Reduce class test2
 * -- Convert GPDBFormat back to TEXT
 */

public static class Map_test2 extends Mapper<LongWritable, GPDBWritable,
 Text, NullWritable> {
 public void map(LongWritable key, GPDBWritable value, Context context)
 throws IOException {
 try {
 context.write(new Text(value.toString()), NullWritable.get());
 } catch (Exception e) { throw new IOException (e.getMessage()); }
 }
}

public static void runTest2() throws Exception{
Configuration conf = new Configuration(true);
 Job job = new Job(conf, "test2");

 job.setJarByClass(demoMR.class);

 job.setInputFormatClass(GPDBInputFormat.class);

 job.setOutputKeyClass (Text.class);
 job.setOutputValueClass(NullWritable.class);
 job.setOutputFormatClass(TextOutputFormat.class);

 job.setMapperClass(Map_test2.class);

 GPDBInputFormat.setInputPaths (job,
 new Path("/demo/data/writeFromGPDB_42"));
 GPDBOutputFormat.setOutputPath(job, new Path("/demo/data/MRTest2"));

 job.waitForCompletion(true);
}

Creating and Using Web External Tables
CREATE EXTERNAL WEB TABLE creates a web table definition. Web external tables
allow Greenplum Database to treat dynamic data sources like regular database tables.
Because web table data can change as a query runs, the data is not rescannable.

You can define command-based or URL-based web external tables. The definition
forms are distinct: you cannot mix command-based and URL-based definitions.
Using Hadoop Distributed File System (HDFS) Tables 89

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Command-based Web External Tables
The output of a shell command or script defines command-based web table data.
Specify the command in the EXECUTE clause of CREATE EXTERNAL WEB TABLE. The
data is current as of the time the command runs. The EXECUTE clause runs the shell
command or script on the specified master, and/or segment host or hosts. The
command or script must reside on the hosts corresponding to the host(s) defined in the
EXECUTE clause.

By default, the command is run on segment hosts when active segments have output
rows to process. For example, if each segment host runs four primary segment
instances that have output rows to process, the command runs four times per segment
host. You can optionally limit the number of segment instances that execute the web
table command. All segments included in the web table definition in the ON clause run
the command in parallel.

The command that you specify in the external table definition executes from the
database and cannot access environment variables from .bashrc or .profile. Set
environment variables in the EXECUTE clause. For example:

=# CREATE EXTERNAL WEB TABLE output (output text)

 EXECUTE 'PATH=/home/gpadmin/programs; export PATH;
myprogram.sh'

 FORMAT 'TEXT';

Scripts must be executable by the gpadmin user and reside in the same location on the
master or segment hosts.

The following command defines a web table that runs a script. The script runs on each
segment host where a segment has output rows to process.

=# CREATE EXTERNAL WEB TABLE log_output

 (linenum int, message text)

 EXECUTE '/var/load_scripts/get_log_data.sh' ON HOST

 FORMAT 'TEXT' (DELIMITER '|');

URL-based Web External Tables
A URL-based web table accesses data from a web server using the HTTP protocol.
Web table data is dynamic: the data is not rescannable.

Specify the LOCATION of files on a web server using http://. The web data file(s)
must reside on a web server that Greenplum segment hosts can access. The number of
URLs specified corresponds to the number of segment instances that work in parallel
to access the web table. For example, if you specify 2 external files to a Greenplum
Database system with 8 primary segments, 2 of the 8 segments access the web table in
parallel at query runtime.

The following sample command defines a web table that gets data from several URLs.

=# CREATE EXTERNAL WEB TABLE ext_expenses (name text,

 date date, amount float4, category text, description text)

 LOCATION (
 'http://intranet.company.com/expenses/sales/file.csv',

 'http://intranet.company.com/expenses/exec/file.csv',
Using Hadoop Distributed File System (HDFS) Tables 90

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
 'http://intranet.company.com/expenses/finance/file.csv',

 'http://intranet.company.com/expenses/ops/file.csv',

 'http://intranet.company.com/expenses/marketing/file.csv',

 'http://intranet.company.com/expenses/eng/file.csv'
)

 FORMAT 'CSV' (HEADER);

Loading Data Using an External Table
Use SQL commands such as INSERT and SELECT to query a readable external table,
the same way that you query a regular database table. For example, to load travel
expense data from an external table, ext_expenses, into a database table,
expenses_travel:

=# INSERT INTO expenses_travel

 SELECT * from ext_expenses where category='travel';

To load all data into a new database table:

=# CREATE TABLE expenses AS SELECT * from ext_expenses;

Loading and Writing Non-HDFS Custom Data
Greenplum supports TEXT and CSV formats for importing and exporting data. You can
load and write the data in other formats by defining and using a custom format or
custom protocol.

• Using a Custom Format

• Using a Custom Protocol

For information about importing custom data from HDFS, see “Reading and Writing
Custom-Formatted HDFS Data” on page 86.

Using a Custom Format
You specify a custom data format in the FORMAT clause of CREATE EXTERNAL TABLE.

FORMAT ‘CUSTOM’ (formatter=format_function,
key1=val1,...keyn=valn)

Where the ‘CUSTOM’ keyword indicates that the data has a custom format and
formatter specifies the function to use to format the data, followed by
comma-separated parameters to the formatter function.

Greenplum Database provides functions for formatting fixed-width data, but you must
author the formatter functions for variable-width data. The steps are as follows.

1. Author and compile input and output functions as a shared library.

2. Specify the shared library function with CREATE FUNCTION in Greenplum
Database.

3. Use the formatter parameter of CREATE EXTERNAL TABLE’s FORMAT clause
to call the function.
Using Hadoop Distributed File System (HDFS) Tables 91

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Importing and Exporting Fixed Width Data
Specify custom formats for fixed-width data with the Greenplum Database functions
fixedwith_in and fixedwidth_out. These functions already exist in the file
$GPHOME\share\postgresql\cdb_external_extensions.sql. The following example
declares a custom format, then calls the fixedwidth_in function to format the data.

CREATE READABLE EXTERNAL TABLE students (

name varchar(20), address varchar(30), age int)

LOCATION ('file://<host>/file/path/')

FORMAT 'CUSTOM' (formatter=fixedwidth_in,

 name='20', address='30', age='4');

The following options specify how to import fixed width data.

• Read all the data.
To load all the fields on a line of fixed with data, you must load them in their
physical order. You must specify the field length, but cannot specify a starting and
ending position. The fields names in the fixed width arguments must match the
order in the field list at the beginning of the CREATE TABLE command.

• Set options for blank and null characters.
Trailing blanks are trimmed by default. To keep trailing blanks, use the
preserve_blanks=on option.You can reset the trailing blanks option to the
default with the preserve_blanks=off option.

Use the null='null_string_value' option to specify a value for null
characters.

 - If you specify preserve_blanks=on, you must also define a value for null
characters.

 - If you specify preserve_blanks=off, null is not defined, and the field
contains only blanks, Greenplum writes a null to the table. If null is defined,
Greenplum writes an empty string to the table.

Use the line_delim='line_ending' parameter to specify the line ending
character. The following examples cover most cases. The E specifies an escape
string constant.

line_delim=E'\n'

line_delim=E'\r'

line_delim=E'\r\n'

line_delim='abc'

Examples: Read Fixed-Width Data
The following examples show how to read fixed-width data.

Example 1 – Loading a table with all fields defined

CREATE READABLE EXTERNAL TABLE students (

name varchar(20), address varchar(30), age int)

LOCATION ('file://<host>/file/path/')

FORMAT 'CUSTOM' (formatter=fixedwidth_in,

 name=20, address=30, age=4);
Using Hadoop Distributed File System (HDFS) Tables 92

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Example 2 – Loading a table with PRESERVED_BLANKS ON

CREATE READABLE EXTERNAL TABLE students (

name varchar(20), address varchar(30), age int)

LOCATION ('gpfdist://<host>:<portNum>/file/path/')

FORMAT 'CUSTOM' (formatter=fixedwidth_in,

 name=20, address=30, age=4,

 preserve_blanks='on',null='NULL');

Example 3 – Loading data with no line delimiter

CREATE READABLE EXTERNAL TABLE students (

name varchar(20), address varchar(30), age int)

LOCATION ('file://<host>/file/path/')

FORMAT 'CUSTOM' (formatter=fixedwidth_in,

 name='20', address='30', age='4', line_delim='?@')

Example 4 – Create a writable external table with a \r\n line delimiter

CREATE WRITABLE EXTERNAL TABLE students_out (

name varchar(20), address varchar(30), age int)

LOCATION ('gpfdist://<host>:<portNum>/file/path/')

FORMAT 'CUSTOM' (formatter=fixedwidth_out,

 name=20, address=30, age=4, line_delim=E'\r\n');

Using a Custom Protocol
Greenplum provides protocols such as gpfdist, http, and file for accessing data
over a network, or you can author a custom protocol. You can use the standard data
formats, TEXT and CSV, or a custom data format with custom protocols.

You can create a custom protocol whenever the available built-in protocols do not
suffice for a particular need. For example, if you need to connect Greenplum Database
in parallel to another system directly, and stream data from one to the other without
the need to materialize the system data on disk or use an intermdiate process such as
gpfdist.

1. Author the send, receive, and (optionally) validator functions in C, with a
predefined API. These functions are compiled and registered with the Greenplum
Database. For an example custom protocol, see “Example Custom Data Access
Protocol” on page 120.

2. After writing and compiling the read and write functions into a shared object (.so),
declare a database function that points to the .so file and function names.

The following examples use the compiled import and export code.

CREATE FUNCTION myread() RETURNS integer
as '$libdir/gpextprotocol.so', 'myprot_import'
LANGUAGE C STABLE;
Using Hadoop Distributed File System (HDFS) Tables 93

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
CREATE FUNCTION mywrite() RETURNS integer
as '$libdir/gpextprotocol.so', 'myprot_export'
LANGUAGE C STABLE;

The format of the optional function is:

CREATE OR REPLACE FUNCTION myvalidate() RETURNS void

AS '$libdir/gpextprotocol.so', 'myprot_validate'

LANGUAGE C STABLE;

3. Create a protocol that accesses these functions. Validatorfunc is optional.

CREATE TRUSTED PROTOCOL myprot(

writefunc='mywrite'

readfunc='myread',

validatorfunc='myvalidate');

4. Grant access to any other users, as necessary

GRANT ALL ON PROTOCOL myprot TO otheruser

5. Use the protocol in readable or writable external tables.

CREATE WRITABLE EXTERNAL TABLE ext_sales(LIKE sales)
LOCATION ('myprot://<meta>/<meta>/…')
FORMAT 'TEXT';

CREATE READABLE EXTERNAL TABLE ext_sales(LIKE sales)
LOCATION('myprot://<meta>/<meta>/…')
FORMAT 'TEXT';

Declare custom protocols with the SQL command CREATE TRUSTED PROTOCOL,
then use the GRANT command to grant access to your users. For example:

• Allow a user to create a readable external table with a trusted protocol
GRANT SELECT ON PROTOCOL <protocol name> TO <user name>

• Allow a user to create a writable external table with a trusted protocol
GRANT INSERT ON PROTOCOL <protocol name> TO <user name>

• Allow a user to create readable and writable external tables with a trusted protocol
GRANT ALL ON PROTOCOL <protocol name> TO <user name>

Creating External Tables - Examples
The following examples show how to define external data with different protocols.
Each CREATE EXTERNAL TABLE command can contain only one protocol.

Note: When using IPv6, always enclose the numeric IP addresses in square brackets.

Start gpfdist before you create external tables with the gpfdist protocol. The
following code starts the gpfdist file server program in the background on port 8081
serving files from directory /var/data/staging. The logs are saved in
/home/gpadmin/log.

gpfdist -p 8081 -d /var/data/staging -l /home/gpadmin/log &
Using Hadoop Distributed File System (HDFS) Tables 94

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
The CREATE EXTERNAL TABLE SQL command defines external tables, the location
and format of the data to load, and the protocol to use to load the data, but does not
load data into the table. For example, the following command creates an external
table, ext_expenses, from pipe (‘|’) delimited text data located on
etlhost-1:8081 and etlhost-2:8081. See the Greenplum Database
Reference Guide for information about CREATE EXTERNAL TABLE.

Example 1—Single gpfdist instance on single-NIC machine
Creates a readable external table, ext_expenses, using the gpfdist protocol. The files
are formatted with a pipe (|) as the column delimiter.

=# CREATE EXTERNAL TABLE ext_expenses (name text,

 date date, amount float4, category text, desc1 text)

 LOCATION ('gpfdist://etlhost-1:8081/*',

 'gpfdist://etlhost-1:8082/*')

 FORMAT 'TEXT' (DELIMITER '|');

Example 2—Multiple gpfdist instances
Creates a readable external table, ext_expenses, using the gpfdist protocol from all
files with the txt extension. The column delimiter is a pipe (|) and NULL (‘ ‘) is a
space.

=# CREATE EXTERNAL TABLE ext_expenses (name text,

 date date, amount float4, category text, desc1 text)

 LOCATION ('gpfdist://etlhost-1:8081/*.txt',

 'gpfdist://etlhost-2:8081/*.txt')

 FORMAT 'TEXT' (DELIMITER '|' NULL ' ') ;

Example 3—Multiple gpfdists instances
Creates a readable external table, ext_expenses, from all files with the txt extension
using the gpfdists protocol. The column delimiter is a pipe (|) and NULL (‘ ‘) is a
space. For information about the location of security certificates, see “gpfdists” on
page 77.

1. Run gpfdist with the --ssl option.

2. Run the following command.

=# CREATE EXTERNAL TABLE ext_expenses (name text,

 date date, amount float4, category text, desc1 text)

 LOCATION ('gpfdists://etlhost-1:8081/*.txt',

 'gpfdists://etlhost-2:8082/*.txt')

 FORMAT 'TEXT' (DELIMITER '|' NULL ' ') ;

Example 4—Single gpfdist instance with error logging
Uses the gpfdist protocol to create a readable external table, ext_expenses, from all
files with the txt extension. The column delimiter is a pipe (|) and NULL (‘ ‘) is a
space.
Using Hadoop Distributed File System (HDFS) Tables 95

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Access to the external table is single row error isolation mode. Input data formatting
errors are written to the error table, err_customer, with a description of the error.
Query err_customer to see the errors, then fix the issues and reload the rejected data.
If the error count on a segment is greater than five (the SEGMENT REJECT LIMIT
value), the entire external table operation failes and no rows are processed.

=# CREATE EXTERNAL TABLE ext_expenses (name text,

 date date, amount float4, category text, desc1 text)

 LOCATION ('gpfdist://etlhost-1:8081/*.txt',

 'gpfdist://etlhost-2:8082/*.txt')

 FORMAT 'TEXT' (DELIMITER '|' NULL ' ')

 LOG ERRORS INTO err_customer SEGMENT REJECT LIMIT 5;

To create the readable ext_expenses table from CSV-formatted text files:

=# CREATE EXTERNAL TABLE ext_expenses (name text,

 date date, amount float4, category text, desc1 text)

 LOCATION ('gpfdist://etlhost-1:8081/*.txt',

 'gpfdist://etlhost-2:8082/*.txt')

 FORMAT 'CSV' (DELIMITER ',')

 LOG ERRORS INTO err_customer SEGMENT REJECT LIMIT 5;

Example 5—TEXT Format on a Hadoop Distributed File Server
Creates a readable external table, ext_expenses, using the gphdfs protocol. The
column delimiter is a pipe (|).

=# CREATE EXTERNAL TABLE ext_expenses (name text,

 date date, amount float4, category text, desc1 text)

 LOCATION ('gphdfs://hdfshost-1:8081/data/filename.txt')

 FORMAT 'TEXT' (DELIMITER '|');

Note: gphdfs requires only one data path.

For examples of reading and writing custom formatted data on a Hadoop Distributed
File System, see “Reading and Writing Custom-Formatted HDFS Data” on page 86.

Example 6—Multiple files in CSV format with header rows
Creates a readable external table, ext_expenses, using the file protocol. The files are
CSV format and have a header row.

=# CREATE EXTERNAL TABLE ext_expenses (name text,

 date date, amount float4, category text, desc1 text)

 LOCATION ('file://filehost:5432/data/international/*',

 'file://filehost:5432/data/regional/*'

 'file://filehost:5432/data/supplement/*.csv')

 FORMAT 'CSV' (HEADER);

Example 7—Readable Web External Table with Script
Creates a readable web external table that executes a script once per segment host:

=# CREATE EXTERNAL WEB TABLE log_output (linenum int,
Using Hadoop Distributed File System (HDFS) Tables 96

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
 message text)

 EXECUTE '/var/load_scripts/get_log_data.sh' ON HOST
 FORMAT 'TEXT' (DELIMITER '|');

Example 8—Writable External Table with gpfdist
Creates a writable external table, sales_out, that uses gpfdist to write output data to
the file sales.out. The column delimiter is a pipe (|) and NULL (‘ ‘) is a space. The
file will be created in the directory specified when you started the gpfdist file server.

=# CREATE WRITABLE EXTERNAL TABLE sales_out (LIKE sales)

 LOCATION ('gpfdist://etl1:8081/sales.out')

 FORMAT 'TEXT' (DELIMITER '|' NULL ' ')

 DISTRIBUTED BY (txn_id);

Example 9—Writable External Web Table with Script
Creates a writable external web table, campaign_out, that pipes output data received
by the segments to an executable script, to_adreport_etl.sh:

=# CREATE WRITABLE EXTERNAL WEB TABLE campaign_out
 (LIKE campaign)
 EXECUTE '/var/unload_scripts/to_adreport_etl.sh'
 FORMAT 'TEXT' (DELIMITER '|');

Example 10—Readable and Writable External Tables with XML
Transformations
Greenplum Database can read and write XML data to and from external tables with
gpfdist. For information about setting up an XML transform, see “Transforming XML
Data” on page 106.

Handling Load Errors
Readable external tables are most commonly used to select data to load into regular
database tables. You use the CREATE TABLE AS SELECT or INSERT INTO commands
to query the external table data. By default, if the data contains an error, the entire
command fails and the data is not loaded into the target database table.

The SEGMENT REJECT LIMIT clause allows you to isolate format errors in external
table data and to continue loading correctly formatted rows. Use SEGMENT REJECT
LIMIT to set an error threshold, specifying the reject limit count as number of ROWS
(the default) or as a PERCENT of total rows (1-100).

The entire external table operation is aborted, and no rows are processed, if the
number of error rows reaches the SEGMENT REJECT LIMIT. The limit of error rows is
per-segment, not per entire operation. The operation processes all good rows, and it
discards or logs any erroneous rows into an error table (if you specified an error table),
if the number of error rows does not reach the SEGMENT REJECT LIMIT.

The LOG ERRORS INTO clause allows you to keep error rows for further examination.
Use LOG ERRORS INTO to declare an error table in which to write error rows.

When you set SEGMENT REJECT LIMIT, Greenplum scans the external data in single
row error isolation mode. Single row error isolation mode applies to external data
rows with format errors such as extra or missing attributes, attributes of a wrong data
Using Hadoop Distributed File System (HDFS) Tables 97

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
type, or invalid client encoding sequences. Greenplum does not check constraint
errors, but you can filter constraint errors by limiting the SELECT from an external
table at runtime. For example, to eliminate duplicate key errors:

=# INSERT INTO table_with_pkeys

 SELECT DISTINCT * FROM external_table;

Define an External Table with Single Row Error Isolation
The following example creates an external table, ext_expenses, sets an error threshold
of 10 errors, and writes error rows to the table err_expenses.

=# CREATE EXTERNAL TABLE ext_expenses (name text,

 date date, amount float4, category text, desc1 text)

 LOCATION ('gpfdist://etlhost-1:8081/*',

 'gpfdist://etlhost-2:8082/*')

 FORMAT 'TEXT' (DELIMITER '|')

 LOG ERRORS INTO err_expenses SEGMENT REJECT LIMIT 10
 ROWS;

Create an Error Table and Declare a Reject Limit
The following SQL fragment creates an error table, err_expenses, and declares a reject
limit of 10 rows.

LOG ERRORS INTO err_expenses SEGMENT REJECT LIMIT 10 ROWS

Viewing Bad Rows in the Error Table
If you use single row error isolation (see “Define an External Table with Single Row
Error Isolation” on page 98 or “Running COPY in Single Row Error Isolation Mode”
on page 101), any rows with formatting errors are logged into an error table. The error
table has the following columns:

Table 7.3 Error Table Format

column type description

cmdtime timestampz Timestamp when the error occurred.

relname text The name of the external table or the
target table of a COPY command.

filename text The name of the load file that
contains the error.

linenum int If COPY was used, the line number
in the load file where the error
occurred. For external tables using
file:// protocol or gpfdist:// protocol
and CSV format, the file name and
line number is logged.
Using Hadoop Distributed File System (HDFS) Tables 98

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
You can use SQL commands to query the error table and view the rows that did not
load. For example:

=# SELECT * from err_expenses;

Identifying Invalid CSV Files in Error Table Data
If a CSV file contains invalid formatting, the rawdata field in the error table can
contain several combined rows. For example, if a closing quote for a specific field is
missing, all the following newlines are treated as embedded newlines. When this
happens, Greenplum stops parsing a row when it reaches 64K, puts that 64K of data
into the error table as a single row, resets the quote flag, and continues. If this happens
three times during load processing, the load file is considered invalid and the entire
load fails with the message “rejected N or more rows”. See “Escaping in CSV
Formatted Files” on page 119 for more information on the correct use of quotes in
CSV files.

Moving Data between Tables
You can use CREATE TABLE AS or INSERT...SELECT to load external and web
external table data into another (non-external) database table, and the data will be
loaded in parallel according to the external or web external table definition.

If an external table file or web external table data source has an error, one of the
following will happen, depending on the isolation mode used:

• Tables without error isolation mode: any operation that reads from that table
fails. Loading from external and web external tables without error isolation mode
is an all or nothing operation.

• Tables with error isolation mode: the entire file will be loaded, except for the
problematic rows (subject to the configured REJECT_LIMIT)

bytenum int For external tables with the gpfdist://
protocol and data in TEXT format:
the byte offset in the load file where
the error occurred. gpfdist parses
TEXT files in blocks, so logging a line
number is not possible.

CSV files are parsed a line at a time
so line number tracking is possible
for CSV files.

errmsg text The error message text.

rawdata text The raw data of the rejected row.

rawbytes bytea In cases where there is a database
encoding error (the client encoding
used cannot be converted to a
server-side encoding), it is not
possible to log the encoding error as
rawdata. Instead the raw bytes are
stored and you will see the octal
code for any non seven bit ASCII
characters.

Table 7.3 Error Table Format

column type description
Using Hadoop Distributed File System (HDFS) Tables 99

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Loading Data
The following methods load data from readable external tables.

• Use the gpload utility

• Use the gphdfs protocol

• Load with copy

Loading Data with gpload
The Greenplum gpload utility loads data using readable external tables and the
Greenplum parallel file server (gpfdist or gpfdists). It handles parallel file-based
external table setup and allows users to configure their data format, external table
definition, and gpfdist or gpfdists setup in a single configuration file.

To use gpload

1. Ensure that your environment is set up to run gpload. Some dependent files from
your Greenplum Database installation are required, such as gpfdist and Python,
as well as network access to the Greenplum segment hosts. See the Greenplum
Database Reference Guide for details.

2. Create your load control file. This is a YAML-formatted file that specifies the
Greenplum Database connection information, gpfdist configuration
information, external table options, and data format. See the Greenplum Database
Reference Guide for details.

For example:

VERSION: 1.0.0.1

DATABASE: ops

USER: gpadmin

HOST: mdw-1

PORT: 5432

GPLOAD:

 INPUT:

 - SOURCE:

 LOCAL_HOSTNAME:

 - etl1-1

 - etl1-2

 - etl1-3

 - etl1-4

 PORT: 8081

 FILE:

 - /var/load/data/*

 - COLUMNS:

 - name: text

 - amount: float4

 - category: text

 - desc: text

 - date: date
Using Hadoop Distributed File System (HDFS) Tables 100

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
 - FORMAT: text

 - DELIMITER: '|'

 - ERROR_LIMIT: 25

 - ERROR_TABLE: payables.err_expenses

 OUTPUT:

 - TABLE: payables.expenses

 - MODE: INSERT

 SQL:

 - BEFORE: "INSERT INTO audit VALUES('start', current_timestamp)"

 - AFTER: "INSERT INTO audit VALUES('end', current_timestamp)"

3. Run gpload, passing in the load control file. For example:

gpload -f my_load.yml

Loading Data with the gphdfs Protocol
If you use INSERT INTO to insert data into a Greenplum table from a table on the
Hadoop Distributed File System that was defined as an external table with the gphdfs
protocol, the data is copied in parallel. For example:

INSERT INTO gpdb_table (select * from hdfs_ext_table);

Loading Data with COPY
COPY FROM copies data from a file or standard input into a table and appends the data
to the table contents. COPY is non-parallel: data is loaded in a single process using the
Greenplum master instance.

To optimize the performance and throughput of COPY, run multiple COPY commands
concurrently in separate sessions and divide the data evenly across all concurrent
processes. To optimize throughput, run one concurrent COPY operation per CPU.

The COPY source file must be accessible to the master host. Specify the COPY source
file name relative to the master host location.

Greenplum copies data from STDIN or STDOUT using the connection between the
client and the master server.

Running COPY in Single Row Error Isolation Mode
By default, COPY stops an operation at the first error: if the data contains an error, the
operation fails and no data loads. If you run COPY FROM in single row error isolation
mode, Greenplum skips rows that contain format errors and loads properly formatted
rows. Single row error isolation mode applies only to rows in the input file that
contain format errors. If the data contains a contraint error such as violation of a NOT
NULL, CHECK, or UNIQUE constraint, the operation fails and no data loads.

Specifying SEGMENT REJECT LIMIT runs the COPY operation in single row error
isolation mode. Specify the acceptable number of error rows on each segment, after
which the entire COPY FROM operation fails and no rows load. The error row count is
for each Greenplum segment, not for the entire load operation.

If the COPY operation does not reach the error limit, Greenplum loads all
correctly-formatted rows and discards the error rows. The LOG ERRORS INTO clause
allows you to keep error rows for further examination. Use LOG ERRORS INTO to
declare an error table in which to write error rows. For example:
Using Hadoop Distributed File System (HDFS) Tables 101

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
=> COPY country FROM '/data/gpdb/country_data'

 WITH DELIMITER '|' LOG ERRORS INTO err_country

 SEGMENT REJECT LIMIT 10 ROWS;

See “Viewing Bad Rows in the Error Table” on page 98 for information about
investigating error rows.

Optimizing Data Load and Query Performance
Use the following tips to help optimize your data load and subsequent query
performance.

• Drop indexes before loading data into existing tables.
Creating an index on pre-existing data is faster than updating it incrementally as
each row is loaded. You can temporarily increase the maintenance_work_mem
server configuration parameter to help speed up CREATE INDEX commands,
though load performance is affected. Drop and recreate indexes only when there
are no active users on the system.

• Create indexes last when loading data into new tables. Create the table, load the
data, and create any required indexes.

• Run ANALYZE after loading data. If you significantly altered the data in a table, run
ANALYZE or VACUUM ANALYZE to update table statistics for the query planner.
Current statistics ensure that the planner makes the best decisions during query
planning and avoids poor performance due to inaccurate or nonexistent statistics.

• Run VACUUM after load errors. If the load operation does not run in single row error
isolation mode, the operation stops at the first error. The target table contains the
rows loaded before the error occurred. You cannot access these rows, but they
occupy disk space. Use the VACUUM command to recover the wasted space.

Unloading Data from Greenplum Database
A writable external table allows you to select rows from other database tables and
output the rows to files, named pipes, to applications, or as output targets for
Greenplum parallel MapReduce calculations. You can define file-based and
web-based writable external tables.

This section describes how to unload data from Greenplum Database using parallel
unload (writable external tables) and non-parallel unload (COPY).

• Defining a File-Based Writable External Table

• Defining a Command-Based Writable External Web Table

• Unloading Data Using a Writable External Table

• Unloading Data Using COPY
Unloading Data from Greenplum Database 102

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Defining a File-Based Writable External Table
Writable external tables that output data to files use the Greenplum parallel file server
program, gpfdist, or the Hadoop Distributed File System interface, gphdfs.

Use the CREATE WRITABLE EXTERNAL TABLE command to define the external table
and specify the location and format of the output files. See “Using the Greenplum
Parallel File Server (gpfdist)” on page 80 for instructions on setting up gpfdist for
use with an external table and “Using Hadoop Distributed File System (HDFS)
Tables” on page 82 for instructions on setting up gphdfs for use with an external
table.

• With a writable external table using the gpfdist protocol, the Greenplum
segments send their data to gpfdist, which writes the data to the named file.
gpfdist must run on a host that the Greenplum segments can access over the
network. gpfdist points to a file location on the output host and writes data
received from the Greenplum segments to the file. To divide the output data
among multiple files, list multiple gpfdist URIs in your writable external table
definition.

• A writable external web table sends data to an application as a stream of data. For
example, unload data from Greenplum Database and send it to an application that
connects to another database or ETL tool to load the data elsewhere. Writable
external web tables use the EXECUTE clause to specify a shell command, script, or
application to run on the segment hosts and accept an input stream of data. See
“Defining a Command-Based Writable External Web Table” for more
information about using EXECUTE commands in a writable external table
definition.

You can optionally declare a distribution policy for your writable external tables. By
default, writable external tables use a random distribution policy. If the source table
you are exporting data from has a hash distribution policy, defining the same
distribution key column(s) for the writable external table improves unload
performance by eliminating the requirement to move rows over the interconnect. If
you unload data from a particular table, you can use the LIKE clause to copy the
column definitions and distribution policy from the source table.

Example 1—Greenplum file server (gpfdist)
=# CREATE WRITABLE EXTERNAL TABLE unload_expenses

 (LIKE expenses)

 LOCATION ('gpfdist://etlhost-1:8081/expenses1.out',

 'gpfdist://etlhost-2:8081/expenses2.out')

 FORMAT 'TEXT' (DELIMITER ',')

 DISTRIBUTED BY (exp_id);

Example 2—Hadoop file server (gphdfs)
=# CREATE WRITABLE EXTERNAL TABLE unload_expenses

 (LIKE expenses)

 LOCATION ('gphdfs://hdfslhost-1:8081/path')

 FORMAT 'TEXT' (DELIMITER ',')
Unloading Data from Greenplum Database 103

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
 DISTRIBUTED BY (exp_id);

You can only specify a directory for a writable external table with the gphdfs
protocol. (You can only specify one file for a readable external table with the gphdfs
protocol)

Note: The default port number is 9000.

Defining a Command-Based Writable External Web Table
You can define writable external web tables to send output rows to an application or
script. The application must accept an input stream, reside in the same location on all
of the Greenplum segment hosts, and be executable by the gpadmin user. All
segments in the Greenplum system run the application or script, whether or not a
segment has output rows to process.

Use CREATE WRITABLE EXTERNAL WEB TABLE to define the external table and
specify the application or script to run on the segment hosts. Commands execute from
within the database and cannot access environment variables (such as $PATH). Set
environment variables in the EXECUTE clause of your writable external table
definition. For example:

=# CREATE WRITABLE EXTERNAL WEB TABLE output (output text)

 EXECUTE 'export PATH=$PATH:/home/gpadmin/programs;
 myprogram.sh'

 FORMAT 'TEXT'

 DISTRIBUTED RANDOMLY;

The following Greenplum Database variables are available for use in OS commands
executed by a web or writable external table. Set these variables as environment
variables in the shell that executes the command(s). They can be used to identify a set
of requests made by an external table statement across the Greenplum Database array
of hosts and segment instances.

Table 7.4 External Table EXECUTE Variables

Variable Description

$GP_CID Command count of the transaction executing the external table
statement.

$GP_DATABASE The database in which the external table definition resides.

$GP_DATE The date on which the external table command ran.

$GP_MASTER_HOST The host name of the Greenplum master host from which the external
table statement was dispatched.

$GP_MASTER_PORT The port number of the Greenplum master instance from which the
external table statement was dispatched.

$GP_SEG_DATADIR The location of the data directory of the segment instance executing
the external table command.

$GP_SEG_PG_CONF The location of the postgresql.conf file of the segment instance
executing the external table command.
Unloading Data from Greenplum Database 104

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Disabling EXECUTE for Web or Writable External Tables
There is a security risk associated with allowing external tables to execute OS
commands or scripts. To disable the use of EXECUTE in web and writable external table
definitions, set the gp_external_enable_exec server configuration parameter to
off in your master postgresql.conf file:

gp_external_enable_exec = off

Unloading Data Using a Writable External Table
Writable external tables allow only INSERT operations. You must grant INSERT
permission on a table to enable access to users who are not the table owner or a
superuser. For example:

GRANT INSERT ON writable_ext_table TO admin;

To unload data using a writable external table, select the data from the source table(s)
and insert it into the writable external table. The resulting rows are output to the
writable external table. For example:

INSERT INTO writable_ext_table SELECT * FROM regular_table;

Unloading Data Using COPY
COPY TO copies data from a table to a file (or standard input) on the Greenplum master
host using a single process on the Greenplum master instance. Use COPY to output a
table’s entire contents, or filter the output using a SELECT statement. For example:

COPY (SELECT * FROM country WHERE country_name LIKE 'A%') TO
'/home/gpadmin/a_list_countries.out';

$GP_SEG_PORT The port number of the segment instance executing the external table
command.

$GP_SEGMENT_COUNT The total number of primary segment instances in the Greenplum
Database system.

$GP_SEGMENT_ID The ID number of the segment instance executing the external table
command (same as dbid in gp_segment_configuration).

$GP_SESSION_ID The database session identifier number associated with the external
table statement.

$GP_SN Serial number of the external table scan node in the query plan of the
external table statement.

$GP_TIME The time the external table command was executed.

$GP_USER The database user executing the external table statement.

$GP_XID The transaction ID of the external table statement.

Table 7.4 External Table EXECUTE Variables

Variable Description
Unloading Data from Greenplum Database 105

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Transforming XML Data
The Greenplum Database data loader gpfdist provides transformation features to load
XML data into a table and to write data from the Greenplum Database to XML files.
The following diagram shows gpfdist performing an XML transform.

Figure 7.4 External Tables using XML Transformations

To load or extract XML data:

• Determine the Transformation Schema

• Write a Transform

• Write the gpfdist Configuration

• Load the Data

• Transfer and Store the Data

The first three steps comprise most of the development effort. The last two steps are
straightforward and repeatable, suitable for production.

Determine the Transformation Schema
To prepare for the transformation project:

1. Determine the goal of the project, such as indexing data, analyzing data,
combining data, and so on.

2. Examine the XML file and note the file structure and element names.

3. Choose the elements to import and decide if any other limits are appropriate.

For example, the following XML file, prices.xml, is a simple, short file that contains
price records. Each price record contains two fields: an item number and a price.
Transforming XML Data 106

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
<?xml version="1.0" encoding="ISO-8859-1" ?>
<prices>
 <pricerecord>
 <itemnumber>708421</itemnumber>
 <price>19.99</price>
 </pricerecord>
 <pricerecord>
 <itemnumber>708466</itemnumber>
 <price>59.25</price>
 </pricerecord>
 <pricerecord>
 <itemnumber>711121</itemnumber>
 <price>24.99</price>
 </pricerecord>
</prices>

The goal is to import all the data into a Greenplum Database table with an integer
itemnumber column and a decimal price column.

Write a Transform
The transform specifies what to extract from the data.You can use any authoring
environment and language appropriate for your project. For XML transformations
Greenplum suggests choosing a technology such as XSLT, Joost (STX), Java, Python,
or Perl, based on the goals and scope of the project.

In the price example, the next step is to transform the XML data into a simple
two-column delimited format.

708421|19.99

708466|59.25

711121|24.99

The following STX transform, called input_transform.stx, completes the data
transformation.

<?xml version="1.0"?>
<stx:transform version="1.0"
 xmlns:stx="http://stx.sourceforge.net/2002/ns"
 pass-through="none">

 <!-- declare variables -->

 <stx:variable name="itemnumber"/>
 <stx:variable name="price"/>

 <!-- match and output prices as columns delimited by | -->

 <stx:template match="/prices/pricerecord">
 <stx:process-children/>
 <stx:value-of select="$itemnumber"/>
<stx:text>|</stx:text>
 <stx:value-of select="$price"/> <stx:text>
</stx:text>
 </stx:template>
Transforming XML Data 107

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
 <stx:template match="itemnumber">
 <stx:assign name="itemnumber" select="."/>
 </stx:template>

 <stx:template match="price">
 <stx:assign name="price" select="."/>
 </stx:template>

</stx:transform>

This STX transform declares two temporary variables, itemnumber and price, and
the following rules.

1. When an element that satisfies the XPath expression /prices/pricerecord is
found, examine the child elements and generate output that contains the value of
the itemnumber variable, a | character, the value of the price variable, and a
newline.

2. When an <itemnumber> element is found, store the content of that element in the
variable itemnumber.

3. When a <price> element is found, store the content of that element in the variable
price.

Write the gpfdist Configuration
The gpfdist configuration is specified as a YAML 1.1 document. It specifies rules
that gpfdist uses to select a Transform to apply when loading or extracting data.

This example gpfdist configuration contains the following items:

• the config.yaml file defining TRANSFORMATIONS

• the input_transform.sh wrapper script, referenced in the config.yaml file

• the input_transform.stx joost transformation, called from input_transform.sh

Aside from the ordinary YAML rules, such as starting the document with three dashes
(---), a gpfdist configuration must conform to the following restrictions:

1. a VERSION setting must be present with the value 1.0.0.1.

2. a TRANSFORMATIONS setting must be present and contain one or more mappings.

3. Each mapping in the TRANSFORMATION must contain:

• a TYPE with the value 'input' or 'output'

• a COMMAND indicating how the transform is run.

4. Each mapping in the TRANSFORMATION can contain optional CONTENT, SAFE, and
STDERR settings.

The following gpfdist configuration called config.YAML applies to the prices
example. The initial indentation on each line is significant and reflects the hierarchical
nature of the specification. The name prices_input in the following example will be
referenced later when creating the table in SQL.
Transforming XML Data 108

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data

VERSION: 1.0.0.1

TRANSFORMATIONS:
 prices_input:
 TYPE: input
 COMMAND: /bin/bash input_transform.sh %filename%

The COMMAND setting uses a wrapper script called input_transform.sh with a
%filename% placeholder. When gpfdist runs the prices_input transform, it
invokes input_transform.sh with /bin/bash and replaces the %filename%
placeholder with the path to the input file to transform. The wrapper script called
input_transform.sh contains the logic to invoke the STX transformation and
return the output.

If Joost is used, the Joost STX engine must be installed.

#!/bin/bash
input_transform.sh - sample input transformation,
demonstrating use of Java and Joost STX to convert XML into
text to load into Greenplum Database.
java arguments:
-jar joost.jar joost STX engine
-nodecl don't generate a <?xml?> declaration
$1 filename to process
input_transform.stx the STX transformation
#
the AWK step eliminates a blank line joost emits at the end
java \
 -jar joost.jar \
 -nodecl \
 $1 \
 input_transform.stx \
 | awk 'NF>0

The input_transform.sh file uses the Joost STX engine with the AWK interpreter.
The following diagram shows the process flow as gpfdist runs the transformation.
Transforming XML Data 109

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Load the Data
Create the tables with SQL statements based on the appropriate schema.

There are no special requirements for the Greenplum Database tables that hold loaded
data. In the prices example, the following command creates the appropriate table.

CREATE TABLE prices (
 itemnumber integer,
 price decimal
)
DISTRIBUTED BY (itemnumber);

Transfer and Store the Data
Use one of the following approaches to transform the data with gpfdist.

• GPLOAD supports only input transformations, but is easier to implement in many
cases.

• INSERT INTO SELECT FROM supports both input and output
transformations, but exposes more details.

Transforming with GPLOAD

Transforming data with GPLOAD requires that the settings TRANSFORM and
TRANSFORM_CONFIG. appear in the INPUT section of the GPLOAD control file. For more
information about the syntax and placement of these settings in the GPLOAD control
file, see the Greenplum Database Reference Guide.

• TRANSFORM_CONFIG specifies the name of the gpfdist configuration file.

• The TRANSFORM setting indicates the name of the transformation that is described
in the file named in TRANSFORM_CONFIG.

VERSION: 1.0.0.1

DATABASE: ops

USER: gpadmin

GPLOAD:

INPUT:
Transforming XML Data 110

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
- TRANSFORM_CONFIG: config.yaml

- TRANSFORM: prices_input

- SOURCE:

FILE: prices.xml

The transformation name must appear in two places: in the TRANSFORM setting of the
gpfdist configuration file and in the TRANSFORMATIONS section of the file named in
the TRANSFORM_CONFIG section.

In the GPLOAD control file, the optional parameter MAX_LINE_LENGTH specifies the
maximum length of a line in the XML transformation data that is passed to gpload.

The following diagram shows the relationships between the GPLOAD control file, the
gpfdist configuration file, and the XML data file.

Transforming with INSERT INTO SELECT FROM

Specify the transformation in the CREATE EXTERNAL TABLE definition’s LOCATION
clause. For example, the transform is shown in bold in the following command. (Run
gpfdist first, using the command gpfdist -c config.yaml).

CREATE READABLE EXTERNAL TABLE prices_readable (LIKE prices)
 LOCATION ('gpfdist://hostname:8080/prices.xml#transform=prices_input')
 FORMAT 'TEXT' (DELIMITER '|')
 LOG ERRORS INTO prices_errortable SEGMENT REJECT LIMIT 10;

In the command above, change hostname to your hostname. Prices_input comes
from the configuration file.

The following query loads data into the prices table.

INSERT INTO prices SELECT * FROM prices_readable;
Transforming XML Data 111

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Configuration File Format

The gpfdist configuration file uses the YAML 1.1 document format and implements
a schema for defining the transformation parameters. The configuration file must be a
valid YAML document.

The gpfdist program processes the document in order and uses indentation (spaces)
to determine the document hierarchy and relationships of the sections to one another.
The use of white space is significant. Do not use white space for formatting and do not
use tabs.

The following is the basic structure of a configuration file.

VERSION: 1.0.0.1

TRANSFORMATIONS:

 transformation_name1:

 TYPE: input | output

 COMMAND: command

 CONTENT: data | paths

 SAFE: posix-regex

 STDERR: server | console

 transformation_name2:

 TYPE: input | output

 COMMAND: command

 ...

VERSION

Required. The version of the gpfdist configuration file schema. The current
version is 1.0.0.1.

TRANSFORMATIONS

Required. Begins the transformation specification section. A configuration file must
have at least one transformation. When gpfdist receives a transformation request,
it looks in this section for an entry with the matching transformation name.

TYPE

Required. Specifies the direction of transformation. Values are input or output.

• input: gpfdist treats the standard output of the transformation process as a
stream of records to load into Greenplum Database.
Transforming XML Data 112

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
• output: gpfdist treats the standard input of the transformation process as a
stream of records from Greenplum Database to transform and write to the
appropriate output.

COMMAND

Required. Specifies the command gpfdist will execute to perform the
transformation.

For input transformations, gpfdist invokes the command specified in the CONTENT
setting. The command is expected to open the underlying file(s) as appropriate and
produce one line of TEXT for each row to load into Greenplum Database. The input
transform determines whether the entire content should be converted to one row or
to multiple rows.

For output transformations, gpfdist invokes this command as specified in the
CONTENT setting. The output command is expected to open and write to the
underlying file(s) as appropriate. The output transformation determines the final
placement of the converted output.

CONTENT

Optional. The values are data and paths. The default value is data.

• When CONTENT specifies data, the text %filename% in the COMMAND section
is replaced by the path to the file to read or write.

• When CONTENT specifies paths, the text %filename% in the COMMAND section
is replaced by the path to the temporary file that contains the list of files to
read or write.

The following is an example of a COMMAND section showing the text %filename%
that is replaced.

COMMAND: /bin/bash input_transform.sh %filename%

SAFE

Optional. A POSIX regular expression that the paths must match to be passed to the
transformation. Specify SAFE when there is a concern about injection or improper
interpretation of paths passed to the command. The default is no restriction on paths.

STDERR

Optional.The values are server and console.

This setting specifies how to handle standard error output from the transformation.
The default, server, specifies that gpfdist will capture the standard error output
from the transformation in a temporary file and send the first 8k of that file to
Greenplum Database as an error message. The error message will appear as a SQL
error. Console specifies that gpfdist does not redirect or transmit the standard
error output from the transformation.
Transforming XML Data 113

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
XML Transformation Examples
The following examples demonstrate the complete process for different types of XML
data and STX transformations. Files and detailed instructions associated with these
examples are in demo/gpfdist_transform.tar.gz. Read the README file in the
Before You Begin section before you run the examples. The README file explains
how to download the example data file used in the examples.

Example 1 - DBLP Database Publications (In demo Directory)

This example demonstrates loading and extracting database research data. The data is
in the form of a complex XML file downloaded from the University of Washington.
The DBLP information consists of a top level <dblp> element with multiple child
elements such as <article>, <proceedings>, <mastersthesis>, <phdthesis>, and so on,
where the child elements contain details about the associated publication. For
example, the following is the XML for one publication.

<?xml version="1.0" encoding="UTF-8"?>

<mastersthesis key="ms/Brown92">

<author>Kurt P. Brown</author>

<title>PRPL: A Database Workload Language, v1.3.</title>

<year>1992</year>

<school>Univ. of Wisconsin-Madison</school>

</mastersthesis>

The goal is to import these <mastersthesis> and <phdthesis> records into the
Greenplum Database. The sample document, dblp.xml, is about 130MB in size
uncompressed. The input contains no tabs, so the relevent information can be
converted into tab-delimited records as follows:

ms/Brown92 tab masters tab Kurt P. Brown tab PRPL: A Database
Workload Specification Language, v1.3. tab 1992 tab Univ. of
Wisconsin-Madison newline

With the columns:

key text, -- e.g. ms/Brown92

type text, -- e.g. masters

author text, -- e.g. Kurt P. Brown

title text, -- e.g. PRPL: A Database Workload Language, v1.3.

year text, -- e.g. 1992

school text, -- e.g. Univ. of Wisconsin-Madison

Then, load the data into Greenplum Database.

After the data loads, verify the data by extracting the loaded records as XML with an
output transformation.

Example 2 - IRS MeF XML Files (In demo Directory)

This example demonstrates loading a sample IRS Modernized eFile tax return using a
joost STX transformation. The data is in the form of a complex XML file.
Transforming XML Data 114

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
The U.S. Internal Revenue Service (IRS) made a significant commitment to XML and
specifies its use in its Modernized e-File (MeF) system. In MeF, each tax return is an
XML document with a deep hierarchical structure that closely reflects the particular
form of the underlying tax code.

XML, XML Schema and stylesheets play a role in their data representation and
business workflow. The actual XML data is extracted from a ZIP file attached to a
MIME “transmission file” message. For more information about MeF, see
Modernized e-File (Overview) on the IRS web site.

The sample XML document, RET990EZ_2006.xml, is about 350KB in size with two
elements:

• ReturnHeader

• ReturnData

The <ReturnHeader> contains general details about the tax return such as the
taxpayer's name, the tax year of the return, and the preparer. The <ReturnData>
contains multiple sections with specific details about the tax return and associated
schedules.

The following is an abridged sample of the XML file.

<?xml version="1.0" encoding="UTF-8"?>
<Return returnVersion="2006v2.0"
 xmlns="http://www.irs.gov/efile"
 xmlns:efile="http://www.irs.gov/efile"
 xsi:schemaLocation="http://www.irs.gov/efile"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ReturnHeader binaryAttachmentCount="1">
 <ReturnId>AAAAAAAAAAAAAAAAAAAA</ReturnId>
 <Timestamp>1999-05-30T12:01:01+05:01</Timestamp>
 <ReturnType>990EZ</ReturnType>
 <TaxPeriodBeginDate>2005-01-01</TaxPeriodBeginDate>
 <TaxPeriodEndDate>2005-12-31</TaxPeriodEndDate>
 <Filer>
 <EIN>011248772</EIN>
 ... more data ...
 </Filer>
 <Preparer>
 <Name>Percy Polar</Name>
 ... more data ...
 </Preparer>
 <TaxYear>2005</TaxYear>
 </ReturnHeader>
 ... more data ..

The goal is to import all the data into a Greenplum database. First, convert the XML
document into text with newlines “escaped”, with two columns: ReturnId and a
single column on the end for the entire MeF tax return. For example:

AAAAAAAAAAAAAAAAAAAA|<Return returnVersion="2006v2.0"...

Load the data into Greenplum Database.
Transforming XML Data 115

http://www.irs.gov/efile/article/0,,id=146364,00.html
http://www.irs.gov/efile/article/0,,id=146364,00.html

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Example 3 - WITSML™ Files (In demo Directory)

This example demonstrates loading sample data describing an oil rig using a joost
STX transformation. The data is in the form a complex XML file downloaded from
energistics.org.

The Wellsite Information Transfer Standard Markup Language (WITSML™) is an oil
industry initiative to provide open, non-proprietary, standard interfaces for technology
and software to share information among oil companies, service companies, drilling
contractors, application vendors, and regulatory agencies. For more information about
WITSML™, see http://www.witsml.org.

The oil rig information consists of a top level <rigs> element with multiple child
elements such as <documentInfo>, <rig>, and so on. The following excerpt from
the file shows the type of information in the <rig> tag.

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet href="../stylesheets/rig.xsl" type="text/xsl"
media="screen"?>

<rigs

xmlns="http://www.witsml.org/schemas/131"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.witsml.org/schemas/131 ../obj_rig.xsd"

 version="1.3.1.1">

 <documentInfo>

 ... misc data ...

 </documentInfo>

 <rig uidWell="W-12" uidWellbore="B-01" uid="xr31">

 <nameWell>6507/7-A-42</nameWell>

 <nameWellbore>A-42</nameWellbore>

 <name>Deep Drill #5</name>

 <owner>Deep Drilling Co.</owner>

 <typeRig>floater</typeRig>

 <manufacturer>Fitsui Engineering</manufacturer>

 <yearEntService>1980</yearEntService>

 <classRig>ABS Class A1 M CSDU AMS ACCU</classRig>

 <approvals>DNV</approvals>

 ... more data ...

The goal is to import the information for this rig into Greenplum Database.

The sample document, rig.xml, is about 11KB in size. The input does not contain tabs
so the relevant information can be converted into records delimited with a pipe (|).

W-12|6507/7-A-42|xr31|Deep Drill #5|Deep Drilling Co.|John
Doe|John.Doe@his-ISP.com|<?xml version="1.0" encoding="UTF-8" ...

With the columns:

 well_uid text, -- e.g. W-12

 well_name text, -- e.g. 6507/7-A-42

 rig_uid text, -- e.g. xr31

 rig_name text, -- e.g. Deep Drill #5
Transforming XML Data 116

http://www.witsml.org
http://www.witsml.org

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
 rig_owner text, -- e.g. Deep Drilling Co.

 rig_contact text, -- e.g. John Doe

 rig_email text, -- e.g. John.Doe@his-ISP.com

 doc xml

Then, load the data into Greenplum Database.

Formatting Data Files
When you use the Greenplum tools for loading and unloading data, you must specify
how your data is formatted. COPY, CREATE EXTERNAL TABLE, and gpload have
clauses that allow you to specify how your data is formatted. Data can be delimited
text (TEXT) or comma separated values (CSV) format. External data must be formatted
correctly to be read by Greenplum Database. This section explains the format of data
files expected by Greenplum Database.

• Formatting Rows

• Formatting Columns

• Representing NULL Values

• Escaping

• Character Encoding

Formatting Rows
Greenplum Database expects rows of data to be separated by the LF character (Line
feed, 0x0A), CR (Carriage return, 0x0D), or CR followed by LF (CR+LF, 0x0D 0x0A).
LF is the standard newline representation on UNIX or UNIX-like operating systems.
Operating systems such as Windows or Mac OS 9 use CR or CR+LF. All of these
representations of a newline are supported by Greenplum Database as a row delimiter.
For more information, see “Importing and Exporting Fixed Width Data” on page 92.

Formatting Columns
The default column or field delimiter is the horizontal TAB character (0x09) for text
files and the comma character (0x2C) for CSV files. You can declare a single character
delimiter using the DELIMITER clause of COPY, CREATE EXTERNAL TABLE or gpload
when you define your data format. The delimiter character must appear between any
two data value fields. Do not place a delimiter at the beginning or end of a row. For
example, if the pipe character (|) is your delimiter:

data value 1|data value 2|data value 3

The following command shows the use of the pipe character as a column delimiter:

=# CREATE EXTERNAL TABLE ext_table (name text, date date)

LOCATION (‘gpfdist://<hostname>/filename.txt)

FORMAT ‘TEXT’ (DELIMITER ‘|’);
Formatting Data Files 117

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Representing NULL Values
NULL represents an unknown piece of data in a column or field. Within your data files
you can designate a string to represent null values. The default string is \N
(backslash-N) in TEXT mode, or an empty value with no quotations in CSV mode. You
can also declare a different string using the NULL clause of COPY, CREATE EXTERNAL
TABLE or gpload when defining your data format. For example, you can use an
empty string if you do not want to distinguish nulls from empty strings. When using
the Greenplum Database loading tools, any data item that matches the designated null
string is considered a null value.

Escaping
There are two reserved characters that have special meaning to Greenplum Database:

• The designated delimiter character separates columns or fields in the data file.

• The newline character designates a new row in the data file.

If your data contains either of these characters, you must escape the character so that
Greenplum treats it as data and not as a field separator or new row. By default, the
escape character is a \ (backslash) for text-formatted files and a double quote (") for
csv-formatted files.

Escaping in Text Formatted Files
By default, the escape character is a \ (backslash) for text-formatted files. You can
declare a different escape character in the ESCAPE clause of COPY, CREATE EXTERNAL
TABLE or gpload. If your escape character appears in your data, use it to escape itself.

For example, suppose you have a table with three columns and you want to load the
following three fields:

• backslash = \

• vertical bar = |

• exclamation point = !

Your designated delimiter character is | (pipe character), and your designated escape
character is \ (backslash). The formatted row in your data file looks like this:

backslash = \\ | vertical bar = \| | exclamation point = !

Notice how the backslash character that is part of the data is escaped with another
backslash character, and the pipe character that is part of the data is escaped with a
backslash character.

You can use the escape character to escape octal and hexidecimal sequences. The
escaped value is converted to the equivalent character when loaded into Greenplum
Database. For example, to load the ampersand character (&), use the escape character
to escape its equivalent hexidecimal (\0x26) or octal (\046) representation.

You can disable escaping in TEXT-formatted files using the ESCAPE clause of COPY,
CREATE EXTERNAL TABLE or gpload as follows:

ESCAPE 'OFF'
Formatting Data Files 118

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
This is useful for input data that contains many backslash characters, such as web log
data.

Escaping in CSV Formatted Files
By default, the escape character is a " (double quote) for CSV-formatted files. If you
want to use a different escape character, use the ESCAPE clause of COPY, CREATE
EXTERNAL TABLE or gpload to declare a different escape character. In cases where
your selected escape character is present in your data, you can use it to escape itself.

For example, suppose you have a table with three columns and you want to load the
following three fields:

• Free trip to A,B

• 5.89

• Special rate "1.79"

Your designated delimiter character is , (comma), and your designated escape
character is " (double quote). The formatted row in your data file looks like this:

"Free trip to A,B","5.89","Special rate ""1.79"""

The data value with a comma character that is part of the data is enclosed in double
quotes. The double quotes that are part of the data are escaped with a double quote
even though the field value is enclosed in double quotes.

Embedding the entire field inside a set of double quotes guarantees preservation of
leading and trailing whitespace characters:

"Free trip to A,B ","5.89 ","Special rate ""1.79"" "

Note: In CSV mode, all characters are significant. A quoted value surrounded by
white space, or any characters other than DELIMITER, includes those characters. This
can cause errors if you import data from a system that pads CSV lines with white
space to some fixed width. In this case, preprocess the CSV file to remove the trailing
white space before importing the data into Greenplum Database.

Character Encoding
Character encoding systems consist of a code that pairs each character from a
character set with something else, such as a sequence of numbers or octets, to facilitate
data stransmission and storage. Greenplum Database supports a variety of character
sets, including single-byte character sets such as the ISO 8859 series and
multiple-byte character sets such as EUC (Extended UNIX Code), UTF-8, and Mule
internal code. Clients can use all supported character sets transparently, but a few are
not supported for use within the server as a server-side encoding.

Data files must be in a character encoding recognized by Greenplum Database. See
the Greenplum Database Reference Guide for the supported character sets. Data files
that contain invalid or unsupported encoding sequences encounter errors when loading
into Greenplum Database.

Note: On data files generated on a Microsoft Windows operating system, run the
dos2unix system command to remove any Windows-only characters before loading
into Greenplum Database.
Formatting Data Files 119

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Example Custom Data Access Protocol
The following is the API for the Greenplum Database custom data access protocol.
The example protocol implementation gpextprotocal.c is written in C and shows how
the API can be used. For information about accessing a custom data access protocol,
see “Using a Custom Protocol” on page 93.

/* ---- Read/Write function API ------*/

CALLED_AS_EXTPROTOCOL(fcinfo)

EXTPROTOCOL_GET_URL(fcinfo)(fcinfo)
EXTPROTOCOL_GET_DATABUF(fcinfo)
EXTPROTOCOL_GET_DATALEN(fcinfo)
EXTPROTOCOL_GET_SCANQUALS(fcinfo)
EXTPROTOCOL_GET_USER_CTX(fcinfo)
EXTPROTOCOL_IS_LAST_CALL(fcinfo)
EXTPROTOCOL_SET_LAST_CALL(fcinfo)
EXTPROTOCOL_SET_USER_CTX(fcinfo, p)

/* ------ Validator function API ------*/

CALLED_AS_EXTPROTOCOL_VALIDATOR(fcinfo)

EXTPROTOCOL_VALIDATOR_GET_URL_LIST(fcinfo)
EXTPROTOCOL_VALIDATOR_GET_NUM_URLS(fcinfo)
EXTPROTOCOL_VALIDATOR_GET_NTH_URL(fcinfo, n)
EXTPROTOCOL_VALIDATOR_GET_DIRECTION(fcinfo)

Notes
The protocol corresponds to the example described in “Using a Custom Protocol” on
page 93. The source code file name and shared object are gpextprotocol.c and
gpextprotocol.so.

The protocol has the following properties:

• The name defined for the protocol is myprot.

• The protocol has the following simple form: the protocol name and a path,
separated by ://.

myprot://path

• Three functions are implemented:

• myprot_import() a read function

• myprot_export() a write function

• myprot_validate_urls() a validation function
These functions are referenced in the CREATE PROTOCOL statement when the
protocol is created and declared in the database.

The example implementation gpextprotocal.c uses fopen() and fread() to simulate
a simple protocol that reads local files. In practice, however, the protocol would
implement functionality such as a remote connection to some process over the
network.
Example Custom Data Access Protocol 120

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
Installing the External Table Protocol
To use the example external table protocol, you use the C compiler cc to compile and
link the source code to create a shared object that can be dynamically loaded by
Greenplum Database. The commands to compile and link the source code on a Linux
system are similar to this:

cc -fpic -c gpextprotocal.c
cc -shared -o gpextprotocal.so gpextprotocal.o

The option -fpic specifies creating position-independent code (PIC) and the -c
option compiles the source code without linking and creates an object file. The object
file needs to be created as position-independent code (PIC) so that it can be loaded at
any arbitrary location in memory by Greenplum Database.

The flag -shared specifies creating a shared object (shared library) and the -o option
specifies the shared object file name gpextprotocal.so. Refer to the GCC manual
for more information on the cc options.

The header files that are declared as include files in gpextprotocal.c are located in
subdirectories of $GPHOME/include/postgresql/.

For more information on compiling and linking dynamically-loaded functions and
examples of compiling C source code to create a shared library on other operating
systems, see the Postgres documentation at
http://www.postgresql.org/docs/8.4/static/xfunc-c.html#DFUNC.

The manual pages for the C compiler cc and the link editor ld for your operating
system also contain information on compiling and linking source code on your
system.

The compiled code (shared object file) for the custom protocol must be placed in the
same location on every host in your Greenplum Database array (master and all
segments). This location must also be in the LD_LIBRARY_PATH so that the server can
locate the files. It is recommended to locate shared libraries either relative to $libdir
(which is located at $GPHOME/lib) or through the dynamic library path (set by the
dynamic_library_path server configuration parameter) on all master segment
instances in the Greenplum array. You can use the Greenplum Database utilities
gpssh and gpscp to update segments.

gpextprotocal.c

#include "postgres.h"
#include "fmgr.h"
#include "funcapi.h"

#include "access/extprotocol.h"
#include "catalog/pg_proc.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "utils/memutils.h"
Example Custom Data Access Protocol 121

http://www.postgresql.org/docs/8.4/static/xfunc-c.html#DFUNC

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data

/* Our chosen URI format. We can change it however needed */
typedef struct DemoUri
{
 char *protocol;
 char *path;
} DemoUri;

static DemoUri *ParseDemoUri(const char *uri_str);
static void FreeDemoUri(DemoUri* uri);

/* Do the module magic dance */
PG_MODULE_MAGIC;
PG_FUNCTION_INFO_V1(demoprot_export);
PG_FUNCTION_INFO_V1(demoprot_import);
PG_FUNCTION_INFO_V1(demoprot_validate_urls);

Datum demoprot_export(PG_FUNCTION_ARGS);
Datum demoprot_import(PG_FUNCTION_ARGS);
Datum demoprot_validate_urls(PG_FUNCTION_ARGS);

/* A user context that persists across calls. Can be declared in
any other way */

typedef struct {
 char *url;
 char *filename;
 FILE *file;
} extprotocol_t;

/*
* The read function - Import data into GPDB.
*/
Datum
myprot_import(PG_FUNCTION_ARGS)
{
 extprotocol_t *myData;
 char *data;
 int datlen;
 size_t nread = 0;

 /* Must be called via the external table format manager */
 if (!CALLED_AS_EXTPROTOCOL(fcinfo))
 elog(ERROR, "myprot_import: not called by external
 protocol manager");

 /* Get our internal description of the protocol */
 myData = (extprotocol_t *) EXTPROTOCOL_GET_USER_CTX(fcinfo);

 if(EXTPROTOCOL_IS_LAST_CALL(fcinfo))
 {
 /* we're done receiving data. close our connection */
 if(myData && myData->file)
 if(fclose(myData->file))
 ereport(ERROR,
 (errcode_for_file_access(),
 errmsg("could not close file \"%s\": %m",
 myData->filename)));
Example Custom Data Access Protocol 122

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data

 PG_RETURN_INT32(0);
 }

 if (myData == NULL)
 {

 /* first call. do any desired init */

 const char *p_name = "myprot";
 DemoUri *parsed_url;
 char *url = EXTPROTOCOL_GET_URL(fcinfo);

 myData = palloc(sizeof(extprotocol_t));

 myData->url = pstrdup(url);
 parsed_url = ParseDemoUri(myData->url);
 myData->filename = pstrdup(parsed_url->path);

 if(strcasecmp(parsed_url->protocol, p_name) != 0)
 elog(ERROR, "internal error: myprot called with a
 different protocol (%s)",
 parsed_url->protocol);

 FreeDemoUri(parsed_url);

 /* open the destination file (or connect to remote server in
 other cases) */
 myData->file = fopen(myData->filename, "r");

 if (myData->file == NULL)
 ereport(ERROR,
 (errcode_for_file_access(),
 errmsg("myprot_import: could not open file \"%s\"
 for reading: %m",
 myData->filename),
 errOmitLocation(true)));

 EXTPROTOCOL_SET_USER_CTX(fcinfo, myData);
 }

 /* ==
 * DO THE IMPORT
 * == */

 data = EXTPROTOCOL_GET_DATABUF(fcinfo);
 datlen = EXTPROTOCOL_GET_DATALEN(fcinfo);

 /* read some bytes (with fread in this example, but normally
 in some other method over the network) */
 if(datlen > 0)
 {
 nread = fread(data, 1, datlen, myData->file);
 if (ferror(myData->file))
 ereport(ERROR,
 (errcode_for_file_access(),
 errmsg("myprot_import: could not write to file
 \"%s\": %m",
 myData->filename)));
 }
Example Custom Data Access Protocol 123

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
 PG_RETURN_INT32((int)nread);
}

/*
 * Write function - Export data out of GPDB
 */
Datum
myprot_export(PG_FUNCTION_ARGS)
{
 extprotocol_t *myData;
 char *data;
 int datlen;
 size_t wrote = 0;

 /* Must be called via the external table format manager */

 if (!CALLED_AS_EXTPROTOCOL(fcinfo))
 elog(ERROR, "myprot_export: not called by external
 protocol manager");

 /* Get our internal description of the protocol */
 myData = (extprotocol_t *) EXTPROTOCOL_GET_USER_CTX(fcinfo);

 if(EXTPROTOCOL_IS_LAST_CALL(fcinfo))
 {
 /* we're done sending data. close our connection */
 if(myData && myData->file)
 if(fclose(myData->file))
 ereport(ERROR,
 (errcode_for_file_access(),
 errmsg("could not close file \"%s\": %m",
 myData->filename)));

 PG_RETURN_INT32(0);
 }

 if (myData == NULL)
 {
 /* first call. do any desired init */

 const char *p_name = "myprot";
 DemoUri *parsed_url;
 char *url = EXTPROTOCOL_GET_URL(fcinfo);

 myData = palloc(sizeof(extprotocol_t));

 myData->url = pstrdup(url);
 parsed_url = ParseDemoUri(myData->url);
 myData->filename = pstrdup(parsed_url->path);

 if(strcasecmp(parsed_url->protocol, p_name) != 0)
 elog(ERROR, "internal error: myprot called with a
 different protocol (%s)",
 parsed_url->protocol);

 FreeDemoUri(parsed_url);

 /* open the destination file (or connect to remote server in
 other cases) */
Example Custom Data Access Protocol 124

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
 myData->file = fopen(myData->filename, "a");

 if (myData->file == NULL)
 ereport(ERROR,
 (errcode_for_file_access(),
 errmsg("myprot_export: could not open file \"%s\"
 for writing: %m",
 myData->filename),
 errOmitLocation(true)));

 EXTPROTOCOL_SET_USER_CTX(fcinfo, myData);
 }

 /* ==
 * DO THE EXPORT
 * == */

 data = EXTPROTOCOL_GET_DATABUF(fcinfo);
 datlen = EXTPROTOCOL_GET_DATALEN(fcinfo);

 if(datlen > 0)
 {
 wrote = fwrite(data, 1, datlen, myData->file);
 if (ferror(myData->file))
 ereport(ERROR,
 (errcode_for_file_access(),
 errmsg("myprot_import: could not read from file
 \"%s\": %m",
 myData->filename)));
 }

 PG_RETURN_INT32((int)wrote);
}

Datum
myprot_validate_urls(PG_FUNCTION_ARGS)
{
 List *urls;
 int nurls;
 int i;
 ValidatorDirection direction;

 /* Must be called via the external table format manager */
 if (!CALLED_AS_EXTPROTOCOL_VALIDATOR(fcinfo))
 elog(ERROR, "myprot_validate_urls: not called by external
 protocol manager");

 nurls = EXTPROTOCOL_VALIDATOR_GET_NUM_URLS(fcinfo);
 urls = EXTPROTOCOL_VALIDATOR_GET_URL_LIST(fcinfo);
 direction = EXTPROTOCOL_VALIDATOR_GET_DIRECTION(fcinfo);

 /*
 * Dumb example 1: search each url for a substring
 * we don't want to be used in a url. in this example
 * it's 'secured_directory'.
 */
 for (i = 1 ; i <= nurls ; i++)
Example Custom Data Access Protocol 125

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
 {
 char *url = EXTPROTOCOL_VALIDATOR_GET_NTH_URL(fcinfo, i);

 if (strstr(url, "secured_directory") != 0)
 {
 ereport(ERROR,
 (errcode(ERRCODE_PROTOCOL_VIOLATION),
 errmsg("using 'secured_directory' in a url
 isn't allowed ")));
 }
 }

 /*
 * Dumb example 2: set a limit on the number of urls
 * used. In this example we limit readable external
 * tables that use our protocol to 2 urls max.
 */
 if(direction == EXT_VALIDATE_READ && nurls > 2)
 {
 ereport(ERROR,
 (errcode(ERRCODE_PROTOCOL_VIOLATION),
 errmsg("more than 2 urls aren't allowed in
this protocol ")));
 }

 PG_RETURN_VOID();
}

/* --- utility functions --- */

static
DemoUri *ParseDemoUri(const char *uri_str)
{
 DemoUri *uri = (DemoUri *) palloc0(sizeof(DemoUri));
 int protocol_len;

 uri->path = NULL;
 uri->protocol = NULL;

 /*
 * parse protocol
 */
 char *post_protocol = strstr(uri_str, "://");

 if(!post_protocol)
 {
 ereport(ERROR,
 (errcode(ERRCODE_SYNTAX_ERROR),
 errmsg("invalid protocol URI \'%s\'", uri_str),
 errOmitLocation(true)));
 }

 protocol_len = post_protocol - uri_str;
 uri->protocol = (char *)palloc0(protocol_len + 1);
 strncpy(uri->protocol, uri_str, protocol_len);

 /* make sure there is more to the uri string */
 if (strlen(uri_str) <= protocol_len)
Example Custom Data Access Protocol 126

Greenplum Database DBA Guide 4.3 – Chapter 7: Loading and Unloading Data
 ereport(ERROR,
 (errcode(ERRCODE_SYNTAX_ERROR),
 errmsg("invalid myprot URI \'%s\' : missing path",
 uri_str),
 errOmitLocation(true)));

 /* parse path */
 uri->path = pstrdup(uri_str + protocol_len + strlen("://"));

 return uri;
}

static
void FreeDemoUri(DemoUri *uri)
{
 if (uri->path)
 pfree(uri->path);
 if (uri->protocol)
 pfree(uri->protocol);

 pfree(uri);
}
Example Custom Data Access Protocol 127

Greenplum Database DBA Guide 4.3 – Chapter 8: About Greenplum Query Processing
8. About Greenplum Query Processing

Users issue queries to Greenplum Database as they would to any database
management system (DBMS). They connect to the database instance on the
Greenplum master host using a client application such as psql and submit SQL
statements.

Understanding Query Planning and Dispatch
The master receives, parses, and optimizes the query. The resulting query plan is
either parallel or targeted. The master dispatches parallel query plans to all segments,
as shown in Figure 8.1. The master dispatches targeted query plans to a single
segment, as shown in Figure 8.2. Each segment is responsible for executing local
database operations on its own set of data.

Most database operations—such as table scans, joins, aggregations, and sorts—
execute across all segments in parallel. Each operation is performed on a segment
database independent of the data stored in the other segment databases.

Figure 8.1 Dispatching the Parallel Query Plan
Understanding Query Planning and Dispatch 128

Greenplum Database DBA Guide 4.3 – Chapter 8: About Greenplum Query Processing
Certain queries may access only data on a single segment, such as single-row INSERT,
UPDATE, DELETE, or SELECT operations or queries that filter on the table distribution
key column(s). In queries such as these, the query plan is not dispatched to all
segments, but is targeted at the segment that contains the affected or relevant row(s).

Figure 8.2 Dispatching a Targeted Query Plan

Understanding Greenplum Query Plans
A query plan is the set of operations Greenplum Database will perform to produce the
answer to a query. Each node or step in the plan represents a database operation such
as a table scan, join, aggregation, or sort. Plans are read and executed from bottom to
top.

In addition to common database operations such as tables scans, joins, and so on,
Greenplum Database has an additional operation type called motion. A motion
operation involves moving tuples between the segments during query processing.
Note that not every query requires a motion. For example, a targeted query plan does
not require data to move across the interconnect.

To achieve maximum parallelism during query execution, Greenplum divides the
work of the query plan into slices. A slice is a portion of the plan that segments can
work on independently. A query plan is sliced wherever a motion operation occurs in
the plan, with one slice on each side of the motion.

For example, consider the following simple query involving a join between two
tables:

SELECT customer, amount

FROM sales JOIN customer USING (cust_id)
Understanding Greenplum Query Plans 129

Greenplum Database DBA Guide 4.3 – Chapter 8: About Greenplum Query Processing
WHERE dateCol = '04-30-2008';

Figure 8.3 shows the query plan. Each segment receives a copy of the query plan and
works on it in parallel.

The query plan for this example has a redistribute motion that moves tuples between
the segments to complete the join. The redistribute motion is necessary because the
customer table is distributed across the segments by cust_id, but the sales table is
distributed across the segments by sale_id. To perform the join, the sales tuples
must be redistributed by cust_id. The plan is sliced on either side of the redistribute
motion, creating slice 1 and slice 2.

This query plan has another type of motion operation called a gather motion. A gather
motion is when the segments send results back up to the master for presentation to the
client. Because a query plan is always sliced wherever a motion occurs, this plan also
has an implicit slice at the very top of the plan (slice 3). Not all query plans involve a
gather motion. For example, a CREATE TABLE x AS SELECT... statement would not
have a gather motion because tuples are sent to the newly created table, not to the
master.

Figure 8.3 Query Slice Plan

Customer CustomerSalesSales

Understanding Parallel Query Execution
Greenplum creates a number of database processes to handle the work of a query. On
the master, the query worker process is called the query dispatcher (QD). The QD is
responsible for creating and dispatching the query plan. It also accumulates and
Understanding Parallel Query Execution 130

Greenplum Database DBA Guide 4.3 – Chapter 8: About Greenplum Query Processing
presents the final results. On the segments, a query worker process is called a query
executor (QE). A QE is responsible for completing its portion of work and
communicating its intermediate results to the other worker processes.

There is at least one worker process assigned to each slice of the query plan. A worker
process works on its assigned portion of the query plan independently. During query
execution, each segment will have a number of processes working on the query in
parallel.

Related processes that are working on the same slice of the query plan but on different
segments are called gangs. As a portion of work is completed, tuples flow up the
query plan from one gang of processes to the next. This inter-process communication
between the segments is referred to as the interconnect component of Greenplum
Database.

Figure 8.4 shows the query worker processes on the master and two segment instances
for the query plan illustrated in Figure 8.3.

Figure 8.4 Query Worker Processes
Understanding Parallel Query Execution 131

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
9. Querying Data

This chapter describes how to use SQL (Structured Query Language) in Greenplum
Database. You enter SQL commands called queries to view, change, and analyze data
in a database using the PostgreSQL client psql or similar client tools.

• Defining Queries

• Using Functions and Operators

• Query Performance

• Query Profiling

Defining Queries
This section describes how to construct SQL queries in Greenplum Database.

• SQL Lexicon

• SQL Value Expressions

SQL Lexicon
SQL is a standard language for accessing databases. The language consists of
elements that enable data storage, retrieval, analysis, viewing, manipulation, and so
on. You use SQL commands to construct queries and commands that the Greenplum
Database engine understands. SQL queries consist of a sequence of commands.
Commands consist of a sequence of valid tokens in correct syntax order, terminated by
a semicolon (;). For more information about SQL commands, see the Greenplum
Database Reference Guide.

Greenplum Database uses PostgreSQL’s structure and syntax with some exceptions.
For more information about SQL rules and concepts in PostgreSQL, see SQL Syntax
in the PostgreSQL documentation.

SQL Value Expressions
SQL value expressions consist of one or more values, symbols, operators, SQL
functions, and data. The expressions compare data or perform calculations and return
a value as the result. Calculations include logical, arithmetic, and set operations.

The following are value expressions:

• An aggregate expression

• An array constructor

• A column reference

• A constant or literal value

• A correlated subquery

• A field selection expression
Defining Queries 132

http://www.postgresql.org/docs/8.2/static/sql-syntax.html

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
• A function call

• A new column value in an INSERT or UPDATE

• An operator invocationcolumn reference

• A positional parameter reference, in the body of a function definition or prepared
statement

• A row constructor

• A scalar subquery

• A search condition in a WHERE clause

• A target list of a SELECT command

• A type cast

• A value expression in parentheses, useful to group sub-expressions and override
precedence

• A window expression

SQL constructs such as functions and operators are expressions but do not follow any
general syntax rules. Fore more information about these constructs, see “Using
Functions and Operators” on page 142.

Column References
A column reference has the form:

correlation.columnname

Here, correlation is the name of a table (possibly qualified with a schema name) or
an alias for a table defined with a FROM clause or one of the keywords NEW or OLD. NEW
and OLD can appear only in rewrite rules, but you can use other correlation names in
any SQL statement. If the column name is unique across all tables in the query, you
can omit the “correlation.” part of the column reference.

Positional Parameters
Positional parameters are arguments to SQL statements or functions that you reference
by their positions in a series of arguments. For example, $1 refers to the first
argument, $2 to the second argument, and so on. The values of positional parameters
are set from arguments external to the SQL statement or supplied when SQL functions
are invoked. Some client libraries support specifying data values separately from the
SQL command, in which case parameters refer to the out-of-line data values. A
parameter reference has the form:

$number

For example:

CREATE FUNCTION dept(text) RETURNS dept

 AS $$ SELECT * FROM dept WHERE name = $1 $$

 LANGUAGE SQL;

Here, the $1 references the value of the first function argument whenever the function
is invoked.
Defining Queries 133

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
Subscripts
If an expression yields a value of an array type, you can extract a specific element of
the array value as follows:

expression[subscript]

You can extract multiple adjacent elements, called an array slice, as follows
(including the brackets):

expression[lower_subscript:upper_subscript]

Each subscript is an expression and yields an integer value.

Array expressions usually must be in parentheses, but you can omit the parentheses
when the expression to be subscripted is a column reference or positional parameter.
You can concatenate multiple subscripts when the original array is multidimensional.
For example (including the parentheses):

mytable.arraycolumn[4]

mytable.two_d_column[17][34]

$1[10:42]

(arrayfunction(a,b))[42]

Field Selection
If an expression yields a value of a composite type (row type), you can extract a
specific field of the row as follows:

expression.fieldname

The row expression usually must be in parentheses, but you can omit these
parentheses when the expression to be selected from is a table reference or positional
parameter. For example:

mytable.mycolumn

$1.somecolumn

(rowfunction(a,b)).col3

A qualified column reference is a special case of field selection syntax.

Operator Invocations
Operator invocations have the following possible syntaxes:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

Where operator is an operator token, one of the key words AND, OR, or NOT, or
qualified operator name in the form:

OPERATOR(schema.operatorname)

Available operators and whether they are unary or binary depends on the operators
that the system or user defines. For more information about built-in operators, see
“Built-in Functions and Operators” on page 144.
Defining Queries 134

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
Function Calls
The syntax for a function call is the name of a function (possibly qualified with a
schema name), followed by its argument list enclosed in parentheses:

function ([expression [, expression ...]])

For example, the following function call computes the square root of 2:

sqrt(2)

“Built-in Functions and Operators” on page 144 lists the built-in functions. You can
add custom functions, too.

Aggregate Expressions
An aggregate expression applies an aggregate function across the rows that a query
selects. An aggregate function performs a calculation on a set of values and returns a
single value, such as the sum or average of the set of values. The syntax of an
aggregate expression is one of the following:

• aggregate_name (expression [, ...]) [FILTER (WHERE
condition)]—operates across all input rows for which the expected result value
is non-null. ALL is the default.

• aggregate_name (ALL expression [, ...]) [FILTER (WHERE
condition)]—operates identically to the first form because ALL is the default

• aggregate_name (DISTINCT expression [, ...]) [FILTER (WHERE
condition)]—operates across all distinct non-null values of input rows

• aggregate_name (*) [FILTER (WHERE condition)]—operates on all rows
with values both null and non-null. Generally, this form is most useful for the
count(*) aggregate function.

Where aggregate_name is a previously defined aggregate (possibly schema-qualified)
and expression is any value expression that does not contain an aggregate expression.

For example, count(*) yields the total number of input rows, count(f1) yields the
number of input rows in which f1 is non-null, and count(distinct f1) yields the
number of distinct non-null values of f1.

You can specify a condition with the FILTER clause to limit the input rows to the
aggregate function. For example:

SELECT count(*) FILTER (WHERE gender='F') FROM employee;

The WHERE condition of the FILTER clause cannot contain a set-returning function,
subquery, window function, or outer reference. If you use a user-defined aggregate
function, declare the state transition function as STRICT (see CREATE AGGREGATE).

For predefined aggregate functions, see “Aggregate Functions” on page 145. You can
also add custom aggregate functions.

Greenplum Database provides the MEDIAN aggregate function, which returns the
fiftieth percentile of the PERCENTILE_CONT result and special aggregate expressions
for inverse distribution functions as follows:

PERCENTILE_CONT(_percentage_) WITHIN GROUP (ORDER BY
expression)

PERCENTILE_DISC(_percentage_) WITHIN GROUP (ORDER BY
Defining Queries 135

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
expression)

Currently you can use only these two expressions with the keyword WITHIN GROUP.

Limitations of Aggregate Expressions

The following are current limitations of the aggregate expressions:

• Greenplum Database does not support the following keywords: ALL, DISTINCT,
FILTER and OVER. See Table 9.5, “Advanced Aggregate Functions” on page 148
for more details.

• Greenplum Database does not support the following grouping specifications:
CUBE, ROLLUP, and GROUPING SETS.

• An aggregate expression can appear only in the result list or HAVING clause of a
SELECT command. It is forbidden in other clauses, such as WHERE, because those
clauses are logically evaluated before the results of aggregates form. This
restriction applies to the query level to which the aggregate belongs.

• When an aggregate expression appears in a subquery, the aggregate is normally
evaluated over the rows of the subquery. If the aggregate’s arguments contain only
outer-level variables, the aggregate belongs to the nearest such outer level and
evaluates over the rows of that query. The aggregate expression as a whole is then
an outer reference for the subquery in which it appears, and the aggregate
expression acts as a constant over any one evaluation of that subquery. See “Scalar
Subqueries” on page 138 and “Subquery Expressions” on page 145.

• Greenplum Database does not support DISTINCT with multiple input expressions.

Window Expressions
Window expressions allow application developers to more easily compose complex
online analytical processing (OLAP) queries using standard SQL commands. For
example, with window expressions, users can calculate moving averages or sums over
various intervals, reset aggregations and ranks as selected column values change, and
express complex ratios in simple terms.

A window expression represents the application of a window function applied to a
window frame, which is defined in a special OVER() clause. A window partition is a
set of rows that are grouped together to apply a window function. Unlike aggregate
functions, which return a result value for each group of rows, window functions return
a result value for every row, but that value is calculated with respect to the rows in a
particular window partition. If no partition is specified, the window function is
computed over the complete intermediate result set.

The syntax of a window expression is:

window_function ([expression [, ...]]) OVER (
window_specification)

Where window_function is one of the functions listed in “Window Functions” on
page 146, expression is any value expression that does not contain a window
expression, and window_specification is:

[window_name]

[PARTITION BY expression [, ...]]

[[ORDER BY expression [ASC | DESC | USING operator] [, ...]
Defining Queries 136

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
 [{RANGE | ROWS}

 { UNBOUNDED PRECEDING

 | expression PRECEDING

 | CURRENT ROW

 | BETWEEN window_frame_bound AND window_frame_bound }]]

 and where window_frame_bound can be one of:
 UNBOUNDED PRECEDING

 expression PRECEDING

 CURRENT ROW

 expression FOLLOWING

 UNBOUNDED FOLLOWING

A window expression can appear only in the select list of a SELECT command. For
example:

SELECT count(*) OVER(PARTITION BY customer_id), * FROM
sales;

The OVER clause differentiates window functions from other aggregate or reporting
functions. The OVER clause defines the window_specification to which the
window function is applied. A window specification has the following characteristics:

• The PARTITION BY clause defines the window partitions to which the window
function is applied. If omitted, the entire result set is treated as one partition.

• The ORDER BY clause defines the expression(s) for sorting rows within a window
partition. The ORDER BY clause of a window specification is separate and distinct
from the ORDER BY clause of a regular query expression. The ORDER BY clause is
required for the window functions that calculate rankings, as it identifies the
measure(s) for the ranking values. For OLAP aggregations, the ORDER BY clause
is required to use window frames (the ROWS | RANGE clause).

Note: Columns of data types without a coherent ordering, such as time, are not good
candidates for use in the ORDER BY clause of a window specification. Time, with or
without a specified time zone, lacks a coherent ordering because addition and
subtraction do not have the expected effects. For example, the following is not
generally true: x::time < x::time + '2 hour'::interval

• The ROWS/RANGE clause defines a window frame for aggregate (non-ranking)
window functions. A window frame defines a set of rows within a window
partition. When a window frame is defined, the window function computes on the
contents of this moving frame rather than the fixed contents of the entire window
partition. Window frames are row-based (ROWS) or value-based (RANGE).

Type Casts
A type cast specifies a conversion from one data type to another. Greenplum Database
accepts two equivalent syntaxes for type casts:

CAST (expression AS type)

expression::type

The CAST syntax conforms to SQL; the syntax with :: is historical PostgreSQL usage.
Defining Queries 137

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
A cast applied to a value expression of a known type is a run-time type conversion.
The cast succeeds only if a suitable type conversion function is defined. This differs
from the use of casts with constants. A cast applied to a string literal represents the
initial assignment of a type to a literal constant value, so it succeeds for any type if the
contents of the string literal are acceptable input syntax for the data type.

You can usually omit an explicit type cast if there is no ambiguity about the type a
value expression must produce; for example, when it is assigned to a table column, the
system automatically applies a type cast. The system applies automatic casting only to
casts marked “OK to apply implicitly” in system catalogs. Other casts must be
invoked with explicit casting syntax to prevent unexpected conversions from being
applied without the user’s knowledge.

Scalar Subqueries
A scalar subquery is a SELECT query in parentheses that returns exactly one row with
one column. Do not use a SELECT query that returns multiple rows or columns as a
scalar subquery. The query runs and uses the returned value in the surrounding value
expression. A correlated scalar subquery contains references to the outer query block.

Correlated Subqueries
A correlated subquery (CSQ) is a SELECT query with a WHERE clause or target list that
contains references to the parent outer clause. CSQs efficiently express results in
terms of results of another query. Greenplum Database supports correlated subqueries
that provide compatibility with many existing applications. A CSQ is a scalar or table
subquery, depending on whether it returns one or multiple rows. Greenplum Database
does not support correlated subqueries with skip-level correlations.

Correlated Subquery Examples

Example 1 – Scalar correlated subquery

SELECT * FROM t1 WHERE t1.x

 > (SELECT MAX(t2.x) FROM t2 WHERE t2.y = t1.y);

Example 2 – Correlated EXISTS subquery
SELECT * FROM t1 WHERE
 EXISTS (SELECT 1 FROM t2 WHERE t2.x = t1.x);

Greenplum Database uses one of the following methods to run CSQs:

• Unnest the CSQ into join operations--This method is most efficient, and it is how
Greenplum Database runs most CSQs, including queries from the TPC-H
benchmark.

• Run the CSQ on every row of the outer query--This method is relatively
inefficient, and it is how Greenplum Database runs queries that contain CSQs in
the SELECT list or are connected by OR conditions.

The following examples illustrate how to rewrite some of these types of queries to
improve performance.

Example 3 - CSQ in the Select List

Original Query

SELECT T1.a,
Defining Queries 138

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
 (SELECT COUNT(DISTINCT T2.z) FROM t2 WHERE t1.x = t2.y) dt2

FROM t1;

Rewrite this query to perform an inner join with t1 first and then perform a left join
with t1 again. The rewrite applies for only an equijoin in the correlated condition.

Rewritten Query

SELECT t1.a, dt2 FROM t1
 LEFT JOIN
 (SELECT t2.y AS csq_y, COUNT(DISTINCT t2.z) AS dt2
 FROM t1, t2 WHERE t1.x = t2.y GROUP BY t1.x)
 ON (t1.x = csq_y);

Example 4 - CSQs connected by OR Clauses
Original Query

SELECT * FROM t1
WHERE
x > (SELECT COUNT(*) FROM t2 WHERE t1.x = t2.x)
OR x < (SELECT COUNT(*) FROM t3 WHERE t1.y = t3.y)

Rewrite this query to separate it into two parts with a union on the OR conditions.

Rewritten Query

SELECT * FROM t1
WHERE x > (SELECT count(*) FROM t2 WHERE t1.x = t2.x)
UNION
SELECT * FROM t1
WHERE x < (SELECT count(*) FROM t3 WHERE t1.y = t3.y)

To view the query plan, use EXPLAIN SELECT or EXPLAIN ANALYZE SELECT.
Subplan nodes in the query plan indicate that the query will run on every row of the
outer query, and the query is a candidate for rewriting. For more information about
these statements, see “Query Profiling” on page 159.

Advanced Table Functions
Greenplum Database supports table functions with TABLE value expressions. You can
sort input rows for advanced table functions with an ORDER BY clause. You can
redistribute them with a SCATTER BY clause to specify one or more columns or an
expression for which rows with the specified characteristics are available to the same
process. This usage is similar to using a DISTRIBUTED BY clause when creating a
table, but the redistribution occurs when the query runs.

The following command uses the TABLE function with the SCATTER BY clause in the
the GPText function gptext.index() to populate the index mytest.articles with
data from the messages table:

SELECT * FROM gptext.index(TABLE(SELECT * FROM messages
SCATTER BY distrib_id), 'mytest.articles');

Note: Based on the distribution of data, Greenplum Database automatically
parallelizes table functions with TABLE value parameters over the nodes of the
cluster.

For information about the function gptext.index(), see the Pivotal GPText
documentation.
Defining Queries 139

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
Array Constructors
An array constructor is an expression that builds an array value from values for its
member elements. A simple array constructor consists of the key word ARRAY, a left
square bracket [, one or more expressions separated by commas for the array element
values, and a right square bracket]. For example,

SELECT ARRAY[1,2,3+4];

 array

 {1,2,7}

The array element type is the common type of its member expressions, determined
using the same rules as for UNION or CASE constructs.

You can build multidimensional array values by nesting array constructors. In the
inner constructors, you can omit the keyword ARRAY. For example, the following two
SELECT statements produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];

SELECT ARRAY[[1,2],[3,4]];

 array

 {{1,2},{3,4}}

Since multidimensional arrays must be rectangular, inner constructors at the same
level must produce sub-arrays of identical dimensions.

Multidimensional array constructor elements are not limited to a sub-ARRAY construct;
they are anything that produces an array of the proper kind. For example:

CREATE TABLE arr(f1 int[], f2 int[]);

INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]],
ARRAY[[5,6],[7,8]]);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr;

 array

--

 {{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}

You can construct an array from the results of a subquery. Write the array constructor
with the keyword ARRAY followed by a subquery in parentheses. For example:

SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE
'bytea%');

 ?column?

 {2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31}

The subquery must return a single column. The resulting one-dimensional array has an
element for each row in the subquery result, with an element type matching that of the
subquery’s output column. The subscripts of an array value built with ARRAY always
begin with 1.
Defining Queries 140

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
Row Constructors
A row constructor is an expression that builds a row value (also called a composite
value) from values for its member fields. For example,

SELECT ROW(1,2.5,'this is a test');

Row constructors have the syntax rowvalue.*, which expands to a list of the
elements of the row value, as when you use the syntax .* at the top level of a SELECT
list. For example, if table t has columns f1 and f2, the following queries are the
same:

SELECT ROW(t.*, 42) FROM t;

SELECT ROW(t.f1, t.f2, 42) FROM t;

By default, the value created by a ROW expression has an anonymous record type. If
necessary, it can be cast to a named composite type — either the row type of a table, or
a composite type created with CREATE TYPE AS. To avoid ambiguity, you can
explicitly cast the value if necessary. For example:

CREATE TABLE mytable(f1 int, f2 float, f3 text);

CREATE FUNCTION getf1(mytable) RETURNS int AS 'SELECT $1.f1'
LANGUAGE SQL;

-- In the following query, you do not need to cast the value because there is only one
getf1() function and therefore no ambiguity:

SELECT getf1(ROW(1,2.5,'this is a test'));

 getf1

 1

CREATE TYPE myrowtype AS (f1 int, f2 text, f3 numeric);

CREATE FUNCTION getf1(myrowtype) RETURNS int AS 'SELECT
$1.f1' LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:

SELECT getf1(ROW(1,2.5,'this is a test'));

ERROR: function getf1(record) is not unique

SELECT getf1(ROW(1,2.5,'this is a test')::mytable);

 getf1

 1

SELECT getf1(CAST(ROW(11,'this is a test',2.5) AS
myrowtype));

 getf1

 11

You can use row constructors to build composite values to be stored in a
composite-type table column or to be passed to a function that accepts a composite
parameter.
Defining Queries 141

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
Expression Evaluation Rules
The order of evaluation of subexpressions is undefined. The inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

If you can determine the result of an expression by evaluating only some parts of the
expression, then other subexpressions might not be evaluated at all. For example, in
the following expression:

SELECT true OR somefunc();

somefunc() would probably not be called at all. The same is true in the following
expression:

SELECT somefunc() OR true;

This is not the same as the left-to-right evaluation order that Boolean operators
enforce in some programming languages.

Do not use functions with side effects as part of complex expressions, especially in
WHERE and HAVING clauses, because those clauses are extensively reprocessed when
developing an execution plan. Boolean expressions (AND/OR/NOT combinations) in
those clauses can be reorganized in any manner that Boolean algebra laws allow.

Use a CASE construct to force evaluation order. The following example is an
untrustworthy way to avoid division by zero in a WHERE clause:

SELECT ... WHERE x <> 0 AND y/x > 1.5;

The following example shows a trustworthy evaluation order:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false
END;

This CASE construct usage defeats optimization attempts; use it only when necessary.

Using Functions and Operators
• Using Functions in Greenplum Database

• User-Defined Functions

• Built-in Functions and Operators

• Window Functions

• Advanced Analytic Functions
Using Functions and Operators 142

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
Using Functions in Greenplum Database

Table 9.1 Functions in Greenplum Database

Function Type Greenplum
Support Description Comments

IMMUTABLE Yes Relies only on information
directly in its argument list.
Given the same argument
values, always returns the same
result.

STABLE Yes, in most cases Within a single table scan,
returns the same result for
same argument values, but
results change across SQL
statements.

Results depend on database
lookups or parameter values.
current_timestamp family
of functions is STABLE; values
do not change within an
execution.

VOLATILE Restricted Function values can change
within a single table scan. For
example: random(),
currval(), timeofday().

Any function with side effects
is volatile, even if its result is
predictable. For example:
setval().

In Greenplum Database, data is divided up across segments — each segment is a
distinct PostgreSQL database. To prevent inconsistent or unexpected results, do not
execute functions classified as VOLATILE at the segment level if they contain SQL
commands or modify the database in any way. For example, functions such as
setval() are not allowed to execute on distributed data in Greenplum Database
because they can cause inconsistent data between segment instances.

To ensure data consistency, you can safely use VOLATILE and STABLE functions in
statements that are evaluated on and run from the master. For example, the following
statements run on the master (statements without a FROM clause):

SELECT setval('myseq', 201);

SELECT foo();

If a statement has a FROM clause containing a distributed table and the function in the
FROM clause returns a set of rows, the statement can run on the segments:

SELECT * from foo();

Greenplum Database does not support functions that return a table reference
(rangeFuncs) or functions that use the refCursor datatype.

User-Defined Functions
Greenplum Database supports user-defined functions. See Extending SQL in the
PostgreSQL documentation for more information.
Using Functions and Operators 143

http://www.postgresql.org/docs/8.2/static/extend.html

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
Use the CREATE FUNCTION command to register user-defined functions that are used
as described in “Using Functions in Greenplum Database” on page 143. By default,
user-defined functions are declared as VOLATILE, so if your user-defined function is
IMMUTABLE or STABLE, you must specify the correct volatility level when you register
your function.

When you create user-defined functions, avoid using fatal errors or destructive calls.
Greenplum Database may respond to such errors with a sudden shutdown or restart.

In Greenplum Database, the shared library files for user-created functions must reside
in the same library path location on every host in the Greenplum Database array
(masters, segments, and mirrors).

Built-in Functions and Operators
The following table lists the categories of built-in functions and operators supported
by PostgreSQL. All functions and operators are supported in Greenplum Database as
in PostgreSQL with the exception of STABLE and VOLATILE functions, which are
subject to the restrictions noted in “Using Functions in Greenplum Database” on page
143. See the Functions and Operators section of the PostgreSQL documentation for
more information about these built-in functions and operators.

Table 9.2 Built-in functions and operators

Operator/Function
Category VOLATILE Functions STABLE Functions Restrictions

Logical Operators

Comparison Operators

Mathematical Functions
and Operators

random

setseed

String Functions and
Operators

All built-in conversion
functions

convert

pg_client_encoding

Binary String Functions and
Operators

Bit String Functions and
Operators

Pattern Matching

Data Type Formatting
Functions

to_char

to_timestamp

Date/Time Functions and
Operators

timeofday age

current_date

current_time

current_timestamp

localtime

localtimestamp

now

Geometric Functions and
Operators
Using Functions and Operators 144

http://www.postgresql.org/docs/8.2/static/functions.html
http://www.postgresql.org/docs/8.2/static/functions.html#FUNCTIONS-LOGICAL
http://www.postgresql.org/docs/8.2/static/functions-comparison.html
http://www.postgresql.org/docs/8.2/static/functions-math.html
http://www.postgresql.org/docs/8.2/static/functions-string.html
http://www.postgresql.org/docs/8.2/static/functions-binarystring.html
http://www.postgresql.org/docs/8.2/static/functions-bitstring.html
http://www.postgresql.org/docs/8.3/static/functions-matching.html
http://www.postgresql.org/docs/8.2/static/functions-formatting.html
http://www.postgresql.org/docs/8.2/static/functions-datetime.html
http://www.postgresql.org/docs/8.2/static/functions-geometry.html

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
Network Address Functions
and Operators

Sequence Manipulation
Functions

currval

lastval

nextval

setval

Conditional Expressions

Array Functions and
Operators

All array functions

Aggregate Functions

Subquery Expressions

Row and Array
Comparisons

Set Returning Functions generate_series

System Information
Functions

All session information functions
All access privilege inquiry functions
All schema visibility inquiry functions
All system catalog information
functions
All comment information functions

System Administration
Functions

set_config

pg_cancel_backend

pg_reload_conf

pg_rotate_logfile

pg_start_backup

pg_stop_backup

pg_size_pretty

pg_ls_dir

pg_read_file

pg_stat_file

current_setting

All database object size functions

XML Functions xmlagg(xml)

xmlexists(text, xml)

xml_is_well_formed(text)

xml_is_well_formed_document(text)

xml_is_well_formed_content(text)

xpath(text, xml)

xpath(text, xml, text[])

xpath_exists(text, xml)

xpath_exists(text, xml, text[])

xml(text)

text(xml)

xmlcomment(xml)

xmlconcat2(xml, xml)

Table 9.2 Built-in functions and operators

Operator/Function
Category VOLATILE Functions STABLE Functions Restrictions
Using Functions and Operators 145

http://www.postgresql.org/docs/8.2/static/functions-net.html
http://www.postgresql.org/docs/8.2/static/functions-sequence.html
http://www.postgresql.org/docs/8.2/static/functions-conditional.html
http://www.postgresql.org/docs/8.2/static/functions-array.html
http://www.postgresql.org/docs/8.2/static/functions-aggregate.html
http://www.postgresql.org/docs/8.2/static/functions-subquery.html
http://www.postgresql.org/docs/8.2/static/functions-comparisons.html
http://www.postgresql.org/docs/8.2/static/functions-srf.html
http://www.postgresql.org/docs/8.2/static/functions-info.html
http://www.postgresql.org/docs/9.1/interactive/functions-xml.html
http://www.postgresql.org/docs/8.2/static/functions-admin.html

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
Window Functions
The following built-in window functions are Greenplum extensions to the PostgreSQL
database. All window functions are immutable. For more information about window
functions, see “Window Expressions” on page 136.

Table 9.3 Window functions

Function Return
Type Full Syntax Description

cume_dist() double
precision

CUME_DIST() OVER ([PARTITION BY
expr] ORDER BY expr)

Calculates the cumulative
distribution of a value in a group of
values. Rows with equal values
always evaluate to the same
cumulative distribution value.

dense_rank(
)

bigint DENSE_RANK () OVER ([PARTITION BY
expr] ORDER BY expr)

Computes the rank of a row in an
ordered group of rows without
skipping rank values. Rows with
equal values are given the same
rank value.

first_value
(expr)

same as
input expr
type

FIRST_VALUE(expr) OVER (
[PARTITION BY expr] ORDER BY expr
[ROWS|RANGE frame_expr])

Returns the first value in an ordered
set of values.

lag(expr
[,offset]
[,default])

same as
input expr
type

LAG(expr [,offset] [,default])
OVER ([PARTITION BY expr] ORDER
BY expr)

Provides access to more than one
row of the same table without doing
a self join. Given a series of rows
returned from a query and a position
of the cursor, LAG provides access
to a row at a given physical offset
prior to that position. The default
offset is 1. default sets the
value that is returned if the offset
goes beyond the scope of the
window. If default is not specified,
the default value is null.

last_value(ex
pr)

same as
input expr
type

LAST_VALUE(expr) OVER ([PARTITION
BY expr] ORDER BY expr [ROWS|RANGE
frame_expr])

Returns the last value in an ordered
set of values.

lead(expr
[,offset]
[,default])

same as
input expr
type

LEAD(expr [,offset] [,default])
OVER ([PARTITION BY expr] ORDER
BY expr)

Provides access to more than one
row of the same table without doing
a self join. Given a series of rows
returned from a query and a position
of the cursor, lead provides access
to a row at a given physical offset
after that position. If offset is not
specified, the default offset is 1.
default sets the value that is
returned if the offset goes beyond
the scope of the window. If
default is not specified, the
default value is null.
Using Functions and Operators 146

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
Advanced Analytic Functions
The following built-in advanced analytic functions are Greenplum extensions of the
PostgreSQL database. Analytic functions are immutable..

ntile(expr) bigint NTILE(expr) OVER ([PARTITION BY
expr] ORDER BY expr)

Divides an ordered data set into a
number of buckets (as defined by
expr) and assigns a bucket number
to each row.

percent_rank(
)

double
precision

PERCENT_RANK () OVER ([PARTITION
BY expr] ORDER BY expr)

Calculates the rank of a hypothetical
row R minus 1, divided by 1 less
than the number of rows being
evaluated (within a window
partition).

rank() bigint RANK () OVER ([PARTITION BY expr]
ORDER BY expr)

Calculates the rank of a row in an
ordered group of values. Rows with
equal values for the ranking criteria
receive the same rank. The number
of tied rows are added to the rank
number to calculate the next rank
value. Ranks may not be
consecutive numbers in this case.

row_number() bigint ROW_NUMBER () OVER ([PARTITION BY
expr] ORDER BY expr)

Assigns a unique number to each
row to which it is applied (either
each row in a window partition or
each row of the query).

Table 9.3 Window functions

Function Return
Type Full Syntax Description

Table 9.4 Advanced Analytic Functions

Function Return Type Full Syntax Description

matrix_add(
array[],
array[])

smallint[],
int[],
bigint[],
float[]

matrix_add(
array[[1,1],[2,2]],
array[[3,4],[5,6]])

Adds two two-dimensional
matrices. The matrices must be
conformable.

matrix_mult
iply(array
[], array[])

smallint[]in
t[],
bigint[],
float[]

matrix_multiply(
array[[2,0,0],[0,2,0],[0,0,2]],
array[[3,0,3],[0,3,0],[0,0,3]]
)

Multiplies two, three-
dimensional arrays. The
matrices must be conformable.

matrix_mult
iply(array
[], expr)

int[],
float[]

matrix_multiply(
array[[1,1,1], [2,2,2], [3,3,3]],
2)

Multiplies a two-dimensional
array and a scalar numeric
value.

matrix_tran
spose(array
[])

Same as input
array type.

matrix_transpose(
array [[1,1,1],[2,2,2]])

Transposes a two-dimensional
array.
Using Functions and Operators 147

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
pinv(array
[])

smallint[]in
t[],
bigint[],
float[]

pinv(array[[2.5,0,0],[0,1,0],[0,0,
.5]])

Calculates the Moore-Penrose
pseudoinverse of a matrix.

unnest
(array[])

set of
anyelement

unnest(
array['one', 'row', 'per', 'item'])

Transforms a one dimensional
array into rows. Returns a set
of anyelement, a polymorphic
pseudotype in PostgreSQL.

Table 9.5 Advanced Aggregate Functions

Function Return
Type Full Syntax Description

MEDIAN
(expr)

timestamp,
timestampz
,
interval,
float

MEDIAN (_expression_)

Example:
SELECT department_id, MEDIAN(salary)

FROM employees

GROUP BY department_id;

Can take a two-dimensional
array as input. Treats such
arrays as matrices.

PERCENTILE_
CONT (expr)
WITHIN GROUP
(ORDER BY
expr
[DESC/ASC])

timestamp,
timestampz
,
interval,
float

PERCENTILE_CONT(_percentage_) WITHIN
GROUP (ORDER BY _expression_)

Example:
SELECT department_id,

PERCENTILE_CONT (0.5) WITHIN GROUP
(ORDER BY salary DESC)

“Median_cont”;

FROM employees GROUP BY
department_id;

Performs an inverse distirbution
function that assumes a
continuous distribution model. It
takes a percentile value and a
sort specification and returns
the same datatype as the
numeric datatype of the
argument. This returned value is
a computed result after
performing linear interpolation.
Null are ignored in this
calculation.

PERCENTILE_
DESC (expr)
WITHIN GROUP
(ORDER BY
expr
[DESC/ASC])

timestamp,
timestampz
,
interval,
float

PERCENTILE_DESC(_percentage_) WITHIN
GROUP (ORDER BY _expression_)

Example:
SELECT department_id,

PERCENTILE_DESC (0.5) WITHIN GROUP
(ORDER BY salary DESC)

“Median_desc”;

FROM employees GROUP BY
department_id;

Performs an inverse distirbution
function that assumes a discrete
distribution model. It takes a
percentile value and a sort
specification. This returned
value is an element from the
set. Null are ignored in this
calculation.

Table 9.4 Advanced Analytic Functions

Function Return Type Full Syntax Description
Using Functions and Operators 148

http://www.postgresql.org/docs/8.2/static/datatype-pseudo.html

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
sum(array[]
)

smallint[]
int[],
bigint[],
float[]

sum(array[[1,2],[3,4]])

Example:
CREATE TABLE mymatrix (myvalue int[]);

INSERT INTO mymatrix VALUES
(array[[1,2],[3,4]]);

INSERT INTO mymatrix VALUES
(array[[0,1],[1,0]]);

SELECT sum(myvalue) FROM mymatrix;

 sum

 {{1,3},{4,4}}

Performs matrix summation.
Can take as input a
two-dimensional array that is
treated as a matrix.

pivot_sum
(label[],
label, expr)

int[],
bigint[],
float[]

pivot_sum(
array['A1','A2'], attr, value)

A pivot aggregation using sum
to resolve duplicate entries.

mregr_coef(
expr,
array[])

float[] mregr_coef(y, array[1, x1, x2]) The four mregr_* aggregates
perform linear regressions using
the ordinary-least-squares
method. mregr_coef
calculates the regression
coefficients. The size of the
return array for mregr_coef is
the same as the size of the input
array of independent variables,
since the return array contains
the coefficient for each
independent variable.

mregr_r2
(expr,
array[])

float mregr_r2(y, array[1, x1, x2]) The four mregr_* aggregates
perform linear regressions using
the ordinary-least-squares
method. mregr_r2 calculates
the r-squared error value for the
regression.

mregr_pvalu
es(expr,
array[])

float[] mregr_pvalues(y, array[1, x1, x2]) The four mregr_* aggregates
perform linear regressions using
the ordinary-least-squares
method. mregr_pvalues
calculates the p-values for the
regression.

mregr_tstat
s(expr,
array[])

float[] mregr_tstats(y, array[1, x1, x2]) The four mregr_* aggregates
perform linear regressions using
the ordinary-least-squares
method. mregr_tstats
calculates the t-statistics for the
regression.

Table 9.5 Advanced Aggregate Functions

Function Return
Type Full Syntax Description
Using Functions and Operators 149

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
Advanced Analytic Function Examples
These examples illustrate selected advanced analytic functions in queries on
simplified example data. They are for the multiple linear regression aggregate
functions and for Naive Bayes Classification with nb_classify.

Linear Regression Aggregates Example

The following example uses the four linear regression aggregates mregr_coef,
mregr_r2, mregr_pvalues, and mregr_tstats in a query on the example table
regr_example. In this example query, all the aggregates take the dependent variable
as the first parameter and an array of independent variables as the second parameter.

SELECT mregr_coef(y, array[1, x1, x2]),
 mregr_r2(y, array[1, x1, x2]),
 mregr_pvalues(y, array[1, x1, x2]),
 mregr_tstats(y, array[1, x1, x2])
from regr_example;

Table regr_example:

 id | y | x1 | x2
----+----+----+----
 1 | 5 | 2 | 1
 2 | 10 | 4 | 2
 3 | 6 | 3 | 1
 4 | 8| 3 | 1

Running the example query against this table yields one row of data with the
following values:

mregr_coef:

{-7.105427357601e-15,2.00000000000003,0.999999999999943}

mregr_r2:

nb_classify
(text[],
bigint,
bigint[],
bigint[])

text nb_classify(classes, attr_count,
class_count, class_total)

Classify rows using a Naive
Bayes Classifier. This
aggregate uses a baseline of
training data to predict the
classification of new rows and
returns the class with the largest
likelihood of appearing in the
new rows.

nb_probabil
ities(text[
], bigint,
bigint[],
bigint[])

text nb_probabilities(classes,
attr_count, class_count,
class_total)

Determine probability for each
class using a Naive Bayes
Classifier. This aggregate uses
a baseline of training data to
predict the classification of new
rows and returns the
probabilities that each class will
appear in new rows.

Table 9.5 Advanced Aggregate Functions

Function Return
Type Full Syntax Description
Using Functions and Operators 150

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
0.86440677966103

mregr_pvalues:

{0.999999999999999,0.454371051656992,0.783653104061216}

mregr_tstats:

{-2.24693341988919e-15,1.15470053837932,0.35355339059327}

Greenplum Database returns NaN (not a number) if the results of any of these
agregates are undefined. This can happen if there is a very small amount of data.

Note: The intercept is computed by setting one of the independent variables to 1, as shown in
the preceding example.

Naive Bayes Classification Examples

The aggregates nb_classify and nb_probabilities are used within a larger
four-step classification process that involves the creation of tables and views for
training data. The following two examples show all the steps. The first example shows
a small data set with arbitrary values, and the second example is the Greenplum
implementation of a popular Naive Bayes example based on weather conditions.

Overview

The following describes the Naive Bayes classification procedure. In the examples,
the value names become the values of the field attr:

1. Unpivot the data.

If the data is not denormalized, create a view with the identification and
classification that unpivots all the values. If the data is already in denormalized
form, you do not need to unpivot the data.

2. Create a training table.

The training table shifts the view of the data to the values of the field attr.

3. Create a summary view of the training data.

4. Aggregate the data with nb_classify, nb_probabilities,or both.

Naive Bayes Example 1 – Small Table

This example begins with the normalized data in the example table class_example
and proceeds through four discrete steps:

Table class_example:

 id | class | a1 | a2 | a3
----+-------+----+----+----
 1 | C1 | 1 | 2 | 3
 2 | C1 | 1 | 4 | 3
 3 | C2 | 0 | 2 | 2
 4 | C1 | 1 | 2 | 1
 5 | C2 | 1 | 2 | 2
 6 | C2 | 0 | 1 | 3

1. Unpivot the data
Using Functions and Operators 151

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
For use as training data, the data in class_example must be unpivoted because
the data is in denormalized form. The terms in single quotation marks define the
values to use for the new field attr. By convention, these values are the same as
the field names in the normalized table. In this example, these values are
capitalized to highlight where they are created in the command.

CREATE view class_example_unpivot AS
SELECT id, class, unnest(array['A1', 'A2', 'A3']) as attr,
unnest(array[a1,a2,a3]) as value FROM class_example;

The unpivoted view shows the normalized data. It is not necessary to use this
view. Use the command SELECT * from class_example_unpivot to see the
denormalized data:

 id | class | attr | value

----+-------+------+-------

 2 | C1 | A1 | 1

 2 | C1 | A2 | 2

 2 | C1 | A3 | 1

 4 | C2 | A1 | 1

 4 | C2 | A2 | 2

 4 | C2 | A3 | 2

 6 | C2 | A1 | 0

 6 | C2 | A2 | 1

 6 | C2 | A3 | 3

 1 | C1 | A1 | 1

 1 | C1 | A2 | 2

 1 | C1 | A3 | 3

 3 | C1 | A1 | 1

 3 | C1 | A2 | 4

 3 | C1 | A3 | 3

 5 | C2 | A1 | 0

 5 | C2 | A2 | 2

 5 | C2 | A3 | 2

(18 rows)

2. Create a training table from the unpivoted data.

The terms in single quotation marks define the values to sum. The terms in the
array passed into pivot_sum must match the number and names of
classifications in the original data. In the example, C1 and C2:

CREATE table class_example_nb_training AS
SELECT attr, value, pivot_sum(array['C1', 'C2'], class, 1)
as class_count
FROM class_example_unpivot
GROUP BY attr, value
DISTRIBUTED by (attr);

The following is the resulting training table:

 attr | value | class_count
Using Functions and Operators 152

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
------+-------+-------------

 A3 | 1 | {1,0}

 A3 | 3 | {2,1}

 A1 | 1 | {3,1}

 A1 | 0 | {0,2}

 A3 | 2 | {0,2}

 A2 | 2 | {2,2}

 A2 | 4 | {1,0}

 A2 | 1 | {0,1}

(8 rows)

3. Create a summary view of the training data.

CREATE VIEW class_example_nb_classify_functions AS
SELECT attr, value, class_count, array['C1', 'C2'] as classes,
sum(class_count) over (wa)::integer[] as class_total,
count(distinct value) over (wa) as attr_count
FROM class_example_nb_training
WINDOW wa as (partition by attr);

The following is the resulting training table:

attr| value | class_count| classes | class_total |attr_count

-----+-------+------------+---------+-------------+---------

 A2 | 2 | {2,2} | {C1,C2} | {3,3} | 3

 A2 | 4 | {1,0} | {C1,C2} | {3,3} | 3

 A2 | 1 | {0,1} | {C1,C2} | {3,3} | 3

 A1 | 0 | {0,2} | {C1,C2} | {3,3} | 2

 A1 | 1 | {3,1} | {C1,C2} | {3,3} | 2

 A3 | 2 | {0,2} | {C1,C2} | {3,3} | 3

 A3 | 3 | {2,1} | {C1,C2} | {3,3} | 3

 A3 | 1 | {1,0} | {C1,C2} | {3,3} | 3

(8 rows)

4. Classify rows with nb_classify and display the probability with
nb_probabilities.

After you prepare the view, the training data is ready for use as a baseline for
determining the class of incoming rows. The following query predicts whether
rows are of class C1 or C2 by using the nb_classify aggregate:

SELECT nb_classify(classes, attr_count, class_count,
class_total) as class
FROM class_example_nb_classify_functions
where (attr = 'A1' and value = 0) or (attr = 'A2' and value =
2) or (attr = 'A3' and value = 1);

Running the example query against this simple table yields one row of data
displaying these values:

This query yields the expected single-row result of C1.

class
Using Functions and Operators 153

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data

C2
(1 row)

Display the probabilities for each class with nb_probabilities.

Once the view is prepared, the system can use the training data as a baseline for
determining the class of incoming rows. The following query predicts whether
rows are of class C1 or C2 by using the nb_probabilities aggregate:

SELECT nb_probabilities(classes, attr_count, class_count,
class_total) as probability
FROM class_example_nb_classify_functions
where (attr = 'A1' and value = 0) or (attr = 'A2' and value =
2) or (attr = 'A3' and value = 1);

Running the example query against this simple table yields one row of data
displaying the probabilities for each class:

This query yields the expected single-row result showing two probabilities, the
first for C1,and the second for C2.

probability

 {0.4,0.6}

(1 row)

You can display the classification and the probabilities with the following query.

SELECT nb_classify(classes, attr_count, class_count,
class_total) as class, nb_probabilities(classes, attr_count,
class_count, class_total) as probability FROM
class_example_nb_classify where (attr = 'A1' and value = 0)
or (attr = 'A2' and value = 2) or (attr = 'A3' and value =
1);

This query produces the following result:

class | probability

-------+-------------

 C2 | {0.4,0.6}

(1 row)

Actual data in production scenarios is more extensive than this example data and
yields better results. Accuracy of classification with nb_classify and
nb_probabilities improves significantly with larger sets of training data.

Naive Bayes Example 2 – Weather and Outdoor Sports

This example calculates the probabilities of whether the user will play an outdoor
sport, such as golf or tennis, based on weather conditions. The table
weather_example contains the example values. The identification field for the table
is day. There are two classifications held in the field play: Yes or No. There are four
weather attributes, outlook, temperature, humidity, and wind. The data is normalized.

 day | play | outlook | temperature | humidity | wind

-----+------+----------+-------------+----------+--------

 2 | No | Sunny | Hot | High | Strong
Using Functions and Operators 154

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
 4 | Yes | Rain | Mild | High | Weak

 6 | No | Rain | Cool | Normal | Strong

 8 | No | Sunny | Mild | High | Weak

 10 | Yes | Rain | Mild | Normal | Weak

 12 | Yes | Overcast | Mild | High | Strong

 14 | No | Rain | Mild | High | Strong

 1 | No | Sunny | Hot | High | Weak

 3 | Yes | Overcast | Hot | High | Weak

 5 | Yes | Rain | Cool | Normal | Weak

 7 | Yes | Overcast | Cool | Normal | Strong

 9 | Yes | Sunny | Cool | Normal | Weak

 11 | Yes | Sunny | Mild | Normal | Strong

 13 | Yes | Overcast | Hot | Normal | Weak

(14 rows)

Because this data is normalized, all four Naive Bayes steps are required.

1. Unpivot the data.

CREATE view weather_example_unpivot AS SELECT day, play,
unnest(array['outlook','temperature', 'humidity','wind']) as
attr, unnest(array[outlook,temperature,humidity,wind]) as
value FROM weather_example;

Note the use of quotation marks in the command.

The SELECT * from weather_example_unpivot displays the denormalized
data and contains the following 56 rows.

 day | play | attr | value

-----+------+-------------+----------

 2 | No | outlook | Sunny

 2 | No | temperature | Hot

 2 | No | humidity | High

 2 | No | wind | Strong

 4 | Yes | outlook | Rain

 4 | Yes | temperature | Mild

 4 | Yes | humidity | High

 4 | Yes | wind | Weak

 6 | No | outlook | Rain

 6 | No | temperature | Cool

 6 | No | humidity | Normal

 6 | No | wind | Strong

 8 | No | outlook | Sunny

 8 | No | temperature | Mild

 8 | No | humidity | High

 8 | No | wind | Weak

 10 | Yes | outlook | Rain

 10 | Yes | temperature | Mild

 10 | Yes | humidity | Normal
Using Functions and Operators 155

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
 10 | Yes | wind | Weak

 12 | Yes | outlook | Overcast

 12 | Yes | temperature | Mild

 12 | Yes | humidity | High

 12 | Yes | wind | Strong

 14 | No | outlook | Rain

 14 | No | temperature | Mild

 14 | No | humidity | High

 14 | No | wind | Strong

 1 | No | outlook | Sunny

 1 | No | temperature | Hot

 1 | No | humidity | High

 1 | No | wind | Weak

 3 | Yes | outlook | Overcast

 3 | Yes | temperature | Hot

 3 | Yes | humidity | High

 3 | Yes | wind | Weak

 5 | Yes | outlook | Rain

 5 | Yes | temperature | Cool

 5 | Yes | humidity | Normal

 5 | Yes | wind | Weak

 7 | Yes | outlook | Overcast

 7 | Yes | temperature | Cool

 7 | Yes | humidity | Normal

 7 | Yes | wind | Strong

 9 | Yes | outlook | Sunny

 9 | Yes | temperature | Cool

 9 | Yes | humidity | Normal

 9 | Yes | wind | Weak

 11 | Yes | outlook | Sunny

 11 | Yes | temperature | Mild

 11 | Yes | humidity | Normal

 11 | Yes | wind | Strong

 13 | Yes | outlook | Overcast

 13 | Yes | temperature | Hot

 13 | Yes | humidity | Normal

 13 | Yes | wind | Weak

(56 rows)

2. Create a training table.

CREATE table weather_example_nb_training AS SELECT attr,
value, pivot_sum(array['Yes','No'], play, 1) as class_count
FROM weather_example_unpivot GROUP BY attr, value
DISTRIBUTED by (attr);

The SELECT * from weather_example_nb_training displays the training
data and contains the following 10 rows.
Using Functions and Operators 156

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
 attr | value | class_count

-------------+----------+-------------

 outlook | Rain | {3,2}

 humidity | High | {3,4}

 outlook | Overcast | {4,0}

 humidity | Normal | {6,1}

 outlook | Sunny | {2,3}

 wind | Strong | {3,3}

 temperature | Hot | {2,2}

 temperature | Cool | {3,1}

 temperature | Mild | {4,2}

 wind | Weak | {6,2}

(10 rows)

3. Create a summary view of the training data.

CREATE VIEW weather_example_nb_classify_functions AS SELECT
attr, value, class_count, array['Yes','No'] as
classes,sum(class_count) over (wa)::integer[] as
class_total,count(distinct value) over (wa) as attr_count
FROM weather_example_nb_training WINDOW wa as (partition by
attr);

The SELECT * from weather_example_nb_classify_function displays the
training data and contains the following 10 rows.

attr | value | class_count| classes | class_total| attr_count

------------+-------- +------------+---------+------------+-----------

temperature | Mild | {4,2} | {Yes,No}| {9,5} | 3

temperature | Cool | {3,1} | {Yes,No}| {9,5} | 3

temperature | Hot | {2,2} | {Yes,No}| {9,5} | 3

wind | Weak | {6,2} | {Yes,No}| {9,5} | 2

wind | Strong | {3,3} | {Yes,No}| {9,5} | 2

humidity | High | {3,4} | {Yes,No}| {9,5} | 2

humidity | Normal | {6,1} | {Yes,No}| {9,5} | 2

outlook | Sunny | {2,3} | {Yes,No}| {9,5} | 3

outlook | Overcast| {4,0} | {Yes,No}| {9,5} | 3

outlook | Rain | {3,2} | {Yes,No}| {9,5} | 3

(10 rows)

4. Aggregate the data with nb_classify, nb_probabilities,or both.

Decide what to classify. To classify only one record with the following values:

 temperature | wind | humidity | outlook

 ------------+------+----------+---------

 Cool | Weak | High | Overcast

Use the following command to aggregate the data. The result gives the
classification Yes or No and the probability of playing outdoor sports under this
particular set of conditions.

SELECT nb_classify(classes, attr_count, class_count,
Using Functions and Operators 157

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
class_total) as class,

 nb_probabilities(classes, attr_count, class_count,
class_total) as probability

FROM weather_example_nb_classify_functions where

 (attr = 'temperature' and value = 'Cool') or

 (attr = 'wind' and value = 'Weak') or

 (attr = 'humidity' and value = 'High') or

 (attr = 'outlook' and value = 'Overcast');

The result is a single row.

class | probability

-------+---------------------------------------

 Yes | {0.858103353920726,0.141896646079274}

(1 row)

To classify a group of records, load them into a table. In this example, the table t1
contains the following records:

 day | outlook | temperature | humidity | wind

-----+----------+-------------+----------+--------

 15 | Sunny | Mild | High | Strong

 16 | Rain | Cool | Normal | Strong

 17 | Overcast | Hot | Normal | Weak

 18 | Rain | Hot | High | Weak

(4 rows)

The following command aggregates the data against this table. The result gives
the classification Yes or No and the probability of playing outdoor sports for each
set of conditions in the table t1. Both the nb_classify and nb_probabilities
aggregates are used.

SELECT t1.day,

 t1.temperature, t1.wind, t1.humidity, t1.outlook,

 nb_classify(classes, attr_count, class_count,
class_total) as class,

 nb_probabilities(classes, attr_count, class_count,
class_total) as probability

FROM t1, weather_example_nb_classify_functions

WHERE

 (attr = 'temperature' and value = t1.temperature) or

 (attr = 'wind' and value = t1.wind) or

 (attr = 'humidity' and value = t1.humidity) or

 (attr = 'outlook' and value = t1.outlook)

GROUP BY t1.day, t1.temperature, t1.wind, t1.humidity,
t1.outlook;

The result is a four rows, one for each record in t1.

day| temp| wind | humidity | outlook | class | probability

---+-----+--------+----------+----------+-------+--------------

15 | Mild| Strong | High | Sunny | No | {0.244694132334582,0.755305867665418}
Using Functions and Operators 158

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
16 | Cool| Strong | Normal | Rain | Yes | {0.751471997809119,0.248528002190881}

18 | Hot | Weak | High | Rain | No | {0.446387538890131,0.553612461109869}

17 | Hot | Weak | Normal | Overcast | Yes | {0.9297192642788,0.0702807357212004}

(4 rows)

Query Performance
Greenplum Database dynamically eliminates irrelevant partitions in a table and
optimally allocates memory for different operators in a query. These enhancements
scan less data for a query, accelerate query processing, and support more concurrency.

• Dynamic Partition Elimination
In the Greenplum Database, values available only when a query runs are used to
dynamically prune partitions, which improves query processing speed. Enable or
disable dynamic partition elimination by setting the server configuration
parameter gp_dynamic_partition_pruning to ON or OFF; it is ON by default.

• Memory Optimizations
Greenplum Database allocates memory optimally for different operators in a
query and frees and re-allocates memory during the stages of processing a query.

Query Profiling
Greenplum Database devises a query plan for each query. Choosing the right query
plan to match the query and data structure is necessary for good performance. A query
plan defines how Greenplum Database will run the query in the parallel execution
environment. Examine the query plans of poorly performing queries to identify
possible performance tuning opportunities.

The query planner uses data statistics maintained by the database to choose a query
plan with the lowest possible cost. Cost is measured in disk I/O, shown as units of disk
page fetches. The goal is to minimize the total execution cost for the plan.

View the plan for a given query with the EXPLAIN command. EXPLAIN shows the
query planner’s estimated cost for the query plan. For example:

EXPLAIN SELECT * FROM names WHERE id=22;

EXPLAIN ANALYZE runs the statement in addition to displaying its plan. This is useful
for determining how close the planner’s estimates are to reality. For example:

EXPLAIN ANALYZE SELECT * FROM names WHERE id=22;

Reading EXPLAIN Output
A query plan is a tree of nodes. Each node in the plan represents a single operation,
such as a table scan, join, aggregation, or sort.

Read plans from the bottom to the top: each node feeds rows into the node directly
above it. The bottom nodes of a plan are usually table scan operations: sequential,
index, or bitmap index scans. If the query requires joins, aggregations, sorts, or other
operations on the rows, there are additional nodes above the scan nodes to perform
Query Performance 159

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
these operations. The topmost plan nodes are usually Greenplum Database motion
nodes: redistribute, explicit redistribute, broadcast, or gather motions. These
operations move rows between segment instances during query processing.

The output of EXPLAIN has one line for each node in the plan tree and shows the basic
node type and the following execution cost estimates for that plan node:

• cost —Measured in units of disk page fetches. 1.0 equals one sequential disk page
read. The first estimate is the start-up cost of getting the first row and the second is
the total cost of cost of getting all rows. The total cost assumes all rows will be
retrieved, which is not always true; for example, if the query uses LIMIT, not all
rows are retrieved.

• rows —The total number of rows output by this plan node. This number is usually
less than the number of rows processed or scanned by the plan node, reflecting the
estimated selectivity of any WHERE clause conditions. Ideally, the estimate for the
topmost node approximates the number of rows that the query actually returns,
updates, or deletes.

• width —The total bytes of all the rows that this plan node outputs.

Note the following:

• The cost of a node includes the cost of its child nodes. The topmost plan node has
the estimated total execution cost for the plan. This is the number the planner
intends to minimize.

• The cost reflects only the aspects of plan execution that the query planner takes
into consideration. For example, the cost does not reflect time spent transmitting
result rows to the client.

EXPLAIN Example
The following example describes how to read an EXPLAIN query plan for a query:

EXPLAIN SELECT * FROM names WHERE name = 'Joelle';

 QUERY PLAN

--

Gather Motion 2:1 (slice1) (cost=0.00..20.88 rows=1 width=13)
 -> Seq Scan on 'names' (cost=0.00..20.88 rows=1 width=13)

 Filter: name::text ~~ 'Joelle'::text

Read the plan from the bottom to the top. To start, the query planner sequentially scans
the names table. Notice the WHERE clause is applied as a filter condition. This means
the scan operation checks the condition for each row it scans and outputs only the
rows that satisfy the condition.

The results of the scan operation are passed to a gather motion operation. In
Greenplum Database, a gather motion is when segments send rows to the master. In
this example, we have two segment instances that send to one master instance. This
operation is working on slice1 of the parallel query execution plan. A query plan is
divided into slices so the segments can work on portions of the query plan in parallel.

The estimated startup cost for this plan is 00.00 (no cost) and a total cost of 20.88
disk page fetches. The planner estimates this query will return one row.
Query Profiling 160

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
Reading EXPLAIN ANALYZE Output
EXPLAIN ANALYZE plans and runs the statement. The EXPLAIN ANALYZE plan shows
the actual execution cost along with the planner’s estimates. This allows you to see if
the planner’s estimates are close to reality. EXPLAIN ANALYZE also shows the
following:

• The total runtime (in milliseconds) in which the query executed.

• The memory used by each slice of the query plan, as well as the memory reserved
for the whole query statement.

• The number of workers (segments) involved in a plan node operation. Only
segments that return rows are counted.

• The maximum number of rows returned by the segment that produced the most
rows for the operation. If multiple segments produce an equal number of rows,
EXPLAIN ANALYZE shows the segment with the longest <time> to end.

• The segment id of the segment that produced the most rows for an operation.

• For relevant operations, the amount of memory (work_mem) used by the operation.
If the work_mem was insufficient to perform the operation in memory, the plan
shows the amount of data spilled to disk for the lowest-performing segment. For
example:
Work_mem used: 64K bytes avg, 64K bytes max (seg0).

Work_mem wanted: 90K bytes avg, 90K byes max (seg0) to lessen
workfile I/O affecting 2 workers.

• The time (in milliseconds) in which the segment that produced the most rows
retrieved the first row, and the time taken for that segment to retrieve all rows. The
result may omit <time> to first row if it is the same as the <time> to end.

EXPLAIN ANALYZE Example
This example describes how to read an EXPLAIN ANALYZE query plan using the same
query. The bold parts of the plan show actual timing and rows returned for each plan
node, as well as memory and time statistics for the whole query.

EXPLAIN ANALYZE SELECT * FROM names WHERE name = 'Joelle';

 QUERY PLAN

--

Gather Motion 2:1 (slice1; segments: 2) (cost=0.00..20.88 rows=1
width=13)

 Rows out: 1 rows at destination with 0.305 ms to first row,
0.537 ms to end, start offset by 0.289 ms.

 -> Seq Scan on names (cost=0.00..20.88 rows=1 width=13)

 Rows out: Avg 1 rows x 2 workers. Max 1 rows (seg0) with
0.255 ms to first row, 0.486 ms to end, start offset by 0.968 ms.

 Filter: name = 'Joelle'::text

 Slice statistics:

 (slice0) Executor memory: 135K bytes.

(slice1) Executor memory: 151K bytes avg x 2 workers, 151K bytes
max (seg0).
Query Profiling 161

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
 Statement statistics:

 Memory used: 128000K bytes

 Total runtime: 22.548 ms

Read the plan from the bottom to the top. The total elapsed time to run this query was
22.548 milliseconds.

The sequential scan operation had only one segment (seg0) that returned rows, and it
returned just 1 row. It took 0.255 milliseconds to find the first row and 0.486 to scan
all rows. This result is close to the planner’s estimate: the query planner estimated it
would return one row for this query. The gather motion (segments sending data to the
master) received 1 row . The total elapsed time for this operation was 0.537
milliseconds.

Examining Query Plans to Solve Problems
If a query performs poorly, examine its query plan and ask the following questions:

• Do operations in the plan take an exceptionally long time? Look for an
operation consumes the majority of query processing time. For example, if an
index scan takes longer than expected, the index could be out-of-date and need to
be reindexed. Or, adjust enable_<operator> parameters to see if you can force
the planner to choose a different plan by disabling a particular query plan operator
for that query.

• Are the planner’s estimates close to reality? Run EXPLAIN ANALYZE and see if
the number of rows the planner estimates is close to the number of rows the query
operation actually returns. If there is a large discrepancy, collect more statistics on
the relevant columns. See the Greenplum Database Reference Guide for more
information on the EXPLAIN ANALYZE and ANALYZE commands.

• Are selective predicates applied early in the plan? Apply the most selective
filters early in the plan so fewer rows move up the plan tree. If the query plan does
not correctly estimate query predicate selectivity, collect more statistics on the
relevant columns. See the ANALYZE command in the Greenplum Database
Reference Guide for more information collecting statistics. You can also try
reordering the WHERE clause of your SQL statement.

• Does the planner choose the best join order? When you have a query that joins
multiple tables, make sure that the planner chooses the most selective join order.
Joins that eliminate the largest number of rows should be done earlier in the plan
so fewer rows move up the plan tree.
If the plan is not choosing the optimal join order, set join_collapse_limit=1
and use explicit JOIN syntax in your SQL statement to force the planner to the
specified join order. You can also collect more statistics on the relevant join
columns. See the ANALYZE command in the Greenplum Database Reference
Guide for more information collecting statistics.

• Does the planner selectively scan partitioned tables? If you use table
partitioning, is the planner selectively scanning only the child tables required to
satisfy the query predicates? Scans of the parent tables should return 0 rows since
the parent tables do not contain any data. See “Verifying Your Partition Strategy”
on page 57 for an example of a query plan that shows a selective partition scan.
Query Profiling 162

Greenplum Database DBA Guide 4.3 – Chapter 9: Querying Data
• Does the planner choose hash aggregate and hash join operations where
applicable? Hash operations are typically much faster than other types of joins or
aggregations. Row comparison and sorting is done in memory rather than
reading/writing from disk. To enable the query planner to choose hash operations,
there must be sufficient memory available to hold the estimated number of rows.
Try increasing work memory to improve performance for a query. If possible, run
an EXPLAIN ANALYZE for the query to show which plan operations spilled to disk,
how much work memory they used, and how much memory was required to avoid
spilling to disk. For example:
Work_mem used: 23430K bytes avg, 23430K bytes max (seg0).
Work_mem wanted: 33649K bytes avg, 33649K bytes max (seg0) to lessen
workfile I/O affecting 2 workers.

The “bytes wanted” message from EXPLAIN ANALYZE is based on the amount of
data written to work files and is not exact. The minimum work_mem needed can
differ from the suggested value.
Query Profiling 163

Greenplum Database DBA Guide 4.3 – Chapter 10: Managing Workload and Resources
10. Managing Workload and Resources

This chapter describes the workload management feature of Greenplum Database, and
explains the tasks involved in creating and managing resource queues. The following
topics are covered in this chapter:

• Overview of Greenplum Workload Management

• Configuring Workload Management

• Creating Resource Queues

• Assigning Roles (Users) to a Resource Queue

• Modifying Resource Queues

• Checking Resource Queue Status

Overview of Greenplum Workload Management
The purpose of workload management is to limit the number of active queries in the
system at any given time in order to avoid exhausting system resources such as
memory, CPU, and disk I/O. This is accomplished in Greenplum Database with
role-based resource queues. A resource queue has attributes that limit the size and/or
total number of queries that can be executed by the users (or roles) in that queue. Also,
you can assign a priority level that controls the relative share of available CPU used
by queries associated with the resource queue. By assigning all database roles to the
appropriate resource queue, administrators can control concurrent user queries and
prevent the system from being overloaded.

How Resource Queues Work in Greenplum Database
Resource scheduling is enabled by default when you install Greenplum Database. All
database roles must be assigned to a resource queue. If an administrator creates a role
without explicitly assigning it to a resource queue, the role is assigned to the default
resource queue, pg_default.

Greenplum recommends that administrators create resource queues for the various
types of workloads in their organization. For example, you may have resource queues
for power users, web users, and management reports. You would then set limits on the
resource queue based your estimate of how resource-intensive the queries associated
with that workload are likely to be. Currently, the configurable limits on a queue
include:

• Active statement count. The maximum number of statements that can run
concurrently.

• Active statement memory. The total amount of memory that all queries submitted
through this queue can consume.

• Active statement priority. This value defines a queue’s priority relative to other
queues in terms of available CPU resources.
Overview of Greenplum Workload Management 164

Greenplum Database DBA Guide 4.3 – Chapter 10: Managing Workload and Resources
• Active statement cost. This value is compared with the cost estimated by the query
planner, measured in units of disk page fetches.

After resource queues are created, database roles (users) are then assigned to the
appropriate resource queue. A resource queue can have multiple roles, but a role can
have only one assigned resource queue.

How Resource Queue Limits Work
At runtime, when the user submits a query for execution, that query is evaluated
against the resource queue’s limits. If the query does not cause the queue to exceed its
resource limits, then that query will run immediately. If the query causes the queue to
exceed its limits (for example, if the maximum number of active statement slots are
currently in use), then the query must wait until queue resources are free before it can
run. Queries are evaluated on a first in, first out basis. If query prioritization is
enabled, the active workload on the system is periodically assessed and processing
resources are reallocated according to query priority (see “How Priorities Work” on
page 166).

Figure 10.1 Resource Queue Example

Roles with the SUPERUSER attribute are always exempt from resource queue limits.
Superuser queries are always allowed to run immediately regardless of the limits of
their assigned resource queue.

How Memory Limits Work
Setting a memory limit on a resource queue sets the maximum amount of memory that
all queries submitted through the queue can consume on a segment host. The amount
of memory allotted to a particular query is based on the queue memory limit divided
by the active statement limit (Greenplum recommends that memory limits be used in
conjunction with statement-based queues rather than cost-based queues). For example,
if a queue has a memory limit of 2000MB and an active statement limit of 10, each
query submitted through the queue is allotted 200MB of memory by default. The
default memory allotment can be overridden on a per-query basis using the
statement_mem server configuration parameter (up to the queue memory limit).
Once a query has started executing, it holds its allotted memory in the queue until it
completes (even if during execution it actually consumes less than its allotted amount
of memory).
Overview of Greenplum Workload Management 165

Greenplum Database DBA Guide 4.3 – Chapter 10: Managing Workload and Resources
For more information on configuring memory limits on a resource queue, and other
memory utilization controls, see “Creating Queues with Memory Limits” on page 171.

How Priorities Work
Resource limits on active statement count, memory and query cost are admission
limits, which determine whether a query is admitted into the group of actively running
statements, or whether it is queued with other waiting statements. After a query
becomes active, it must share available CPU resources as determined by the priority
settings for its resource queue. When a statement from a high-priority queue enters the
group of actively running statements, it may claim a significant share of the available
CPU, reducing the share allotted to already-running statements.

The comparative size or complexity of the queries does not affect the allotment of
CPU. If a simple, low-cost query is running simultaneously with a large, complex
query, and their priority settings are the same, they will be allotted the same share of
available CPU resources. When a new query becomes active, the exact percentage
shares of CPU will be recalculated, but queries of equal priority will still have equal
amounts of CPU allotted.

For example, an administrator creates three resource queues: adhoc for ongoing
queries submitted by business analysts, reporting for scheduled reporting jobs, and
executive for queries submitted by executive user roles. The administrator wants to
ensure that scheduled reporting jobs are not heavily affected by unpredictable resource
demands from ad-hoc analyst queries. Also, the administrator wants to make sure that
queries submitted by executive roles are allotted a significant share of CPU.
Accordingly, the resource queue priorities are set as shown:

• adhoc — Low priority

• reporting — High priority

• executive — Maximum priority

For more information about commands to set priorities, see “Setting Priority Levels”
on page 173.
Overview of Greenplum Workload Management 166

Greenplum Database DBA Guide 4.3 – Chapter 10: Managing Workload and Resources
At runtime, the CPU share of active statements is determined by these priority
settings. If queries 1 and 2 from the reporting queue are running simultaneously, they
have equal shares of CPU. When an ad-hoc query becomes active, it claims a smaller
share of CPU. The exact share used by the reporting queries is adjusted, but remains
equal due to their equal priority setting:

Figure 10.2 CPU share readjusted according to priority

Note: The percentages shown in these graphics are approximate. CPU usage between
high, low and maximum priority queues is not always calculated in precisely these
proportions.
Overview of Greenplum Workload Management 167

Greenplum Database DBA Guide 4.3 – Chapter 10: Managing Workload and Resources
When an executive query enters the group of running statements, CPU usage is
adjusted to account for its maximum priority setting. It may be a simple query
compared to the analyst and reporting queries, but until it is completed, it will claim
the largest share of CPU.

Figure 10.3 CPU share readjusted for maximum priority query

Types of Queries Evaluated for Resource Queues
Not all SQL statements submitted through a resource queue are evaluated against the
queue limits. By default only SELECT, SELECT INTO, CREATE TABLE AS SELECT,
and DECLARE CURSOR statements are evaluated. If the server configuration parameter
resource_select_only is set to off, then INSERT, UPDATE, and DELETE statements
will be evaluated as well.

Steps to Enable Workload Management
Enabling and using workload management in Greenplum Database involves the
following high-level tasks:

1. Creating the resource queues and setting limits on them. See “Creating Resource
Queues” on page 170.

2. Assigning a queue to one or more user roles. See “Assigning Roles (Users) to a
Resource Queue” on page 173.

3. Using the workload management system views to monitor and manage the
resource queues. See “Checking Resource Queue Status” on page 174.
Overview of Greenplum Workload Management 168

Greenplum Database DBA Guide 4.3 – Chapter 10: Managing Workload and Resources
Configuring Workload Management
Resource scheduling is enabled by default when you install Greenplum Database, and
is required for all roles. The default resource queue, pg_default, has an active
statement limit of 20, no cost limit, no memory limit, and a medium priority setting.
Greenplum recommends that you create resource queues for the various types of
workloads.

To configure workload management

1. The following parameters are for the general configuration of resource queues:

• max_resource_queues - Sets the maximum number of resource queues.

• max_resource_portals_per_transaction - Sets the maximum number
of simultaneously open cursors allowed per transaction. Note that an open
cursor will hold an active query slot in a resource queue.

• resource_select_only - If set to on, then SELECT, SELECT INTO, CREATE
TABLE AS SELECT, and DECLARE CURSOR commands are evaluated. If set to
off INSERT, UPDATE, and DELETE commands will be evaluated as well.

• resource_cleanup_gangs_on_wait - Cleans up idle segment worker
processes before taking a slot in the resource queue.

• stats_queue_level - Enables statistics collection on resource queue usage,
which can then be viewed by querying the pg_stat_resqueues system view.

2. The following parameters are related to memory utilization:

• gp_resqueue_memory_policy - Enables Greenplum memory management
features.
In Greenplum Database 4.2 and later, the distribution algorithm eager_free
takes advantage of the fact that not all operators execute at the same time. The
query plan is divided into stages and Greenplum Database eagerly frees
memory allocated to a previous stage at the end of that stage’s execution, then
allocates the eagerly freed memory to the new stage.
When set to none, memory management is the same as in Greenplum
Database releases prior to 4.1. When set to auto, query memory usage is
controlled by statement_mem and resource queue memory limits.

• statement_mem and max_statement_mem - Used to allocate memory to a
particular query at runtime (override the default allocation assigned by the
resource queue). max_statement_mem is set by database superusers to
prevent regular database users from over-allocation.

• gp_vmem_protect_limit - Sets the upper boundary that all query processes
can consume that should not exceed the amount of physical memory of a
segment host. When a segment host reaches this limit during query execution,
the queries that cause the limit to be exceeded will be cancelled.

• gp_vmem_idle_resource_timeout and
gp_vmem_protect_segworker_cache_limit - used to free memory on
segment hosts held by idle database processes. Administrators may want to
adjust these settings on systems with lots of concurrency.
Configuring Workload Management 169

Greenplum Database DBA Guide 4.3 – Chapter 10: Managing Workload and Resources
3. The following parameters are related to query prioritization. Note that the
following parameters are all local parameters, meaning they must be set in the
postgresql.conf files of the master and all segments:

• gp_resqueue_priority - The query prioritization feature is enabled by
default.

• gp_resqueue_priority_sweeper_interval - Sets the interval at which
CPU usage is recalculated for all active statements. The default value for this
parameter should be sufficient for typical database operations.

• gp_resqueue_priority_cpucores_per_segment - Specifies the number
of CPU cores per segment. The default is 4 for segments and 24 for the
master, the correct values for the EMC Greenplum Data Computing
Appliance. Each host checks its own postgresql.conf file for the value of
this parameter.
This parameter also affects the master node, where it should be set to a value
reflecting the higher ratio of CPU cores. For example, on a cluster that has 8
CPU cores per host and 4 segments per host, you would use the following
settings:
Master and standby master
gp_resqueue_priority_cpucores_per_segment = 8

Segment hosts
gp_resqueue_priority_cpucores_per_segment = 2

Important: If you have fewer than one segment per CPU core on your segment
hosts, make sure you adjust this value accordingly. An improperly low value for this
parameter can result in under-utilization of CPU resources.

4. If you wish to view or change any of the workload management parameter values,
you can use the gpconfig utility.

5. For example, to see the setting of a particular parameter:

$ gpconfig --show gp_vmem_protect_limit

6. For example, to set one value on all segments and a different value on the master:

$ gpconfig -c gp_resqueue_priority_cpucores_per_segment -v 2
-m 8

7. Restart Greenplum Database to make the configuration changes effective:

$ gpstop -r

Creating Resource Queues
Creating a resource queue involves giving it a name and setting either a query cost
limit or an active query limit (or both), and optionally a query priority on the resource
queue. Use the CREATE RESOURCE QUEUE command to create new resource queues.
Creating Resource Queues 170

Greenplum Database DBA Guide 4.3 – Chapter 10: Managing Workload and Resources
Creating Queues with an Active Query Limit
Resource queues with an ACTIVE_STATEMENTS setting limit the number of queries
that can be executed by roles assigned to that queue. For example, to create a resource
queue named adhoc with an active query limit of three:

=# CREATE RESOURCE QUEUE adhoc WITH (ACTIVE_STATEMENTS=3);

This means that for all roles assigned to the adhoc resource queue, only three active
queries can be running on the system at any given time. If this queue has three queries
running, and a fourth query is submitted by a role in that queue, that query must wait
until a slot is free before it can run.

Creating Queues with Memory Limits
Resource queues with a MEMORY_LIMIT setting control the amount of memory for all
the queries submitted through the queue. The total memory should not exceed the
physical memory available per-segment. Greenplum recommends that you set
MEMORY_LIMIT to 90% of memory available on a per-segment basis. For example, if a
host has 48 GB of physical memory and 6 segments, then the memory available per
segment is 8 GB. You can calculate the recommended MEMORY_LIMIT for a single
queue as 0.90*8=7.2 GB. If there are multiple queues created on the system, their total
memory limits must also add up to 7.2 GB.

When used in conjunction with ACTIVE_STATEMENTS, the default amount of
memory allotted per query is: MEMORY_LIMIT / ACTIVE_STATEMENTS. When used
in conjunction with MAX_COST, the default amount of memory allotted per query is:
MEMORY_LIMIT * (query_cost / MAX_COST). Greenplum recommends that
MEMORY_LIMIT be used in conjunction with ACTIVE_STATEMENTS rather than with
MAX_COST.

For example, to create a resource queue with an active query limit of 10 and a total
memory limit of 2000MB (each query will be allocated 200MB of segment host
memory at execution time):

=# CREATE RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=20,
MEMORY_LIMIT='2000MB');

The default memory allotment can be overridden on a per-query basis using the
statement_mem server configuration parameter, provided that MEMORY_LIMIT or
max_statement_mem is not exceeded. For example, to allocate more memory to a
particular query:

=> SET statement_mem='2GB';

=> SELECT * FROM my_big_table WHERE column='value' ORDER BY id;

=> RESET statement_mem;

As a general guideline, MEMORY_LIMIT for all of your resource queues should not
exceed the amount of physical memory of a segment host. If workloads are staggered
over multiple queues, it may be OK to oversubscribe memory allocations, keeping in
mind that queries may be cancelled during execution if the segment host memory limit
(gp_vmem_protect_limit) is exceeded.
Creating Resource Queues 171

Greenplum Database DBA Guide 4.3 – Chapter 10: Managing Workload and Resources
Creating Queues with a Query Planner Cost Limits
Resource queues with a MAX_COST setting limit the total cost of queries that can be
executed by roles assigned to that queue. Cost is specified as a floating point number
(for example 100.0) or can also be specified as an exponent (for example 1e+2).

Cost is measured in the estimated total cost for the query as determined by the
Greenplum query planner (as shown in the EXPLAIN output for a query). Therefore, an
administrator must be familiar with the queries typically executed on the system in
order to set an appropriate cost threshold for a queue. Cost is measured in units of disk
page fetches; 1.0 equals one sequential disk page read.

For example, to create a resource queue named webuser with a query cost limit of
100000.0 (1e+5):

=# CREATE RESOURCE QUEUE webuser WITH (MAX _COST=100000.0);

or

=# CREATE RESOURCE QUEUE webuser WITH (MAX _COST=1e+5);

This means that for all roles assigned to the webuser resource queue, it will only allow
queries into the system until the cost limit of 100000.0 is reached. So for example, if
this queue has 200 queries with a 500.0 cost all running at the same time, and query
201 with a 1000.0 cost is submitted by a role in that queue, that query must wait until
space is free before it can run.

Allowing Queries to Run on Idle Systems
If a resource queue is limited based on a cost threshold, then the administrator can
allow COST_OVERCOMMIT (the default). Resource queues with a cost threshold and
overcommit enabled will allow a query that exceeds the cost threshold to run,
provided that there are no other queries in the system at the time the query is
submitted. The cost threshold will still be enforced if there are concurrent workloads
on the system.

If COST_OVERCOMMIT is false, then queries that exceed the cost limit will always be
rejected and never allowed to run.

Allowing Small Queries to Bypass Queue Limits
Workloads may have certain small queries that administrators want to allow to run
without taking up an active statement slot in the resource queue. For example, simple
queries to look up metadata information in the system catalogs do not typically require
significant resources or interfere with query processing on the segments. An
administrator can set MIN_COST to denote a query planner cost associated with a small
query. Any query that falls below the MIN_COST limit will be allowed to run
immediately. MIN_COST can be used on resource queues with either an active
statement or a maximum query cost limit. For example:

=# CREATE RESOURCE QUEUE adhoc WITH (ACTIVE_STATEMENTS=10,
MIN_COST=100.0);
Creating Resource Queues 172

Greenplum Database DBA Guide 4.3 – Chapter 10: Managing Workload and Resources
Setting Priority Levels
To control a resource queue’s consumption of available CPU resources, an
administrator can assign an appropriate priority level. When high concurrency causes
contention for CPU resources, queries and statements associated with a high-priority
resource queue will claim a larger share of available CPU than lower priority queries
and statements.

Priority settings are created or altered using the WITH parameter of the commands
CREATE RESOURCE QUEUE and ALTER RESOURCE QUEUE. For example, to specify
priority settings for the adhoc and reporting queues, an administrator would use the
following commands:

=# ALTER RESOURCE QUEUE adhoc WITH (PRIORITY=LOW);

=# ALTER RESOURCE QUEUE reporting WITH (PRIORITY=HIGH);

To create the executive queue with maximum priority, an administrator would use the
following command:

=# CREATE RESOURCE QUEUE executive WITH (ACTIVE_STATEMENTS=3,
PRIORITY=MAX);

When the query prioritization feature is enabled, resource queues are given a MEDIUM
priority by default if not explicitly assigned. For more information on how priority
settings are evaluated at runtime, see “How Priorities Work” on page 166.

Important: In order for resource queue priority levels to be enforced on the active
query workload, you must enable the query prioritization feature by setting the
associated server configuration parameters. See “Configuring Workload
Management” on page 169.

Assigning Roles (Users) to a Resource Queue
Once a resource queue is created, you must assign roles (users) to their appropriate
resource queue. If roles are not explicitly assigned to a resource queue, they will go to
the default resource queue, pg_default. The default resource queue has an active
statement limit of 20, no cost limit, and a medium priority setting.

Use the ALTER ROLE or CREATE ROLE commands to assign a role to a resource queue.
For example:

=# ALTER ROLE name RESOURCE QUEUE queue_name;

=# CREATE ROLE name WITH LOGIN RESOURCE QUEUE queue_name;

A role can only be assigned to one resource queue at any given time, so you can use
the ALTER ROLE command to initially assign or change a role’s resource queue.

Resource queues must be assigned on a user-by-user basis. If you have a role
hierarchy (for example, a group-level role) then assigning a resource queue to the
group does not propagate down to the users in that group.

Superusers are always exempt from resource queue limits. Superuser queries will
always run regardless of the limits set on their assigned queue.
Assigning Roles (Users) to a Resource Queue 173

Greenplum Database DBA Guide 4.3 – Chapter 10: Managing Workload and Resources
Removing a Role from a Resource Queue
All users must be assigned to a resource queue. If not explicitly assigned to a
particular queue, users will go into the default resource queue, pg_default. If you
wish to remove a role from a resource queue and put them in the default queue, change
the role’s queue assignment to none. For example:

=# ALTER ROLE role_name RESOURCE QUEUE none;

Modifying Resource Queues
After a resource queue has been created, you can change or reset the queue limits
using the ALTER RESOURCE QUEUE command. You can remove a resource queue
using the DROP RESOURCE QUEUE command. To change the roles (users) assigned to a
resource queue, see “Assigning Roles (Users) to a Resource Queue” on page 173.

Altering a Resource Queue
The ALTER RESOURCE QUEUE command changes the limits of a resource queue. A
resource queue must have either an ACTIVE_STATEMENTS or a MAX_COST value (or it
can have both). To change the limits of a resource queue, specify the new values you
want for the queue. For example:

=# ALTER RESOURCE QUEUE adhoc WITH (ACTIVE_STATEMENTS=5);

=# ALTER RESOURCE QUEUE exec WITH (MAX_COST=100000.0);

To reset active statements or memory limit to no limit, enter a value of -1. To reset the
maximum query cost to no limit, enter a value of -1.0. For example:

=# ALTER RESOURCE QUEUE adhoc WITH (MAX_COST=-1.0,
MEMORY_LIMIT='2GB');

You can use the ALTER RESOURCE QUEUE command to change the priority of queries
associated with a resource queue. For example, to set a queue to the minimum priority
level:

ALTER RESOURCE QUEUE webuser WITH (PRIORITY=MIN);

Dropping a Resource Queue
The DROP RESOURCE QUEUE command drops a resource queue. To drop a resource
queue, the queue cannot have any roles assigned to it, nor can it have any statements
waiting in the queue. See “Removing a Role from a Resource Queue” on page 174 and
“Clearing a Waiting Statement From a Resource Queue” on page 176 for instructions
on emptying a resource queue. To drop a resource queue:

=# DROP RESOURCE QUEUE name;

Checking Resource Queue Status
Checking resource queue status involves the following tasks:
Modifying Resource Queues 174

Greenplum Database DBA Guide 4.3 – Chapter 10: Managing Workload and Resources
• Viewing Queued Statements and Resource Queue Status

• Viewing Resource Queue Statistics

• Viewing the Roles Assigned to a Resource Queue

• Viewing the Waiting Queries for a Resource Queue

• Clearing a Waiting Statement From a Resource Queue

• Viewing the Priority of Active Statements

• Resetting the Priority of an Active Statement

Viewing Queued Statements and Resource Queue Status
The gp_toolkit.gp_resqueue_status view allows administrators to see status and
activity for a workload management resource queue. It shows how many queries are
waiting to run and how many queries are currently active in the system from a
particular resource queue. To see the resource queues created in the system, their limit
attributes, and their current status:

=# SELECT * FROM gp_toolkit.gp_resqueue_status;

Viewing Resource Queue Statistics
If you want to track statistics and performance of resource queues over time, you can
enable statistics collecting for resource queues. This is done by setting the following
server configuration parameter in your master postgresql.conf file:

stats_queue_level = on

Once this is enabled, you can use the pg_stat_resqueues system view to see the
statistics collected on resource queue usage. Note that enabling this feature does incur
slight performance overhead, as each query submitted through a resource queue must
be tracked. It may be useful to enable statistics collecting on resource queues for
initial diagnostics and administrative planning, and then disable the feature for
continued use.

See the Statistics Collector section in the PostgreSQL documentation for more
information about collecting statistics in Greenplum Database.

Viewing the Roles Assigned to a Resource Queue
To see the roles assigned to a resource queue, perform the following query of the
pg_roles and gp_toolkit.gp_resqueue_status system catalog tables:

=# SELECT rolname, rsqname FROM pg_roles,
 gp_toolkit.gp_resqueue_status

 WHERE
pg_roles.rolresqueue=gp_toolkit.gp_resqueue_status.queueid;

You may want to create a view of this query to simplify future inquiries. For example:

=# CREATE VIEW role2queue AS

 SELECT rolname, rsqname FROM pg_roles, pg_resqueue

 WHERE
Checking Resource Queue Status 175

Greenplum Database DBA Guide 4.3 – Chapter 10: Managing Workload and Resources
pg_roles.rolresqueue=gp_toolkit.gp_resqueue_status.queueid;

Then you can just query the view:

=# SELECT * FROM role2queue;

Viewing the Waiting Queries for a Resource Queue
When a slot is in use for a resource queue, it is recorded in the pg_locks system
catalog table. This is where you can see all of the currently active and waiting queries
for all resource queues. To check that statements are being queued (even statements
that are not waiting), you can also use the gp_toolkit.gp_locks_on_resqueue view. For
example:

=# SELECT * FROM gp_toolkit.gp_locks_on_resqueue WHERE
lorwaiting='true';

If this query returns no results, then that means there are currently no statements
waiting in a resource queue.

Clearing a Waiting Statement From a Resource Queue
In some cases, you may want to clear a waiting statement from a resource queue. For
example, you may want to remove a query that is waiting in the queue but has not
been executed yet. You may also want to stop a query that has been started if it is
taking too long to execute, or if it is sitting idle in a transaction and taking up resource
queue slots that are needed by other users. To do this, you must first identify the
statement you want to clear, determine its process id (pid), and then, use
pg_cancel_backend with the process id to end that process, as shown below.

For example, to see process information about all statements currently active or
waiting in all resource queues, run the following query:

=# SELECT rolname, rsqname, pid, granted,

 current_query, datname

 FROM pg_roles, gp_toolkit.gp_resqueue_status, pg_locks,
 pg_stat_activity

 WHERE pg_roles.rolresqueue=pg_locks.objid

 AND pg_locks.objid=gp_toolkit.gp_resqueue_status.queueid

 AND pg_stat_activity.procpid=pg_locks.pid;

If this query returns no results, then that means there are currently no statements in a
resource queue. A sample of a resource queue with two statements in it looks
something like this:

rolname | rsqname | pid | granted | current_query | datname

 sammy | webuser | 31861 | t | <IDLE> in transaction | namesdb
 daria | webuser | 31905 | f | SELECT * FROM topten; | namesdb
Checking Resource Queue Status 176

Greenplum Database DBA Guide 4.3 – Chapter 10: Managing Workload and Resources
Use this output to identify the process id (pid) of the statement you want to clear from
the resource queue. To clear the statement, you would then open a terminal window
(as the gpadmin database superuser or as root) on the master host and cancel the
corresponding process. For example:

=# pg_cancel_backend(31905)

Note: Do not use any operating system KILL command.

Viewing the Priority of Active Statements
The gp_toolkit administrative schema has a view called gp_resq_priority_statement,
which lists all statements currently being executed and provides the priority, session
ID, and other information.

This view is only available through the gp_toolkit administrative schema. See the
Greenplum Database Reference Guide for more information.

Resetting the Priority of an Active Statement
Superusers can adjust the priority of a statement currently being executed using the
built-in function gp_adjust_priority(session_id, statement_count,
priority). Using this function, superusers can raise or lower the priority of any
query. For example:

=# SELECT gp_adjust_priority(752, 24905, 'HIGH')

To obtain the session ID and statement count parameters required by this function,
Superusers can use the gp_toolkit administrative schema view,
gp_resq_priority_statement. This function affects only the specified statement .
Subsequent statements in the same resource queue are executed using the queue’s
normally assigned priority.
Checking Resource Queue Status 177

Greenplum Database DBA Guide 4.3 – Chapter 11: Defining Database Performance
11. Defining Database Performance

Greenplum measures database performance based on the rate at which the database
management system (DBMS) supplies information to those requesting it.

• Understanding the Performance Factors

• Determining Acceptable Performance

Understanding the Performance Factors
Several key performance factors influence database performance. Understanding
these factors helps identify performance opportunities and avoid problems:

• System Resources

• Workload

• Throughput

• Contention

• Optimization

System Resources
Database performance relies heavily on disk I/O and memory usage. To accurately set
performance expectations, you need to know the baseline performance of the
hardware on which your DBMS is deployed. Performance of hardware components
such as CPUs, hard disks, disk controllers, RAM, and network interfaces will
significantly affect how fast your database performs.

Workload
The workload equals the total demand from the DBMS, and it varies over time. The
total workload is a combination of user queries, applications, batch jobs, transactions,
and system commands directed through the DBMS at any given time. For example, it
can increase when month-end reports are run or decrease on weekends when most
users are out of the office. Workload strongly influences database performance.
Knowing your workload and peak demand times helps you plan for the most efficient
use of your system resources and enables processing the largest possible workload.

Throughput
A system’s throughput defines its overall capability to process data. DBMS
throughput is measured in queries per second, transactions per second, or average
response times. DBMS throughput is closely related to the processing capacity of the
underlying systems (disk I/O, CPU speed, memory bandwidth, and so on), so it is
important to know the throughput capacity of your hardware when setting DBMS
throughput goals.
Understanding the Performance Factors 178

Greenplum Database DBA Guide 4.3 – Chapter 11: Defining Database Performance
Contention
Contention is the condition in which two or more components of the workload attempt
to use the system in a conflicting way — for example, multiple queries that try to
update the same piece of data at the same time or multiple large workloads that
compete for system resources. As contention increases, throughput decreases.

Optimization
DBMS optimizations can affect the overall system performance. SQL formulation,
database configuration parameters, table design, data distribution, and so on enable
the database query planner and optimizer to create the most efficient access plans.

Determining Acceptable Performance
When approaching a performance tuning initiative, you should know your system’s
expected level of performance and define measurable performance requirements so
you can accurately evaluate your system’s performance. Consider the following when
setting performance goals:

• Baseline Hardware Performance

• Performance Benchmarks

Baseline Hardware Performance
Most database performance problems are caused not by the database, but by the
underlying systems on which the database runs. I/O bottlenecks, memory problems,
and network issues can notably degrade database performance. Knowing the baseline
capabilities of your hardware and operating system (OS) will help you identify and
troubleshoot hardware-related problems before you explore database-level or
query-level tuning initiatives. See the Greenplum Database Reference Guide for
information about running the gpcheckperf utility to validate hardware and network
performance.

Performance Benchmarks
To maintain good performance or fix performance issues, you should know the
capabilities of your DBMS on a defined workload. A benchmark is a predefined
workload that produces a known result set. Periodically run the same benchmark tests
to help identify system-related performance degradation over time. Use benchmarks
to compare workloads and identify queries or applications that need optimization.

Many third-party organizations, such as the Transaction Processing Performance
Council (TPC), provide benchmark tools for the database industry. TPC provides
TPC-H, a decision support system that examines large volumes of data, executes
queries with a high degree of complexity, and gives answers to critical business
questions. For more information about TPC-H, go to:

http://www.tpc.org/tpch
Determining Acceptable Performance 179

http://www.tpc.org/tpch

Greenplum Database DBA Guide 4.3 – Chapter 12: Common Causes of Performance Issues
12. Common Causes of Performance Issues

This chapter explains the troubleshooting processes for common performance issues
and potential solutions to these issues. The following list describes solutions for the
most common causes of performance problems in Greenplum Database:

• Identifying Hardware and Segment Failures

• Managing Workload

• Avoiding Contention

• Maintaining Database Statistics

• Optimizing Data Distribution

• Optimizing Your Database Design

Identifying Hardware and Segment Failures
The performance of Greenplum Database depends on the hardware and IT
infrastructure on which it runs. Greenplum Database is comprised of several servers
(hosts) acting together as one cohesive system (array). Greenplum Database’s
performance will be as fast as the slowest host in the array. Problems with CPU
utilization, memory management, I/O processing, or network load affect performance.
Common hardware-related issues are:

• Disk Failure – Although a single disk failure should not dramatically affect
database performance if you are using RAID, disk resynchronization does
consume resources on the host with failed disks. The gpcheckperf utility can
help identify segment hosts that have disk I/O issues.

• Host Failure – When a host is offline, the segments on that host are
nonoperational. This means other hosts in the array must perform twice their usual
workload because they are running the primary segments and multiple mirrors. If
mirrors are not enabled, service is interrupted. Service is temporarily interrupted
to recover failed segments. The gpstate utility helps identify failed segments.

• Network Failure – Failure of a network interface card, a switch, or DNS server
can bring down segments. If host names or IP addresses cannot be resolved within
your Greenplum array, these manifest themselves as interconnect errors in
Greenplum Database. The gpcheckperf utility helps identify segment hosts that
have network issues.

• Disk Capacity – Disk capacity on your segment hosts should never exceed 70
percent full. Greenplum Database needs some free space for runtime processing.
To reclaim disk space that deleted rows occupy, run VACUUM after loads or updates.
The gp_toolkit administrative schema has many views for checking the size of
distributed database objects. See the Greenplum Database Reference Guide for
information about checking database object sizes and disk space.
Identifying Hardware and Segment Failures 180

Greenplum Database DBA Guide 4.3 – Chapter 12: Common Causes of Performance Issues
Managing Workload
A database system has a limited CPU capacity, memory, and disk I/O resources. When
multiple workloads compete for access to these resources, database performance
suffers. Workload management maximizes system throughput while meeting varied
business requirements. With role-based resource queues, Greenplum Database
workload management limits active queries and conserves system resources.

A resource queue limits the size and/or total number of queries that users or roles can
execute in the particular queue. By assigning all your database roles to the appropriate
resource queue, administrators can control concurrent user queries and prevent system
overload. See Chapter 10, “Managing Workload and Resources” for more information
about setting up resource queues.

Greenplum Database administrators should run maintenance workloads such as data
loads and VACUUM ANALYZE operations after business hours. Do not compete with
database users for system resources; perform administrative tasks at low-usage times.

Avoiding Contention
Contention arises when multiple users or workloads try to use the system in a
conflicting way; for example, contention occurs when two transactions try to update a
table simultaneously. A transaction that seeks a table-level or row-level lock will wait
indefinitely for conflicting locks to be released. Applications should not hold
transactions open for long periods of time, for example, while waiting for user input.

Maintaining Database Statistics
Greenplum Database uses a cost-based query planner that relies on database statistics.
Accurate statistics allow the query planner to better estimate the number of rows
retrieved by a query to choose the most efficient query plan. Without database
statistics, the query planner cannot estimate how many records will be returned. The
planner does not assume it has sufficient memory to perform certain operations such
as aggregations, so it takes the most conservative action and does these operations by
reading and writing from disk. This is significantly slower than doing them in
memory. ANALYZE collects statistics about the database that the query planner needs.

Identifying Statistics Problems in Query Plans
Before you interpret a query plan for a query using EXPLAIN or EXPLAIN ANALYZE,
familiarize yourself with the data to help identify possible statistics problems. Check
the plan for the following indicators of inaccurate statistics:

• Are the planner’s estimates close to reality? Run EXPLAIN ANALYZE and see if
the number of rows the planner estimated is close to the number of rows the query
operation returned .

• Are selective predicates applied early in the plan? The most selective filters
should be applied early in the plan so fewer rows move up the plan tree.
Managing Workload 181

Greenplum Database DBA Guide 4.3 – Chapter 12: Common Causes of Performance Issues
• Is the planner choosing the best join order? When you have a query that joins
multiple tables, make sure the planner chooses the most selective join order. Joins
that eliminate the largest number of rows should be done earlier in the plan so
fewr less rows move up the plan tree.

See “Query Profiling” on page 159 for more information about reading query plans.

Tuning Statistics Collection
The following configuration parameters control the amount of data sampled for
statistics collection:

• default_statistics_target

• gp_analyze_relative_error

These parameters control statistics sampling at the system level. It is better to sample
only increased statistics for columns used most frequently in query predicates. You
can adjust statistics for a particular column using the command:

ALTER TABLE...SET STATISTICS

For example:

ALTER TABLE sales ALTER COLUMN region SET STATISTICS 50;

This is equivalent to increasing default_statistics_target for a particular
column. Subsequent ANALYZE operations will then gather more statistics data for that
column and produce better query plans as a result.

Optimizing Data Distribution
When you create a table in Greenplum Database, you must declare a distribution key
that allows for even data distribution across all segments in the system. Because the
segments work on a query in parallel, Greenplum Database will always be as fast as
the slowest segment. If the data is unbalanced, the segments that have more data will
return their results slower and therefore slow down the entire system.

Optimizing Your Database Design
Many performance issues can be improved by database design. Examine your
database design and consider the following:

• Does the schema reflect the way the data is accessed?

• Can larger tables be broken down into partitions?

• Are you using the smallest data type possible to store column values?

• Are columns used to join tables of the same datatype?

• Are your indexes being used?
Optimizing Data Distribution 182

Greenplum Database DBA Guide 4.3 – Chapter 12: Common Causes of Performance Issues
Greenplum Database Maximum Limits
To help optimize database design, review the maximum limits that Greenplum
Database supports:

Table 12.1 Maximum Limits of Greenplum Database

Dimension Limit

Database Size Unlimited

Table Size Unlimited, 128 TB per partition per segment

Row Size 1.6 TB (1600 columns * 1 GB)

Field Size 1 GB

Rows per Table 281474976710656 (2^48)

Columns per Table/View 1600

Indexes per Table Unlimited

Columns per Index 32

Table-level Constraints per Table Unlimited

Table Name Length 63 Bytes (Limited by name data type)

Dimensions listed as unlimited are not intrinsically limited by Greenplum Database.
However, they are limited in practice to available disk space and memory/swap space.
Performance may suffer when these values are unusually large.

Note: There is a maximum limit on the number of objects (tables, views, and indexes,
but not rows) that may exist at one time. This limit is 4294967296 (2^32).
Optimizing Your Database Design 183

Greenplum Database DBA Guide 4.3 – Chapter 13: Investigating a Performance Problem
13. Investigating a Performance Problem

This section lists steps you can take to help identify the cause of a performance
problem. If the problem affects a particular workload or query, you can focus on
tuning that particular workload. If the performance problem is system-wide, then
hardware problems, system failures, or resource contention may be the cause.

Checking System State
Use the gpstate utility to identify failed segments. A Greenplum Database system
will incur performance degradation when segment instances are down because other
hosts must pick up the processing responsibilities of the down segments.

Failed segments can indicate a hardware failure, such as a failed disk drive or network
card. Greenplum Database provides the hardware verification tool gpcheckperf to
help identify the segment hosts with hardware issues.

Checking Database Activity
• Checking for Active Sessions (Workload)

• Checking for Locks (Contention)

• Checking Query Status and System Utilization

Checking for Active Sessions (Workload)
The pg_stat_activity system catalog view shows one row per server process; it shows
the database OID, database name, process ID, user OID, user name, current query,
time at which the current query began execution, time at which the process was
started, client address, and port number. To obtain the most information about the
current system workload, query this view as the database superuser. For example:

SELECT * FROM pg_stat_activity;

Note the information does not update instantaneously.

Checking for Locks (Contention)
The pg_locks system catalog view allows you to see information about outstanding
locks. If a transaction is holding a lock on an object, any other queries must wait for
that lock to be released before they can continue. This may appear to the user as if a
query is hanging.

Examine pg_locks for ungranted locks to help identify contention between database
client sessions. pg_locks provides a global view of all locks in the database system,
not only those relevant to the current database. You can join its relation column
against pg_class.oid to identify locked relations (such as tables), but this works
Checking System State 184

Greenplum Database DBA Guide 4.3 – Chapter 13: Investigating a Performance Problem
correctly only for relations in the current database. You can join the pid column to the
pg_stat_activity.procpid to see more information about the session holding or
waiting to hold a lock. For example:

SELECT locktype, database, c.relname, l.relation,
l.transactionid, l.transaction, l.pid, l.mode, l.granted,
a.current_query
 FROM pg_locks l, pg_class c, pg_stat_activity a
 WHERE l.relation=c.oid AND l.pid=a.procpid
 ORDER BY c.relname;

If you use resource queues for workload management, queries that are waiting in a
queue will also show in pg_locks. To see how many queries are waiting to run from a
resource queue, use the gp_resqueue_status system catalog view. For example:

SELECT * FROM gp_toolkit.gp_resqueue_status;

Checking Query Status and System Utilization
You can use system monitoring utilities such as ps, top, iostat, vmstat, netstat
and so on to monitor database activity on the hosts in your Greenplum Database array.
These tools can help identify Greenplum Database processes (postgres processes)
currently running on the system and the most resource intensive tasks with regards to
CPU, memory, disk I/O, or network activity. Look at these system statistics to identify
queries that degrade database performance by overloading the system and consuming
excessive resources. Greenplum Database’s management tool gpssh allows you to run
these system monitoring commands on several hosts simultaneously.

The Greenplum Command Center collects query and system utilization metrics. See
the Greenplum Command Center Administrator Guide for procedures to enable
Greenplum Command Center.

Troubleshooting Problem Queries
If a query performs poorly, look at its query plan to help identify problems. The
EXPLAIN command shows the query plan for a given query. See “Query Profiling” on
page 159 for more information about reading query plans and identifying problems.

Investigating Error Messages
Greenplum Database log messages are written to files in the pg_log directory within
the master’s or segment’s data directory. Because the master log file contains the most
information, you should always check it first. Log files roll over daily and use the
naming convention: gpdb-YYYY-MM-DD_hhmmss.csv. To locate the log files on the
master host:

$ cd $MASTER_DATA_DIRECTORY/pg_log

Log lines have the format of:

timestamp | user | database | statement_id | con# cmd#
|:-LOG_LEVEL: log_message
Troubleshooting Problem Queries 185

Greenplum Database DBA Guide 4.3 – Chapter 13: Investigating a Performance Problem
You may want to focus your search for WARNING, ERROR, FATAL or PANIC log level
messages. You can use the Greenplum utility gplogfilter to search through
Greenplum Database log files. For example, when you run the following command on
the master host, it checks for problem log messages in the standard logging locations:

$ gplogfilter -t

To search for related log entries in the segment log files, you can run gplogfilter on
the segment hosts using gpssh. You can identify corresponding log entries by the
statement_id or con# (session identifier). For example, to search for log messages
in the segment log files containing the string con6 and save output to a file:

gpssh -f seg_hosts_file -e 'source
/usr/local/greenplum-db/greenplum_path.sh ; gplogfilter -f
con6 /gpdata/*/pg_log/gpdb*.csv' > seglog.out

Gathering Information for Greenplum Support
The gpdetective utility collects information from a running Greenplum Database
system and creates a bzip2-compressed tar output file. You can then send the output
file to Greenplum Customer Support to aid the diagnosis of Greenplum Database
errors or system failures. Run gpdetective on your master host, for example:

$ gpdetective -f /var/data/my043008gp.tar
Investigating Error Messages 186

	Preface
	About This Guide
	About the Greenplum Database Documentation Set
	Document Conventions
	Text Conventions
	Command Syntax Conventions

	Getting Support
	Product information
	Technical support

	1. Introduction to Greenplum
	2. Accessing the Database
	Establishing a Database Session
	Supported Client Applications
	Greenplum Database Client Applications
	pgAdmin III for Greenplum Database
	Database Application Interfaces
	Third-Party Client Tools

	Troubleshooting Connection Problems

	3. Configuring Client Authentication
	Allowing Connections to Greenplum Database
	Editing the pg_hba.conf File

	Limiting Concurrent Connections
	Encrypting Client/Server Connections

	4. Managing Roles and Privileges
	Security Best Practices for Roles and Privileges
	Creating New Roles (Users)
	Altering Role Attributes

	Role Membership
	Managing Object Privileges
	Simulating Row and Column Level Access Control

	Encrypting Data
	Encrypting Passwords
	Enabling SHA-256 Encryption

	Time-based Authentication

	5. Defining Database Objects
	Creating and Managing Databases
	About Template Databases
	Creating a Database
	Viewing the List of Databases
	Altering a Database
	Dropping a Database

	Creating and Managing Tablespaces
	Creating a Filespace
	Moving the Location of Temporary or Transaction Files
	Creating a Tablespace
	Using a Tablespace to Store Database Objects
	Viewing Existing Tablespaces and Filespaces
	Dropping Tablespaces and Filespaces

	Creating and Managing Schemas
	The Default “Public” Schema
	Creating a Schema
	Schema Search Paths
	Dropping a Schema
	System Schemas

	Creating and Managing Tables
	Creating a Table

	Choosing the Table Storage Model
	Heap Storage
	Append-Optimized Storage
	Choosing Row or Column-Oriented Storage
	Using Compression (Append-Optimized Tables Only)
	Checking the Compression and Distribution of an Append-Optimized Table
	Support for Run-length Encoding
	Adding Column-level Compression
	Altering a Table
	Dropping a Table

	Partitioning Large Tables
	Table Partitioning in Greenplum Database
	Deciding on a Table Partitioning Strategy
	Creating Partitioned Tables
	Loading Partitioned Tables
	Verifying Your Partition Strategy
	Viewing Your Partition Design
	Maintaining Partitioned Tables

	Creating and Using Sequences
	Creating a Sequence
	Using a Sequence
	Altering a Sequence
	Dropping a Sequence

	Using Indexes in Greenplum Database
	Index Types
	Creating an Index
	Examining Index Usage
	Managing Indexes
	Dropping an Index

	Creating and Managing Views
	Creating Views
	Dropping Views

	6. Managing Data
	About Concurrency Control in Greenplum Database
	Inserting Rows
	Updating Existing Rows
	Deleting Rows
	Truncating a Table

	Working With Transactions
	Transaction Isolation Levels

	Vacuuming the Database
	Configuring the Free Space Map

	7. Loading and Unloading Data
	Greenplum Database Loading Tools Overview
	External Tables
	gpload
	COPY

	Loading Data into Greenplum Database
	Accessing File-Based External Tables
	Using the Greenplum Parallel File Server (gpfdist)

	Using Hadoop Distributed File System (HDFS) Tables
	One-time HDFS Protocol Installation
	Creating and Using Web External Tables
	Loading Data Using an External Table
	Loading and Writing Non-HDFS Custom Data
	Using a Custom Format
	Using a Custom Protocol
	Creating External Tables - Examples
	Handling Load Errors
	Loading Data
	Optimizing Data Load and Query Performance

	Unloading Data from Greenplum Database
	Defining a File-Based Writable External Table
	Defining a Command-Based Writable External Web Table
	Unloading Data Using a Writable External Table
	Unloading Data Using COPY

	Transforming XML Data
	XML Transformation Examples

	Formatting Data Files
	Formatting Rows
	Formatting Columns
	Representing NULL Values
	Escaping
	Character Encoding

	Example Custom Data Access Protocol
	Notes
	Installing the External Table Protocol

	8. About Greenplum Query Processing
	Understanding Query Planning and Dispatch
	Understanding Greenplum Query Plans
	Understanding Parallel Query Execution

	9. Querying Data
	Defining Queries
	SQL Lexicon
	SQL Value Expressions

	Using Functions and Operators
	Using Functions in Greenplum Database
	User-Defined Functions
	Built-in Functions and Operators
	Window Functions
	Advanced Analytic Functions

	Query Performance
	Query Profiling
	Reading EXPLAIN Output
	Reading EXPLAIN ANALYZE Output
	Examining Query Plans to Solve Problems

	10. Managing Workload and Resources
	Overview of Greenplum Workload Management
	How Resource Queues Work in Greenplum Database
	Steps to Enable Workload Management

	Configuring Workload Management
	Creating Resource Queues
	Creating Queues with an Active Query Limit
	Creating Queues with Memory Limits
	Creating Queues with a Query Planner Cost Limits
	Setting Priority Levels

	Assigning Roles (Users) to a Resource Queue
	Removing a Role from a Resource Queue

	Modifying Resource Queues
	Altering a Resource Queue
	Dropping a Resource Queue

	Checking Resource Queue Status
	Viewing Queued Statements and Resource Queue Status
	Viewing Resource Queue Statistics
	Viewing the Roles Assigned to a Resource Queue
	Viewing the Waiting Queries for a Resource Queue
	Clearing a Waiting Statement From a Resource Queue
	Viewing the Priority of Active Statements
	Resetting the Priority of an Active Statement

	11. Defining Database Performance
	Understanding the Performance Factors
	System Resources
	Workload
	Throughput
	Contention
	Optimization

	Determining Acceptable Performance
	Baseline Hardware Performance
	Performance Benchmarks

	12. Common Causes of Performance Issues
	Identifying Hardware and Segment Failures
	Managing Workload
	Avoiding Contention
	Maintaining Database Statistics
	Identifying Statistics Problems in Query Plans
	Tuning Statistics Collection

	Optimizing Data Distribution
	Optimizing Your Database Design
	Greenplum Database Maximum Limits

	13. Investigating a Performance Problem
	Checking System State
	Checking Database Activity
	Checking for Active Sessions (Workload)
	Checking for Locks (Contention)
	Checking Query Status and System Utilization

	Troubleshooting Problem Queries
	Investigating Error Messages
	Gathering Information for Greenplum Support

