
PRODUCT DOCUMENTATION
Greenplum® Database
Version 4.3

Client Tools for UNIX
Rev: A01

© 2013 GoPivotal, Inc.

Copyright © 2013 GoPivotal, Inc. All rights reserved.

GoPivotal, Inc. believes the information in this publication is accurate as of its publication date. The
information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED "AS IS." GOPIVOTAL, INC. ("Pivotal") MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION IN THIS
PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any Pivotal software described in this publication requires an applicable
software license.

All trademarks used herein are the property of Pivotal or their respective owners.

Revised November 2013 (4.3.0.0)

Table of Contents iii

Greenplum Database Client Tools for UNIX 4.3 - Contents

Contents - Greenplum Database 4.3 Client Tools for Unix
Chapter 1: Installing the Greenplum Client Tools 1

Running the Client Tools Installer... 1
About Your Installation ... 1

Configuring the Command-Line Tools... 2
Additional Connection Environment Variables 2

Enabling Greenplum Database for Remote Client Connections.......... 2
Configuring a Client System for Kerberos Authentication.................. 3

Requirements ... 3
Setting Up a Client System with Kerberos Authentication 4
Accessing Greenplum Database with psql 4

Next Steps ... 5

Appendix A: Client Tools Reference ... 6
gpmapreduce ... 7
psql...10

Appendix B: SQL Command Reference...33
SQL Syntax Summary ...33

Greenplum Database Client Tools for UNIX 4.3 – Chapter 1: Installing the Greenplum Client Tools
1. Installing the Greenplum Client Tools

This section contains information for installing the client programs on your client
machine and for enabling Greenplum Database to accept remote client connections:

• Running the Client Tools Installer

• Configuring the Command-Line Tools

• Enabling Greenplum Database for Remote Client Connections

• Configuring a Client System for Kerberos Authentication

• Next Steps

Running the Client Tools Installer
The Greenplum Database client tools installer installs the following client tools:

• PostgreSQL Interactive Terminal (psql)

• Greenplum MapReduce Client Program (gpmapreduce)

To install the Greenplum Database client tools

1. Download the appropriate greenplum-clients-4.3.x.x-PLATFORM.bin
installer package for your platform from the EMC Download Center. The
currently supported platforms are RedHat Linux 32-bit, RedHat Linux 64-bit, and
Solaris 64-bit.

2. Unzip the installer:

unzip greenplum-clients-4.3.x.x-PLATFORM.bin.zip

3. Run the installer:

/bin/bash greenplum-clients-4.3.x.x-PLATFORM.bin

4. The installer will prompt you to accept the license agreement and to provide an
installation path. For the installation path, be sure to enter an absolute path if you
choose not to accept the default location (for example,
/mydir/gp-client-tools). The client tools are installed into
greenplum-db-4.3.x.x by default.

About Your Installation
Your Greenplum Database client tools installation contains the following files and
directories:

• bin — client command-line tools (psql and gpmapreduce)

• greenplum_clients_path.sh — environment variables

• include — libpq C header files

• lib — client tools library files
Running the Client Tools Installer 1

https://emc.subscribenet.com
https://emc.subscribenet.com

Greenplum Database Client Tools for UNIX 4.3 – Chapter 1: Installing the Greenplum Client Tools
Configuring the Command-Line Tools
As a convenience, a greenplum_clients_path.sh file is provided in your client
tools installation directory following installation. It has the following environment
variable settings:

GPHOME_CLIENTS — The installation directory of the Greenplum Database client
tools.

PATH — The paths to the command-line utilities.

LD_LIBRARY_PATH — The path to the library files.

You can source this file in your user’s startup shell profile (such as .bashrc or
.bash_profile).

For example, you could add a line similar to the following to your chosen profile files
(making sure the right install path is used):

source greenplum-db-4.3.x.x/greenplum_clients_path.sh

After editing the chosen profile file, source it as the correct user to make the changes
active. For example:

source ~/.bashrc

Additional Connection Environment Variables
The PostgreSQL command-line tools require several connection parameters in order
to be able to connect to a Greenplum Database database. In order to save some typing
on the command-line, you can create the following environment variables in your
preferred profile file (such as .bashrc).

• PGDATABASE — The name of the default Greenplum database to connect to.

• PGHOST — The Greenplum master host name or IP address.

• PGPORT — The port number that the Greenplum master instance (postmaster
process) is running on.

• PGUSER — The default database role name to use for login.

Enabling Greenplum Database for Remote Client
Connections

In order for Greenplum Database to be able to accept remote client connections, you
must configure your Greenplum Database master so that connections are allowed from
the client hosts and database users that will be connecting to Greenplum Database.

To enable remote client connections

1. Make sure that the pg_hba.conf file of the Greenplum Database master is
correctly configured to allow connections from the users to the database(s) using
the authentication method you want. See the section on Editing the pg_hba.conf
Configuring the Command-Line Tools 2

Greenplum Database Client Tools for UNIX 4.3 – Chapter 1: Installing the Greenplum Client Tools
File in the Greenplum Database Administrator Guide and the section on Client
Authentication in the PostgreSQL documentation for details. Make sure the
authentication method you choose is supported by the client tool you are using.

2. If you edited pg_hba.conf file, the change requires a server reload (using the
gpstop -u command) to take effect.

3. Make sure that the databases and roles you are using to connect exist in the system
and that the roles have the correct privileges to the database objects.

Configuring a Client System for Kerberos Authentication
If you use Kerberos authentication to connect to a Greenplum Database with the psql
utility, your client system must be configured to use Kerberos authentication. If you
are not using Kerberos authentication to connect to a Greenplum Database, Kerberos
is not needed on your client system.

• Requirements

• Setting Up a Client System with Kerberos Authentication

• Accessing Greenplum Database with psql

For information about enabling Kerberos authentication with Greenplum Database,
see the chapter “Kerberos Authentication” in the Greenplum Database System
Administrator Guide.

Requirements
The following are requirements to connect to a Greenplum Database that is enabled
with Kerberos authentication from a client system with Greenplum Database client
software.

• Prerequisites

• Required Software on the Client Machine

Prerequisites
• Kerberos must be installed and configured on the Greenplum Database master

host. See “Enabling Greenplum Database for Remote Client Connections.”

• The client systems require the Kerberos configuration file krb5.conf from the
Greenplum Database master.

• The client systems require a Kerberos keytab file that contains the authentication
credentials for the Greenplum Database user that is used to log into the database.

• The client machines must be able to connect to Greenplum Database master host.
If necessary, add the Greenplum Database master host name and IP address to the
system hosts file.

On Linux systems, the hosts file is in /etc.
Configuring a Client System for Kerberos Authentication 3

http://www.postgresql.org/docs/8.2/static/client-authentication.html
http://www.postgresql.org/docs/8.2/static/client-authentication.html

Greenplum Database Client Tools for UNIX 4.3 – Chapter 1: Installing the Greenplum Client Tools
Required Software on the Client Machine
The Kerberos kinit utility is required on the client machine. The kinit utility is
available when you install the Kerberos packages:
krb5-libs
krb5-workstation

Note: When you install the Kerberos packages, you can use other Kerberos utilities
such as klist to display Kerberos ticket information.

Setting Up a Client System with Kerberos Authentication
To connect to Greenplum Database with Kerberos authentication requires a Kerberos
ticket. On client systems, tickets are generated from Kerberos keytab files with the
kinit utility and are stored in a cache file.

1. Install a copy of the Kerberos configuration file krb5.conf from the Greenplum
Database master. The file is used by the Greenplum Database client software and
the Kerberos utilities.

Install krb5.conf in the directory /etc.

If needed, add the parameter default_ccache_name to the [libdefaults]
section of the krb5.ini file and specify location of the Kerberos ticket cache file
on the client system.

2. Obtain a Kerberos keytab file that contains the authentication credentials for the
Greenplum Database user.

3. Run kinit specifying the keytab file to create a ticket on the client machine. For
this example, the keytab file gpdb-kerberos.keytab is in the current directory.
The ticket cache file is in the gpadmin user home directory.

$ kinit -k -t gpdb-kerberos.keytab
 -c /home/gpadmin/cache.txt
 gpadmin/kerberos-gpdb@KRB.GREENPLUM.COM

Accessing Greenplum Database with psql
From a remote system, you can access a Greenplum Database that has Kerberos
authentication enabled.

To connect to Greenplum Database with psql

1. As the gpadmin user, open a command window.

2. Start psql from the command window and specify a connection to the Greenplum
Database specifying the user that is configured with Kerberos authentication.

This example logs into the Greenplum Database on the machine kerberos-gpdb
as the gpadmin user with the Kerberos credentials gpadmin/kerberos-gpdb:

$ psql -U "gpadmin/kerberos-gpdb" -h kerberos-gpdb template1
Configuring a Client System for Kerberos Authentication 4

Greenplum Database Client Tools for UNIX 4.3 – Chapter 1: Installing the Greenplum Client Tools
Next Steps
Refer to the client tool reference documentation for further instructions:

• Greenplum Command Line Tools — See “Client Tools Reference” on page 6.

• Greenplum Database SQL Syntax — See “SQL Command Reference” on page
33.
Next Steps 5

Client Tools Reference 6

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference

A. Client Tools Reference

This chapter describes the client tools provided with this release. They all require
certain connection information such as the Greenplum Database master host name,
port, database name, and role name. These can be configured using environment
variables. See “Configuring the Command-Line Tools” on page 2.

The following tools are provided:

• gpmapreduce (submits Greenplum MapReduce specifications for execution)

• psql (PostgreSQL interactive terminal)

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
gpmapreduce
Runs Greenplum MapReduce jobs as defined in a YAML specification document.

Synopsis
gpmapreduce [options ...] -f yaml_file [dbname [username]] [-k
name=value | --key name=value] [-h hostname | --host hostname] [-p
port| --port port] [-U username | --username username] [-W] [-v]

gpmapreduce -V | --version

gpmapreduce -h | --help

gpmapreduce -x | --explain

gpmapreduce -X | --explain-analyze

Prerequisites
The following are required prior to running this program:

• You must have your MapReduce job defined in a YAML file. For information
about the Greenplum MapReduce specification, see the Greenplum Database
Reference Guide.

• You must be a Greenplum Database superuser to run MapReduce jobs written in
untrusted Perl or Python.

• You must be a Greenplum Database superuser to run MapReduce jobs with EXEC
and FILE inputs.

• You must be a Greenplum Database superuser to run MapReduce jobs with
GPFDIST input unless the server configuration parameter
gp_external_grant_privileges is set to on. See the Greenplum Database
Reference Guide for more information.

Description
MapReduce is a programming model developed by Google for processing and
generating large data sets on an array of commodity servers. Greenplum MapReduce
allows programmers who are familiar with the MapReduce paradigm to write map and
reduce functions and submit them to the Greenplum Database parallel engine for
processing.

In order for Greenplum to be able to process MapReduce functions, the functions need
to be defined in a YAML document, which is then passed to the Greenplum
MapReduce program, gpmapreduce, for execution by the Greenplum Database
parallel engine. The Greenplum system takes care of the details of distributing the
input data, executing the program across a set of machines, handling machine failures,
and managing the required inter-machine communication.
gpmapreduce 7

http://en.wikipedia.org/wiki/MapReduce

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
Options

-f yaml_file

Required. The YAML file that contains the Greenplum MapReduce job definitions.
See the Greenplum Database Reference Guide.

-? | --help

Show help, then exit.

-V | --version

Show version information, then exit.

-v | --verbose

Show verbose output.

-x | --explain

Do not run MapReduce jobs, but produce explain plans.

-X | --explain-analyze

Run MapReduce jobs and produce explain-analyze plans.

-k | --key name=value

Sets a YAML variable. A value is required. Defaults to “key” if no variable name is
specified.

Connection Options

-h host | --host host

Specifies the host name of the machine on which the Greenplum master database
server is running. If not specified, reads from the environment variable PGHOST or
defaults to localhost.

-p port | --port port

Specifies the TCP port on which the Greenplum master database server is listening
for connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system user name.

-W | --password

Force a password prompt.
gpmapreduce 8

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
Examples
Run a MapReduce job as defined in my_yaml.txt and connect to the database
mydatabase:

gpmapreduce -f my_yaml.txt mydatabase

See Also
The Greenplum MapReduce specification in the Greenplum Database Reference
Guide.
gpmapreduce 9

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
psql
Interactive command-line interface for Greenplum Database

Synopsis
psql [option...] [dbname [username]]

Description
psql is a terminal-based front-end to Greenplum Database. It enables you to type in
queries interactively, issue them to Greenplum Database, and see the query results.
Alternatively, input can be from a file. In addition, it provides a number of
meta-commands and various shell-like features to facilitate writing scripts and
automating a wide variety of tasks.

Options

-a | --echo-all

Print all input lines to standard output as they are read. This is more useful for script
processing rather than interactive mode.

-A | --no-align

Switches to unaligned output mode. (The default output mode is aligned.)

-c 'command' | --command 'command'

Specifies that psql is to execute the specified command string, and then exit. This is
useful in shell scripts. command must be either a command string that is completely
parseable by the server, or a single backslash command. Thus you cannot mix SQL
and psql meta-commands with this option. To achieve that, you could pipe the
string into psql, like this: echo '\x \\ SELECT * FROM foo;' | psql. (\\ is
the separator meta-command.)

If the command string contains multiple SQL commands, they are processed in a
single transaction, unless there are explicit BEGIN/COMMIT commands included in
the string to divide it into multiple transactions. This is different from the behavior
when the same string is fed to psql’s standard input.

-d dbname | --dbname dbname

Specifies the name of the database to connect to. This is equivalent to specifying
dbname as the first non-option argument on the command line.

If this parameter contains an equals sign, it is treated as a conninfo string; for
example you can pass 'dbname=postgres user=username password=mypass'
as dbname.

-e | --echo-queries

Copy all SQL commands sent to the server to standard output as well.
psql 10

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
-E | --echo-hidden

Echo the actual queries generated by \d and other backslash commands. You can
use this to study psql’s internal operations.

-f filename | --file filename

Use a file as the source of commands instead of reading commands interactively.
After the file is processed, psql terminates. If filename is - (hyphen), then
standard input is read. Using this option is subtly different from writing psql <
filename. In general, both will do what you expect, but using -f enables some nice
features such as error messages with line numbers.

-F separator | --field-separator separator

Use the specified separator as the field separator for unaligned output.

-H | --html

Turn on HTML tabular output.

-l | --list

List all available databases, then exit. Other non-connection options are ignored.

-L filename | --log-file filename

Write all query output into the specified log file, in addition to the normal output
destination.

-o filename | --output filename

Put all query output into the specified file.

-P assignment | --pset assignment

Allows you to specify printing options in the style of \pset on the command line.
Note that here you have to separate name and value with an equal sign instead of a
space. Thus to set the output format to LaTeX, you could write -P format=latex.

-q | --quiet

Specifies that psql should do its work quietly. By default, it prints welcome
messages and various informational output. If this option is used, none of this
happens. This is useful with the -c option.

-R separator | --record-separator separator

Use separator as the record separator for unaligned output.

-s | --single-step

Run in single-step mode. That means the user is prompted before each command is
sent to the server, with the option to cancel execution as well. Use this to debug
scripts.
psql 11

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
-S | --single-line

Runs in single-line mode where a new line terminates an SQL command, as a
semicolon does.

-t | --tuples-only

Turn off printing of column names and result row count footers, etc. This command
is equivalent to \pset tuples_only and is provided for convenience.

-T table_options | --table-attr table_options

Allows you to specify options to be placed within the HTML table tag. See \pset
for details.

-v assignment | --set assignment | --variable assignment

Perform a variable assignment, like the \set internal command. Note that you must
separate name and value, if any, by an equal sign on the command line. To unset a
variable, leave off the equal sign. To just set a variable without a value, use the equal
sign but leave off the value. These assignments are done during a very early stage of
start-up, so variables reserved for internal purposes might get overwritten later.

-V | --version

Print the psql version and exit.

-x | --expanded

Turn on the expanded table formatting mode.

-X | --no-psqlrc

Do not read the start-up file (neither the system-wide psqlrc file nor the user’s
~/.psqlrc file).

-1 | --single-transaction

When psql executes a script with the -f option, adding this option wraps
BEGIN/COMMIT around the script to execute it as a single transaction. This ensures
that either all the commands complete successfully, or no changes are applied.

If the script itself uses BEGIN, COMMIT, or ROLLBACK, this option will not have the
desired effects. Also, if the script contains any command that cannot be executed
inside a transaction block, specifying this option will cause that command (and
hence the whole transaction) to fail.

-? | --help

Show help about psql command line arguments, and exit.

Connection Options

-h host | --host host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.
psql 12

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
-p port | --port port

The TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or
defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-W | --password

Force a password prompt. psql should automatically prompt for a password
whenever the server requests password authentication. However, currently password
request detection is not totally reliable, hence this option to force a prompt. If no
password prompt is issued and the server requires password authentication, the
connection attempt will fail.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection
attempt will fail. This option can be useful in batch jobs and scripts where no user is
present to enter a password.

Note: This option remains set for the entire session, and so it affects uses of the
meta-command \connect as well as the initial connection attempt.

Exit Status
psql returns 0 to the shell if it finished normally, 1 if a fatal error of its own (out of
memory, file not found) occurs, 2 if the connection to the server went bad and the
session was not interactive, and 3 if an error occurred in a script and the variable
ON_ERROR_STOP was set.

Usage

Connecting To A Database
psql is a client application for Greenplum Database. In order to connect to a database
you need to know the name of your target database, the host name and port number of
the Greenplum master server and what database user name you want to connect as.
psql can be told about those parameters via command line options, namely -d, -h,
-p, and -U respectively. If an argument is found that does not belong to any option it
will be interpreted as the database name (or the user name, if the database name is
already given). Not all these options are required; there are useful defaults. If you omit
the host name, psql will connect via a UNIX-domain socket to a master server on the
local host, or via TCP/IP to localhost on machines that do not have UNIX-domain
sockets. The default master port number is 5432. If you use a different port for the
master, you must specify the port. The default database user name is your UNIX user
psql 13

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
name, as is the default database name. Note that you cannot just connect to any
database under any user name. Your database administrator should have informed you
about your access rights.

When the defaults are not right, you can save yourself some typing by setting any or
all of the environment variables PGAPPNAME, PGDATABASE, PGHOST, PGPORT, and
PGUSER to appropriate values.

It is also convenient to have a ~/.pgpass file to avoid regularly having to type in
passwords. This file should reside in your home directory and contain lines of the
following format:

hostname:port:database:username:password

The permissions on .pgpass must disallow any access to world or group (for
example: chmod 0600 ~/.pgpass). If the permissions are less strict than this, the file
will be ignored. (The file permissions are not currently checked on Microsoft
Windows clients, however.)

If the connection could not be made for any reason (insufficient privileges, server is
not running, etc.), psql will return an error and terminate.

Entering SQL Commands
In normal operation, psql provides a prompt with the name of the database to which
psql is currently connected, followed by the string => for a regular user or =# for a
superuser. For example:

testdb=>

testdb=#

At the prompt, the user may type in SQL commands. Ordinarily, input lines are sent to
the server when a command-terminating semicolon is reached. An end of line does not
terminate a command. Thus commands can be spread over several lines for clarity. If
the command was sent and executed without error, the results of the command are
displayed on the screen.

Meta-Commands
Anything you enter in psql that begins with an unquoted backslash is a psql
meta-command that is processed by psql itself. These commands help make psql
more useful for administration or scripting. Meta-commands are more commonly
called slash or backslash commands.

The format of a psql command is the backslash, followed immediately by a command
verb, then any arguments. The arguments are separated from the command verb and
each other by any number of whitespace characters.

To include whitespace into an argument you may quote it with a single quote. To
include a single quote into such an argument, use two single quotes. Anything
contained in single quotes is furthermore subject to C-like substitutions for \n (new
line), \t (tab), \digits (octal), and \xdigits (hexadecimal).

If an unquoted argument begins with a colon (:), it is taken as a psql variable and the
value of the variable is used as the argument instead.
psql 14

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
Arguments that are enclosed in backquotes (`) are taken as a command line that is
passed to the shell. The output of the command (with any trailing newline removed) is
taken as the argument value. The above escape sequences also apply in backquotes.

Some commands take an SQL identifier (such as a table name) as argument. These
arguments follow the syntax rules of SQL: Unquoted letters are forced to lowercase,
while double quotes (") protect letters from case conversion and allow incorporation
of whitespace into the identifier. Within double quotes, paired double quotes reduce to
a single double quote in the resulting name. For example, FOO"BAR"BAZ is interpreted
as fooBARbaz, and "A weird"" name" becomes A weird" name.

Parsing for arguments stops when another unquoted backslash occurs. This is taken as
the beginning of a new meta-command. The special sequence \\ (two backslashes)
marks the end of arguments and continues parsing SQL commands, if any. That way
SQL and psql commands can be freely mixed on a line. But in any case, the
arguments of a meta-command cannot continue beyond the end of the line.

The following meta-commands are defined:

\a

If the current table output format is unaligned, it is switched to aligned. If it is not
unaligned, it is set to unaligned. This command is kept for backwards compatibility.
See \pset for a more general solution.

\cd [directory]

Changes the current working directory. Without argument, changes to the current
user’s home directory. To print your current working directory, use \!pwd.

\C [title]

Sets the title of any tables being printed as the result of a query or unset any such
title. This command is equivalent to \pset title.

\c | \connect [dbname [username] [host] [port]]

Establishes a new connection. If the new connection is successfully made, the
previous connection is closed. If any of dbname, username, host or port are omitted,
the value of that parameter from the previous connection is used. If the connection
attempt failed, the previous connection will only be kept if psql is in interactive
mode. When executing a non-interactive script, processing will immediately stop
with an error. This distinction was chosen as a user convenience against typos, and a
safety mechanism that scripts are not accidentally acting on the wrong database.

\conninfo

Displays information about the current connection including the database name, the
user name, the type of connection (UNIX domain socket, TCP/IP, etc.), the host,
and the port.

\copy {table [(column_list)] | (query)}
{from | to} {filename | stdin | stdout | pstdin | pstdout}
[with] [binary] [oids] [delimiter [as] 'character']
[null [as] 'string'] [csv [header]
psql 15

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
[quote [as] 'character'] [escape [as] 'character']
[force quote column_list] [force not null column_list]]

Performs a frontend (client) copy. This is an operation that runs an SQL COPY
command, but instead of the server reading or writing the specified file, psql reads
or writes the file and routes the data between the server and the local file system.
This means that file accessibility and privileges are those of the local user, not the
server, and no SQL superuser privileges are required.

The syntax of the command is similar to that of the SQL COPY command. Note that,
because of this, special parsing rules apply to the \copy command. In particular, the
variable substitution rules and backslash escapes do not apply.

\copy ... from stdin | to stdout reads/writes based on the command input
and output respectively. All rows are read from the same source that issued the
command, continuing until \. is read or the stream reaches EOF. Output is sent to the
same place as command output. To read/write from psql’s standard input or output,
use pstdin or pstdout. This option is useful for populating tables in-line within a
SQL script file.

This operation is not as efficient as the SQL COPY command because all data must
pass through the client/server connection.

\copyright

Shows the copyright and distribution terms of PostgreSQL on which Greenplum
Database is based.

\d [relation_pattern] |
\d+ [relation_pattern] |
\dS [relation_pattern]

For each relation (table, external table, view, index, or sequence) matching the
relation pattern, show all columns, their types, the tablespace (if not the default) and
any special attributes such as NOT NULL or defaults, if any. Associated indexes,
constraints, rules, and triggers are also shown, as is the view definition if the relation
is a view.

• The command form \d+ is identical, except that more information is
displayed: any comments associated with the columns of the table are shown,
as is the presence of OIDs in the table.

• The command form \dS is identical, except that system information is
displayed as well as user information.

For example, \dt displays user tables, but not system tables; \dtS displays both
user and system tables.Both these commands can take the + parameter to display
additional information, as in \dt+ and \dtS+.

If \d is used without a pattern argument, it is equivalent to \dtvs which will show a
list of all tables, views, and sequences.

\da [aggregate_pattern]

Lists all available aggregate functions, together with the data types they operate on.
If a pattern is specified, only aggregates whose names match the pattern are shown.
psql 16

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
\db [tablespace_pattern] | \db+ [tablespace_pattern]

Lists all available tablespaces and their corresponding filespace locations. If pattern
is specified, only tablespaces whose names match the pattern are shown. If + is
appended to the command name, each object is listed with its associated
permissions.

\dc [conversion_pattern]

Lists all available conversions between character-set encodings. If pattern is
specified, only conversions whose names match the pattern are listed.

\dC

Lists all available type casts.

\dd [object_pattern]

Lists all available objects. If pattern is specified, only matching objects are shown.

\dD [domain_pattern]

Lists all available domains. If pattern is specified, only matching domains are
shown.

\df [function_pattern] | \df+ [function_pattern]

Lists available functions, together with their argument and return types. If pattern is
specified, only functions whose names match the pattern are shown. If the form
\df+ is used, additional information about each function, including language and
description, is shown. To reduce clutter, \df does not show data type I/O functions.
This is implemented by ignoring functions that accept or return type cstring.

\dg [role_pattern]

Lists all database roles. If pattern is specified, only those roles whose names match
the pattern are listed.

\distPvxS [index | sequence | table | parent table | view
| external_table | system_object]

This is not the actual command name: the letters i, s, t, P, v, x, S stand for index,
sequence, table, parent table, view, external table, and system table, respectively.
You can specify any or all of these letters, in any order, to obtain a listing of all the
matching objects. The letter S restricts the listing to system objects; without S, only
non-system objects are shown. If + is appended to the command name, each object
is listed with its associated description, if any. If a pattern is specified, only objects
whose names match the pattern are listed.

\dl

This is an alias for \lo_list, which shows a list of large objects.
psql 17

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
\dn [schema_pattern] | \dn+ [schema_pattern]

Lists all available schemas (namespaces). If pattern is specified, only schemas
whose names match the pattern are listed. Non-local temporary schemas are
suppressed. If + is appended to the command name, each object is listed with its
associated permissions and description, if any.

\do [operator_pattern]

Lists available operators with their operand and return types. If pattern is specified,
only operators whose names match the pattern are listed.

\dp [relation_pattern_to_show_privileges]

Produces a list of all available tables, views and sequences with their associated
access privileges. If pattern is specified, only tables, views and sequences whose
names match the pattern are listed. The GRANT and REVOKE commands are used to
set access privileges.

\dT [datatype_pattern] | \dT+ [datatype_pattern]

Lists all data types or only those that match pattern. The command form \dT+ shows
extra information.

\du [role_pattern]

Lists all database roles, or only those that match pattern.

\e | \edit [filename]

If a file name is specified, the file is edited; after the editor exits, its content is
copied back to the query buffer. If no argument is given, the current query buffer is
copied to a temporary file which is then edited in the same fashion. The new query
buffer is then re-parsed according to the normal rules of psql, where the whole
buffer is treated as a single line. (Thus you cannot make scripts this way. Use \i for
that.) This means also that if the query ends with (or rather contains) a semicolon, it
is immediately executed. In other cases it will merely wait in the query buffer.

psql searches the environment variables PSQL_EDITOR, EDITOR, and VISUAL (in
that order) for an editor to use. If all of them are unset, vi is used on UNIX systems,
notepad.exe on Windows systems.

\echo text [...]

Prints the arguments to the standard output, separated by one space and followed by
a newline. This can be useful to intersperse information in the output of scripts.

If you use the \o command to redirect your query output you may wish to use
\qecho instead of this command.

\encoding [encoding]

Sets the client character set encoding. Without an argument, this command shows
the current encoding.
psql 18

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
\f [field_separator_string]

Sets the field separator for unaligned query output. The default is the vertical bar
(|). See also \pset for a generic way of setting output options.

\g [{filename | |command }]

Sends the current query input buffer to the server and optionally stores the query’s
output in a file or pipes the output into a separate UNIX shell executing command.
A bare \g is virtually equivalent to a semicolon. A \g with argument is a one-shot
alternative to the \o command.

\h | \help [sql_command]

Gives syntax help on the specified SQL command. If a command is not specified,
then psql will list all the commands for which syntax help is available. Use an
asterisk (*) to show syntax help on all SQL commands. To simplify typing,
commands that consists of several words do not have to be quoted.

\H

Turns on HTML query output format. If the HTML format is already on, it is
switched back to the default aligned text format. This command is for compatibility
and convenience, but see \pset about setting other output options.

\i input_filename

Reads input from a file and executes it as though it had been typed on the keyboard.
If you want to see the lines on the screen as they are read you must set the variable
ECHO to all.

\l | \list | \l+ | \list+

List the names, owners, and character set encodings of all the databases in the
server. If + is appended to the command name, database descriptions are also
displayed.

\lo_export loid filename

Reads the large object with OID loid from the database and writes it to filename.
Note that this is subtly different from the server function lo_export, which acts
with the permissions of the user that the database server runs as and on the server’s
file system. Use \lo_list to find out the large object’s OID.

\lo_import large_object_filename [comment]

Stores the file into a large object. Optionally, it associates the given comment with
the object. Example:

mydb=> \lo_import '/home/gpadmin/pictures/photo.xcf' 'a
picture of me'

lo_import 152801

The response indicates that the large object received object ID 152801 which one
ought to remember if one wants to access the object ever again. For that reason it is
recommended to always associate a human-readable comment with every object.
psql 19

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
Those can then be seen with the \lo_list command. Note that this command is
subtly different from the server-side lo_import because it acts as the local user on
the local file system, rather than the server’s user and file system.

\lo_list

Shows a list of all large objects currently stored in the database, along with any
comments provided for them.

\lo_unlink largeobject_oid

Deletes the large object of the specified OID from the database. Use \lo_list to
find out the large object’s OID.

\o [{query_result_filename | |command}]

Saves future query results to a file or pipes them into a UNIX shell command. If no
arguments are specified, the query output will be reset to the standard output. Query
results include all tables, command responses, and notices obtained from the
database server, as well as output of various backslash commands that query the
database (such as \d), but not error messages. To intersperse text output in between
query results, use \qecho.

\p

Print the current query buffer to the standard output.

\password [username]

Changes the password of the specified user (by default, the current user). This
command prompts for the new password, encrypts it, and sends it to the server as an
ALTER ROLE command. This makes sure that the new password does not appear in
cleartext in the command history, the server log, or elsewhere.

\prompt [text] name

Prompts the user to set a variable name. Optionally, you can specify a prompt.
Enclose prompts longer than one word in single quotes.

By default, \prompt uses the terminal for input and output. However, use the -f
command line switch to specify standard input and standard output.

\pset print_option [value]

This command sets options affecting the output of query result tables.
print_option describes which option is to be set. Adjustable printing options are:

• format – Sets the output format to one of unaligned, aligned, html,
latex, or troff-ms. First letter abbreviations are allowed. Unaligned writes
all columns of a row on a line, separated by the currently active field
separator. This is intended to create output that might be intended to be read in
by other programs. Aligned mode is the standard, human-readable, nicely
formatted text output that is default. The HTML and LaTeX modes put out
tables that are intended to be included in documents using the respective
mark-up language. They are not complete documents! (This might not be so
dramatic in HTML, but in LaTeX you must have a complete document
wrapper.)
psql 20

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
• border – The second argument must be a number. In general, the higher the
number the more borders and lines the tables will have, but this depends on
the particular format. In HTML mode, this will translate directly into the
border=... attribute, in the others only values 0 (no border), 1 (internal
dividing lines), and 2 (table frame) make sense.

• columns – Sets the target width for the wrapped format, and also the width
limit for determining whether output is wide enough to require the pager. The
default is zero. Zero causes the target width to be controlled by the
environment variable COLUMNS, or the detected screen width if COLUMNS is not
set. In addition, if columns is zero then the wrapped format affects screen
output only. If columns is nonzero then file and pipe output is wrapped to that
width as well.

• expanded | x) – Toggles between regular and expanded format. When
expanded format is enabled, query results are displayed in two columns, with
the column name on the left and the data on the right. This mode is useful if
the data would not fit on the screen in the normal horizontal mode. Expanded
mode is supported by all four output formats.

• linestyle [unicode | ascii | old-ascii] – Sets the border
line drawing style to one of unicode, ascii, or old-ascii. Unique abbreviations,
including one letter, are allowed for the three styles. The default setting is
ascii. This option only affects the aligned and wrapped output formats.
ascii – uses plain ASCII characters. Newlines in data are shown using a +
symbol in the right-hand margin. When the wrapped format wraps data from
one line to the next without a newline character, a dot (.) is shown in the
right-hand margin of the first line, and again in the left-hand margin of the
following line.
old-ascii – style uses plain ASCII characters, using the formatting style
used in PostgreSQL 8.4 and earlier. Newlines in data are shown using a :
symbol in place of the left-hand column separator. When the data is wrapped
from one line to the next without a newline character, a ; symbol is used in
place of the left-hand column separator.
unicode – style uses Unicode box-drawing characters. Newlines in data are
shown using a carriage return symbol in the right-hand margin. When the data
is wrapped from one line to the next without a newline character, an ellipsis
symbol is shown in the right-hand margin of the first line, and again in the
left-hand margin of the following line.
When the border setting is greater than zero, this option also determines the
characters with which the border lines are drawn. Plain ASCII characters
work everywhere, but Unicode characters look nicer on displays that
recognize them.

• null 'string' – The second argument is a string to print whenever a
column is null. The default is not to print anything, which can easily be
mistaken for an empty string. For example, the command \pset null
'(empty)' displays (empty) in null columns.

• fieldsep – Specifies the field separator to be used in unaligned output
mode. That way one can create, for example, tab- or comma-separated output,
which other programs might prefer. To set a tab as field separator, type
\pset fieldsep '\t'. The default field separator is '|' (a vertical bar).

• footer – Toggles the display of the default footer (x rows).
psql 21

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
• numericlocale – Toggles the display of a locale-aware character to
separate groups of digits to the left of the decimal marker. It also enables a
locale-aware decimal marker.

• recordsep – Specifies the record (line) separator to use in unaligned output
mode. The default is a newline character.

• title [text] – Sets the table title for any subsequently printed tables.
This can be used to give your output descriptive tags. If no argument is given,
the title is unset.

• tableattr | T [text] – Allows you to specify any attributes to be
placed inside the HTML table tag. This could for example be cellpadding
or bgcolor. Note that you probably don’t want to specify border here, as that
is already taken care of by \pset border.

• tuples_only | t [no value | on | off]– The \pset tuples_only
command by itselt toggles between tuples only and full display. The values on
and off set the tuples display, regardless of the current setting. Full display
may show extra information such as column headers, titles, and various
footers. In tuples only mode, only actual table data is shown The \t command
is equivalent to \pset tuples_only and is provided for convenience.

• pager – Controls the use of a pager for query and psql help output. When
on, if the environment variable PAGER is set, the output is piped to the
specified program. Otherwise a platform-dependent default (such as more) is
used. When off, the pager is not used. When on, the pager is used only when
appropriate. Pager can also be set to always, which causes the pager to be
always used.

• wrapped – Sets the output format like the aligned parameter in the format
option, but wraps wide data values across lines to make the output fit in the
target column width. The target width is set with the columns option. To
specify the column width and select the wrapped format, use two \pset
commands; for example, to set the with to 72 columns and specify wrapped
format, use the commands \pset columns 72 and then \pset wrapped.
Note: Since psql does not attempt to wrap column header titles, the wrapped
format behaves the same as aligned if the total width needed for column
headers exceeds the target.

\q

Quits the psql program.

\qecho text [...]

This command is identical to \echo except that the output will be written to the
query output channel, as set by \o.

\r

Resets (clears) the query buffer.

\s [history_filename]

Print or save the command line history to filename. If filename is omitted, the
history is written to the standard output.
psql 22

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
\set [name [value [...]]]

Sets the internal variable name to value or, if more than one value is given, to the
concatenation of all of them. If no second argument is given, the variable is just set
with no value. To unset a variable, use the \unset command.

Valid variable names can contain characters, digits, and underscores. See
“Variables” on page 24. Variable names are case-sensitive.

Although you are welcome to set any variable to anything you want, psql treats
several variables as special. They are documented in the section about variables.

This command is totally separate from the SQL command SET.

\t [no value | on | off]

The \t command by itself toggles a display of output column name headings and
row count footer. The values on and off set the tuples display, regardless of the
current setting.This command is equivalent to \pset tuples_only and is provided
for convenience.

\T table_options

Allows you to specify attributes to be placed within the table tag in HTML tabular
output mode.

\timing [no value | on | off]

The \timing command by itself toggles a display of how long each SQL statement
takes, in milliseconds. The values on and off set the time display, regardless of the
current setting.

\w {filename | |command}

Outputs the current query buffer to a file or pipes it to a UNIX command.

\x

Toggles expanded table formatting mode.

\z [relation_to_show_privileges]

Produces a list of all available tables, views and sequences with their associated
access privileges. If a pattern is specified, only tables, views and sequences whose
names match the pattern are listed. This is an alias for \dp.

\! [command]

Escapes to a separate UNIX shell or executes the UNIX command. The arguments
are not further interpreted, the shell will see them as is.

\?

Shows help information about the psql backslash commands.
psql 23

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
Patterns
The various \d commands accept a pattern parameter to specify the object name(s) to
be displayed. In the simplest case, a pattern is just the exact name of the object. The
characters within a pattern are normally folded to lower case, just as in SQL names;
for example, \dt FOO will display the table named foo. As in SQL names, placing
double quotes around a pattern stops folding to lower case. Should you need to include
an actual double quote character in a pattern, write it as a pair of double quotes within
a double-quote sequence; again this is in accord with the rules for SQL quoted
identifiers. For example, \dt "FOO""BAR" will display the table named FOO"BAR (not
foo"bar). Unlike the normal rules for SQL names, you can put double quotes around
just part of a pattern, for instance \dt FOO"FOO"BAR will display the table named
fooFOObar.

Within a pattern, * matches any sequence of characters (including no characters) and ?
matches any single character. (This notation is comparable to Unix shell file name
patterns.) For example, \dt int* displays all tables whose names begin with int.
But within double quotes, * and ? lose these special meanings and are just matched
literally.

A pattern that contains a dot (.) is interpreted as a schema name pattern followed by
an object name pattern. For example, \dt foo*.bar* displays all tables whose table
name starts with bar that are in schemas whose schema name starts with foo. When
no dot appears, then the pattern matches only objects that are visible in the current
schema search path. Again, a dot within double quotes loses its special meaning and is
matched literally.

Advanced users can use regular-expression notations. All regular expression special
characters work as specified in the PostgreSQL documentation on regular expressions,
except for . which is taken as a separator as mentioned above, * which is translated to
the regular-expression notation .*, and ? which is translated to .. You can emulate
these pattern characters at need by writing ? for ., (R+|) for R*, or (R|) for R?.
Remember that the pattern must match the whole name, unlike the usual interpretation
of regular expressions; write * at the beginning and/or end if you don’t wish the
pattern to be anchored. Note that within double quotes, all regular expression special
characters lose their special meanings and are matched literally. Also, the regular
expression special characters are matched literally in operator name patterns (such as
the argument of \do).

Whenever the pattern parameter is omitted completely, the \d commands display all
objects that are visible in the current schema search path — this is equivalent to using
the pattern *. To see all objects in the database, use the pattern *.*.

Advanced Features

Variables
psql provides variable substitution features similar to common Unix command shells.
Variables are simply name/value pairs, where the value can be any string of any
length. To set variables, use the psql meta-command \set:

testdb=> \set foo bar
psql 24

http://www.postgresql.org/docs/8.2/static/functions-matching.html#FUNCTIONS-POSIX-REGEXP

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
sets the variable foo to the value bar. To retrieve the content of the variable, precede
the name with a colon and use it as the argument of any slash command:

testdb=> \echo :foo

bar

Note: The arguments of \set are subject to the same substitution rules as with other
commands. Thus you can construct interesting references such as \set :foo
'something' and get ‘soft links’ or ‘variable variables’ of Perl or PHP fame,
respectively. Unfortunately, there is no way to do anything useful with these
constructs. On the other hand, \set bar :foo is a perfectly valid way to copy a
variable.

If you call \set without a second argument, the variable is set, with an empty string as
value. To unset (or delete) a variable, use the command \unset.

psql’s internal variable names can consist of letters, numbers, and underscores in any
order and any number of them. A number of these variables are treated specially by
psql. They indicate certain option settings that can be changed at run time by altering
the value of the variable or represent some state of the application. Although you can
use these variables for any other purpose, this is not recommended, as the program
behavior might behave unexpectedly. By convention, all specially treated variables
consist of all upper-case letters (and possibly numbers and underscores). To ensure
maximum compatibility in the future, avoid using such variable names for your own
purposes. A list of all specially treated variables are as follows:

AUTOCOMMIT

When on (the default), each SQL command is automatically committed upon
successful completion. To postpone commit in this mode, you must enter a BEGIN or
START TRANSACTION SQL command. When off or unset, SQL commands are not
committed until you explicitly issue COMMIT or END. The autocommit-on mode
works by issuing an implicit BEGIN for you, just before any command that is not
already in a transaction block and is not itself a BEGIN or other transaction-control
command, nor a command that cannot be executed inside a transaction block (such
as VACUUM).

In autocommit-off mode, you must explicitly abandon any failed transaction by
entering ABORT or ROLLBACK. Also keep in mind that if you exit the session without
committing, your work will be lost.

The autocommit-on mode is PostgreSQL’s traditional behavior, but autocommit-off
is closer to the SQL spec. If you prefer autocommit-off, you may wish to set it in
your ~/.psqlrc file.

DBNAME

The name of the database you are currently connected to. This is set every time you
connect to a database (including program start-up), but can be unset.
psql 25

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
ECHO

If set to all, all lines entered from the keyboard or from a script are written to the
standard output before they are parsed or executed. To select this behavior on
program start-up, use the switch -a. If set to queries, psql merely prints all queries
as they are sent to the server. The switch for this is -e.

ECHO_HIDDEN

When this variable is set and a backslash command queries the database, the query
is first shown. This way you can study the Greenplum Database internals and
provide similar functionality in your own programs. (To select this behavior on
program start-up, use the switch -E.) If you set the variable to the value noexec, the
queries are just shown but are not actually sent to the server and executed.

ENCODING

The current client character set encoding.

FETCH_COUNT

If this variable is set to an integer value > 0, the results of SELECT queries are
fetched and displayed in groups of that many rows, rather than the default behavior
of collecting the entire result set before display. Therefore only a limited amount of
memory is used, regardless of the size of the result set. Settings of 100 to 1000 are
commonly used when enabling this feature. Keep in mind that when using this
feature, a query may fail after having already displayed some rows.

Although you can use any output format with this feature, the default aligned format
tends to look bad because each group of FETCH_COUNT rows will be formatted
separately, leading to varying column widths across the row groups. The other
output formats work better.

HISTCONTROL

If this variable is set to ignorespace, lines which begin with a space are not
entered into the history list. If set to a value of ignoredups, lines matching the
previous history line are not entered. A value of ignoreboth combines the two
options. If unset, or if set to any other value than those above, all lines read in
interactive mode are saved on the history list.

HISTFILE

The file name that will be used to store the history list. The default value is
~/.psql_history. For example, putting

\set HISTFILE ~/.psql_history- :DBNAME

in ~/.psqlrc will cause psql to maintain a separate history for each database.

HISTSIZE

The number of commands to store in the command history. The default value is 500.

HOST

The database server host you are currently connected to. This is set every time you
connect to a database (including program start-up), but can be unset.
psql 26

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
IGNOREEOF

If unset, sending an EOF character (usually CTRL+D) to an interactive session of psql
will terminate the application. If set to a numeric value, that many EOF characters
are ignored before the application terminates. If the variable is set but has no
numeric value, the default is 10.

LASTOID

The value of the last affected OID, as returned from an INSERT or lo_insert
command. This variable is only guaranteed to be valid until after the result of the
next SQL command has been displayed.

ON_ERROR_ROLLBACK

When on, if a statement in a transaction block generates an error, the error is ignored
and the transaction continues. When interactive, such errors are only ignored in
interactive sessions, and not when reading script files. When off (the default), a
statement in a transaction block that generates an error aborts the entire transaction.
The on_error_rollback-on mode works by issuing an implicit SAVEPOINT for you,
just before each command that is in a transaction block, and rolls back to the
savepoint on error.

ON_ERROR_STOP

By default, if non-interactive scripts encounter an error, such as a malformed SQL
command or internal meta-command, processing continues. This has been the
traditional behavior of psql but it is sometimes not desirable. If this variable is set,
script processing will immediately terminate. If the script was called from another
script it will terminate in the same fashion. If the outermost script was not called
from an interactive psql session but rather using the -f option, psql will return
error code 3, to distinguish this case from fatal error conditions (error code 1).

PORT

The database server port to which you are currently connected. This is set every time
you connect to a database (including program start-up), but can be unset.

PROMPT1
PROMPT2
PROMPT3

These specify what the prompts psql issues should look like. See “Prompting” on
page 29.

QUIET

This variable is equivalent to the command line option -q. It is not very useful in
interactive mode.

SINGLELINE

This variable is equivalent to the command line option -S.

SINGLESTEP

This variable is equivalent to the command line option -s.
psql 27

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
USER

The database user you are currently connected as. This is set every time you connect
to a database (including program start-up), but can be unset.

VERBOSITY

This variable can be set to the values default, verbose, or terse to control the
verbosity of error reports.

SQL Interpolation
An additional useful feature of psql variables is that you can substitute (interpolate)
them into regular SQL statements. The syntax for this is again to prepend the variable
name with a colon (:).

testdb=> \set foo 'my_table'

testdb=> SELECT * FROM :foo;

would then query the table my_table. The value of the variable is copied literally, so it
can even contain unbalanced quotes or backslash commands. You must make sure that
it makes sense where you put it. Variable interpolation will not be performed into
quoted SQL entities.

A popular application of this facility is to refer to the last inserted OID in subsequent
statements to build a foreign key scenario. Another possible use of this mechanism is
to copy the contents of a file into a table column. First load the file into a variable and
then proceed as above.

testdb=> \set content '''' `cat my_file.txt` ''''

testdb=> INSERT INTO my_table VALUES (:content);

One problem with this approach is that my_file.txt might contain single quotes. These
need to be escaped so that they don’t cause a syntax error when the second line is
processed. This could be done with the program sed:

testdb=> \set content '''' `sed -e "s/'/''/g" < my_file.txt`
''''

If you are using non-standard-conforming strings then you’ll also need to double
backslashes. This is a bit tricky:

testdb=> \set content '''' `sed -e "s/'/''/g" -e
's/\\/\\\\/g' < my_file.txt` ''''

Note the use of different shell quoting conventions so that neither the single quote
marks nor the backslashes are special to the shell. Backslashes are still special to sed,
however, so we need to double them.

Since colons may legally appear in SQL commands, the following rule applies: the
character sequence ":name" is not changed unless "name" is the name of a variable
that is currently set. In any case you can escape a colon with a backslash to protect it
from substitution. (The colon syntax for variables is standard SQL for embedded
query languages, such as ECPG. The colon syntax for array slices and type casts are
Greenplum Database extensions, hence the conflict.)
psql 28

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
Prompting
The prompts psql issues can be customized to your preference. The three variables
PROMPT1, PROMPT2, and PROMPT3 contain strings and special escape sequences that
describe the appearance of the prompt. Prompt 1 is the normal prompt that is issued
when psql requests a new command. Prompt 2 is issued when more input is expected
during command input because the command was not terminated with a semicolon or
a quote was not closed. Prompt 3 is issued when you run an SQL COPY command and
you are expected to type in the row values on the terminal.

The value of the selected prompt variable is printed literally, except where a percent
sign (%) is encountered. Depending on the next character, certain other text is
substituted instead. Defined substitutions are:

%M

The full host name (with domain name) of the database server, or [local] if the
connection is over a Unix domain socket, or [local:/dir/name], if the Unix
domain socket is not at the compiled in default location.

%m

The host name of the database server, truncated at the first dot, or [local] if the
connection is over a Unix domain socket.

%>

The port number at which the database server is listening.

%n

The database session user name. (The expansion of this value might change during a
database session as the result of the command SET SESSION AUTHORIZATION.)

%/

The name of the current database.

%~

Like %/, but the output is ~ (tilde) if the database is your default database.

%#

If the session user is a database superuser, then a #, otherwise a >. (The expansion of
this value might change during a database session as the result of the command
SET SESSION AUTHORIZATION.)

%R

In prompt 1 normally =, but ^ if in single-line mode, and ! if the session is
disconnected from the database (which can happen if \connect fails). In prompt 2
the sequence is replaced by -, *, a single quote, a double quote, or a dollar sign,
depending on whether psql expects more input because the command wasn’t
terminated yet, because you are inside a /* ... */ comment, or because you are
inside a quoted or dollar-escaped string. In prompt 3 the sequence doesn’t produce
anything.
psql 29

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
%x

Transaction status: an empty string when not in a transaction block, or * when in a
transaction block, or ! when in a failed transaction block, or ? when the transaction
state is indeterminate (for example, because there is no connection).

%digits

The character with the indicated octal code is substituted.

%:name:

The value of the psql variable name. See “Variables” on page 24 for details.

%`command`

The output of command, similar to ordinary back-tick substitution.

%[... %]

Prompts may contain terminal control characters which, for example, change the
color, background, or style of the prompt text, or change the title of the terminal
window. In order for the line editing features of Readline to work properly, these
non-printing control characters must be designated as invisible by surrounding them
with %[and %]. Multiple pairs of these may occur within the prompt. For example,

testdb=> \set PROMPT1 '%[%033[1;33;40m%]%n@%/%R%[%033[0m%]%#
'

results in a boldfaced (1;) yellow-on-black (33;40) prompt on VT100-compatible,
color-capable terminals. To insert a percent sign into your prompt, write %%. The
default prompts are '%/%R%# ' for prompts 1 and 2, and '>> ' for prompt 3.

Command-Line Editing
psql supports the Readline library for convenient line editing and retrieval. The
command history is automatically saved when psql exits and is reloaded when psql
starts up. Tab-completion is also supported, although the completion logic makes no
claim to be an SQL parser. If for some reason you do not like the tab completion, you
can turn it off by putting this in a file named .inputrc in your home directory:

$if psql

set disable-completion on

$endif

This is not a psql but a Readline feature. Read its documentation for further details.

Environment

PAGER

If the query results do not fit on the screen, they are piped through this command.
Typical values are more or less. The default is platform-dependent. The use of the
pager can be disabled by using the \pset command.

PGDATABASE
PGHOST
psql 30

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
PGPORT
PGUSER

Default connection parameters.

PSQL_EDITOR
EDITOR
VISUAL

Editor used by the \e command. The variables are examined in the order listed; the
first that is set is used.

SHELL

Command executed by the \! command.

TMPDIR

Directory for storing temporary files. The default is /tmp.

Files
Before starting up, psql attempts to read and execute commands from the user’s
~/.psqlrc file.

The command-line history is stored in the file ~/.psql_history.

Notes
psql only works smoothly with servers of the same version. That does not mean other
combinations will fail outright, but subtle and not-so-subtle problems might come up.
Backslash commands are particularly likely to fail if the server is of a different
version.

Notes for Windows users
psql is built as a console application. Since the Windows console windows use a
different encoding than the rest of the system, you must take special care when using
8-bit characters within psql. If psql detects a problematic console code page, it will
warn you at startup. To change the console code page, two things are necessary:

Set the code page by entering cmd.exe /c chcp 1252. (1252 is a character encoding
of the Latin alphabet, used by Microsoft Windows for English and some other Western
languages.) If you are using Cygwin, you can put this command in /etc/profile.

Set the console font to Lucida Console, because the raster font does not work with the
ANSI code page.

Examples
Start psql in interactive mode:

psql -p 54321 -U sally mydatabase

In psql interactive mode, spread a command over several lines of input. Notice the
changing prompt:
psql 31

Greenplum Database Client Tools for UNIX 4.3 – Appendix A: Client Tools Reference
testdb=> CREATE TABLE my_table (

testdb(> first integer not null default 0,

testdb(> second text)

testdb-> ;

CREATE TABLE

Look at the table definition:

testdb=> \d my_table

 Table "my_table"

 Attribute | Type | Modifier

-----------+---------+--------------------

 first | integer | not null default 0

 second | text |

Run psql in non-interactive mode by passing in a file containing SQL commands:

psql -f /home/gpadmin/test/myscript.sql
psql 32

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
B. SQL Command Reference

This is a summary of the SQL command syntax supported in Greenplum Database 4.3. For the full
SQL command usage and descriptions, see the Greenplum Database Reference Guide.

SQL Syntax Summary

ABORT
Aborts the current transaction.

ABORT [WORK | TRANSACTION]

ALTER AGGREGATE
Changes the definition of an aggregate function

ALTER AGGREGATE name (type [, ...]) RENAME TO new_name

ALTER AGGREGATE name (type [, ...]) OWNER TO new_owner

ALTER AGGREGATE name (type [, ...]) SET SCHEMA new_schema

ALTER CONVERSION
Changes the definition of a conversion.

ALTER CONVERSION name RENAME TO newname

ALTER CONVERSION name OWNER TO newowner

ALTER DATABASE
Changes the attributes of a database.

ALTER DATABASE name [WITH CONNECTION LIMIT connlimit]

ALTER DATABASE name SET parameter { TO | = } { value | DEFAULT }

ALTER DATABASE name RESET parameter

ALTER DATABASE name RENAME TO newname

ALTER DATABASE name OWNER TO new_owner

ALTER DOMAIN
Changes the definition of a domain.

ALTER DOMAIN name { SET DEFAULT expression | DROP DEFAULT }

ALTER DOMAIN name { SET | DROP } NOT NULL

ALTER DOMAIN name ADD domain_constraint

ALTER DOMAIN name DROP CONSTRAINT constraint_name [RESTRICT | CASCADE]

ALTER DOMAIN name OWNER TO new_owner

ALTER DOMAIN name SET SCHEMA new_schema
SQL Syntax Summary 33

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
ALTER EXTERNAL TABLE
Changes the definition of an external table.

ALTER EXTERNAL TABLE name RENAME [COLUMN] column TO new_column

ALTER EXTERNAL TABLE name RENAME TO new_name

ALTER EXTERNAL TABLE name SET SCHEMA new_schema

ALTER EXTERNAL TABLE name action [, ...]

where action is one of:
 ADD [COLUMN] column_name type
 DROP [COLUMN] column
 ALTER [COLUMN] column TYPE type [USING expression]
 OWNER TO new_owner

ALTER FILESPACE
Changes the definition of a filespace.

ALTER FILESPACE name RENAME TO newname

ALTER FILESPACE name OWNER TO newowner

ALTER FUNCTION
Changes the definition of a function.

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]]) action [, ...]
[RESTRICT]

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]]) RENAME TO new_name

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]]) OWNER TO new_owner

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]]) SET SCHEMA
new_schema

where action is one of:

{CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT}
{IMMUTABLE | STABLE | VOLATILE}
{[EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER}

ALTER GROUP
Changes a role name or membership.

ALTER GROUP groupname ADD USER username [, ...]

ALTER GROUP groupname DROP USER username [, ...]

ALTER GROUP groupname RENAME TO newname

ALTER INDEX
Changes the definition of an index.

ALTER INDEX name RENAME TO new_name

ALTER INDEX name SET TABLESPACE tablespace_name

ALTER INDEX name SET (FILLFACTOR = value)

ALTER INDEX name RESET (FILLFACTOR)

ALTER LANGUAGE
Changes the name of a procedural language.

ALTER LANGUAGE name RENAME TO newname
SQL Syntax Summary 34

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
ALTER OPERATOR
Changes the definition of an operator.

ALTER OPERATOR name ({lefttype | NONE} , {righttype | NONE}) OWNER TO newowner

ALTER OPERATOR CLASS
Changes the definition of an operator class.

ALTER OPERATOR CLASS name USING index_method RENAME TO newname

ALTER OPERATOR CLASS name USING index_method OWNER TO newowner

ALTER PROTOCOL
Changes the definition of a protocol.

ALTER PROTOCOL name RENAME TO newname

ALTER PROTOCOL name OWNER TO newowner

ALTER RESOURCE QUEUE
Changes the limits of a resource queue.

ALTER RESOURCE QUEUE name WITH (queue_attribute=value [, ...])

where queue_attribute is:
 ACTIVE_STATEMENTS=integer
 MEMORY_LIMIT='memory_units'
 MAX_COST=float
 COST_OVERCOMMIT={TRUE|FALSE}
 MIN_COST=float
 PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}

ALTER RESOURCE QUEUE name WITHOUT (queue_attribute [, ...])

where queue_attribute is:
 ACTIVE_STATEMENTS
 MEMORY_LIMIT
 MAX_COST
 COST_OVERCOMMIT
 MIN_COST
SQL Syntax Summary 35

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
ALTER ROLE
Changes a database role (user or group).

ALTER ROLE name RENAME TO newname

ALTER ROLE name SET config_parameter {TO | =} {value | DEFAULT}

ALTER ROLE name RESET config_parameter

ALTER ROLE name RESOURCE QUEUE {queue_name | NONE}

ALTER ROLE name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEEXTTABLE | NOCREATEEXTTABLE
 [(attribute='value'[, ...])]
 where attributes and values are:
 type='readable'|'writable'
 protocol='gpfdist'|'http'
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | [DENY deny_point]
 | [DENY BETWEEN deny_point AND deny_point]
 | [DROP DENY FOR deny_point]

ALTER SCHEMA
Changes the definition of a schema.

ALTER SCHEMA name RENAME TO newname

ALTER SCHEMA name OWNER TO newowner

ALTER SEQUENCE
Changes the definition of a sequence generator.

ALTER SEQUENCE name [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [RESTART [WITH] start]
 [CACHE cache] [[NO] CYCLE]
 [OWNED BY {table.column | NONE}]

ALTER SEQUENCE name SET SCHEMA new_schema
SQL Syntax Summary 36

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
ALTER TABLE
Changes the definition of a table.

ALTER TABLE [ONLY] name RENAME [COLUMN] column TO new_column

ALTER TABLE name RENAME TO new_name

ALTER TABLE name SET SCHEMA new_schema

ALTER TABLE [ONLY] name SET
 DISTRIBUTED BY (column, [...])
 | DISTRIBUTED RANDOMLY
 | WITH (REORGANIZE=true|false)

ALTER TABLE [ONLY] name action [, ...]

ALTER TABLE name
 [ALTER PARTITION { partition_name | FOR (RANK(number))
 | FOR (value) } partition_action [...]]
 partition_action

where action is one of:
 ADD [COLUMN] column_name type
 [ENCODING (storage_directive [,...])]
 [column_constraint [...]]
 DROP [COLUMN] column [RESTRICT | CASCADE]
 ALTER [COLUMN] column TYPE type [USING expression]
 ALTER [COLUMN] column SET DEFAULT expression
 ALTER [COLUMN] column DROP DEFAULT
 ALTER [COLUMN] column { SET | DROP } NOT NULL
 ALTER [COLUMN] column SET STATISTICS integer
 ADD table_constraint
 DROP CONSTRAINT constraint_name [RESTRICT | CASCADE]
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET WITHOUT OIDS
 SET (FILLFACTOR = value)
 RESET (FILLFACTOR)
 INHERIT parent_table
 NO INHERIT parent_table
 OWNER TO new_owner
 SET TABLESPACE new_tablespace
 ALTER DEFAULT PARTITION
 DROP DEFAULT PARTITION [IF EXISTS]
 DROP PARTITION [IF EXISTS] { partition_name |
 FOR (RANK(number)) | FOR (value) } [CASCADE]
 TRUNCATE DEFAULT PARTITION
 TRUNCATE PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) }
 RENAME DEFAULT PARTITION TO new_partition_name
 RENAME PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } TO new_partition_name
 ADD DEFAULT PARTITION name [(subpartition_spec)]
 ADD PARTITION [name] partition_element
 [(subpartition_spec)]
 EXCHANGE PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } WITH TABLE table_name
 [WITH | WITHOUT VALIDATION]
SQL Syntax Summary 37

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
 EXCHANGE DEFAULT PARTITION WITH TABLE table_name
 [WITH | WITHOUT VALIDATION]
 SET SUBPARTITION TEMPLATE (subpartition_spec)
 SPLIT DEFAULT PARTITION
 { AT (list_value)
 | START([datatype] range_value) [INCLUSIVE | EXCLUSIVE]
 END([datatype] range_value) [INCLUSIVE | EXCLUSIVE] }
 [INTO (PARTITION new_partition_name,
 PARTITION default_partition_name)]
 SPLIT PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } AT (value)
 [INTO (PARTITION partition_name, PARTITION partition_name)]

where partition_element is:

 VALUES (list_value [,...])

 | START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]

 | END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]

[WITH (partition_storage_parameter=value [, ...])]
[TABLESPACE tablespace]

where subpartition_spec is:
subpartition_element [, ...]

and subpartition_element is:
 DEFAULT SUBPARTITION subpartition_name

 | [SUBPARTITION subpartition_name] VALUES (list_value [,...])

 | [SUBPARTITION subpartition_name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 [EVERY ([number | datatype] 'interval_value')]

 | [SUBPARTITION subpartition_name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([number | datatype] 'interval_value')]

[WITH (partition_storage_parameter=value [, ...])]
[TABLESPACE tablespace]

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 ORIENTATION={COLUMN|ROW}
 COMPRESSTYPE={ZLIB|QUICKLZ|RLE_TYPE|NONE}
 COMPRESSLEVEL={0-9}
 FILLFACTOR={10-100}
 OIDS[=TRUE|FALSE]

where storage_directive is:
 COMPRESSTYPE={ZLIB | QUICKLZ | RLE_TYPE | NONE}
 | COMPRESSLEVEL={0-9}
 | BLOCKSIZE={8192-2097152}

Where column_reference_storage_directive is:
COLUMN column_name ENCODING (storage_directive [, ...]), ...
 |
DEFAULT COLUMN ENCODING (storage_directive [, ...])
SQL Syntax Summary 38

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
ALTER TABLESPACE
Changes the definition of a tablespace.

ALTER TABLESPACE name RENAME TO newname

ALTER TABLESPACE name OWNER TO newowner

ALTER TRIGGER
Changes the definition of a trigger.

ALTER TRIGGER name ON table RENAME TO newname

ALTER TYPE
Changes the definition of a data type.

ALTER TYPE name
 SET DEFAULT ENCODING (storage_directive)
 OWNER TO new_owner | SET SCHEMA new_schema

ALTER USER
Changes the definition of a database role (user).

ALTER USER name RENAME TO newname

ALTER USER name SET config_parameter {TO | =} {value | DEFAULT}

ALTER USER name RESET config_parameter

ALTER USER name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'

ANALYZE
Collects statistics about a database.

ANALYZE [VERBOSE] [table [(column [, ...])]]

BEGIN
Starts a transaction block.

BEGIN [WORK | TRANSACTION] [SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ
UNCOMMITTED] [READ WRITE | READ ONLY]

CHECKPOINT
Forces a transaction log checkpoint.

CHECKPOINT

CLOSE
Closes a cursor.

CLOSE cursor_name
SQL Syntax Summary 39

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
CLUSTER
Physically reorders a heap storage table on disk according to an index. Not a recommended operation
in Greenplum Database.

CLUSTER indexname ON tablename

CLUSTER tablename

CLUSTER

COMMENT
Defines or change the comment of an object.

COMMENT ON
{ TABLE object_name |
 COLUMN table_name.column_name |
 AGGREGATE agg_name (agg_type [, ...]) |
 CAST (sourcetype AS targettype) |
 CONSTRAINT constraint_name ON table_name |
 CONVERSION object_name |
 DATABASE object_name |
 DOMAIN object_name |
 FILESPACE object_name |
 FUNCTION func_name ([[argmode] [argname] argtype [, ...]]) |
 INDEX object_name |
 LARGE OBJECT large_object_oid |
 OPERATOR op (leftoperand_type, rightoperand_type) |
 OPERATOR CLASS object_name USING index_method |
 [PROCEDURAL] LANGUAGE object_name |
 RESOURCE QUEUE object_name |
 ROLE object_name |
 RULE rule_name ON table_name |
 SCHEMA object_name |
 SEQUENCE object_name |
 TABLESPACE object_name |
 TRIGGER trigger_name ON table_name |
 TYPE object_name |
 VIEW object_name }
IS 'text'

COMMIT
Commits the current transaction.

COMMIT [WORK | TRANSACTION]
SQL Syntax Summary 40

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
COPY
Copies data between a file and a table.

COPY table [(column [, ...])] FROM {'file' | STDIN}
 [[WITH]
 [OIDS]
 [HEADER]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [CSV [QUOTE [AS] 'quote']
 [FORCE NOT NULL column [, ...]]
 [FILL MISSING FIELDS]
 [[LOG ERRORS INTO error_table] [KEEP]
 SEGMENT REJECT LIMIT count [ROWS | PERCENT]]

COPY {table [(column [, ...])] | (query)} TO {'file' | STDOUT}
 [[WITH]
 [OIDS]
 [HEADER]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [CSV [QUOTE [AS] 'quote']
 [FORCE QUOTE column [, ...]]]

CREATE AGGREGATE
Defines a new aggregate function.

CREATE [ORDERED] AGGREGATE name (input_data_type [, ...])
 (SFUNC = sfunc,
 STYPE = state_data_type
 [, PREFUNC = prefunc]
 [, FINALFUNC = ffunc]
 [, INITCOND = initial_condition]
 [, SORTOP = sort_operator])

CREATE CAST
Defines a new cast.

CREATE CAST (sourcetype AS targettype)
 WITH FUNCTION funcname (argtypes)
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (sourcetype AS targettype) WITHOUT FUNCTION
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CONVERSION
Defines a new encoding conversion.

CREATE [DEFAULT] CONVERSION name FOR source_encoding TO dest_encoding FROM funcname
SQL Syntax Summary 41

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
CREATE DATABASE
Creates a new database.

CREATE DATABASE name [[WITH] [OWNER [=] dbowner]
 [TEMPLATE [=] template]
 [ENCODING [=] encoding]
 [TABLESPACE [=] tablespace]
 [CONNECTION LIMIT [=] connlimit]]

CREATE DOMAIN
Defines a new domain.

CREATE DOMAIN name [AS] data_type [DEFAULT expression]
 [CONSTRAINT constraint_name
 | NOT NULL | NULL
 | CHECK (expression) [...]]

CREATE EXTERNAL TABLE
Defines a new external table.

CREATE [READABLE] EXTERNAL TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION ('file://seghost[:port]/path/file' [, ...])
 | ('gpfdist://filehost[:port]/file_pattern[#transform]'
 | ('gpfdists://filehost[:port]/file_pattern[#transform]'
 [, ...])
SQL Syntax Summary 42

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
 | ('gphdfs://hdfs_host[:port]/path/file')
 FORMAT 'TEXT'
 [([HEADER]
 [DELIMITER [AS] 'delimiter' | 'OFF']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CSV'
 [([HEADER]
 [QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE NOT NULL column [, ...]]
 [ESCAPE [AS] 'escape']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'encoding']
 [[LOG ERRORS INTO error_table] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

CREATE [READABLE] EXTERNAL WEB TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION ('http://webhost[:port]/path/file' [, ...])
 | EXECUTE 'command' [ON ALL
 | MASTER
 | number_of_segments
 | HOST ['segment_hostname']
 | SEGMENT segment_id]
 FORMAT 'TEXT'
 [([HEADER]
 [DELIMITER [AS] 'delimiter' | 'OFF']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CSV'
 [([HEADER]
 [QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE NOT NULL column [, ...]]
 [ESCAPE [AS] 'escape']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'encoding']
 [[LOG ERRORS INTO error_table] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

CREATE WRITABLE EXTERNAL TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION('gpfdist://outputhost[:port]/filename[#transform]'
SQL Syntax Summary 43

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
 | ('gpfdists://outputhost[:port]/file_pattern[#transform]'
 [, ...])
 | ('gphdfs://hdfs_host[:port]/path')
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]]]
 [ESCAPE [AS] 'escape'])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'write_encoding']
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

CREATE WRITABLE EXTERNAL WEB TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 EXECUTE 'command' [ON ALL]
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]]]
 [ESCAPE [AS] 'escape'])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'write_encoding']
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

CREATE FUNCTION
Defines a new function.

CREATE [OR REPLACE] FUNCTION name
 ([[argmode] [argname] argtype [, ...]])
 [RETURNS { [SETOF] rettype
 | TABLE ([{ argname argtype | LIKE other table }
 [, ...]])
 }]
 { LANGUAGE langname
 | IMMUTABLE | STABLE | VOLATILE
 | CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
 | [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 | AS 'definition'
 | AS 'obj_file', 'link_symbol' } ...
 [WITH ({ DESCRIBE = describe_function
 } [, ...])]
SQL Syntax Summary 44

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
CREATE GROUP
Defines a new database role.

CREATE GROUP name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE rolename [, ...]
 | IN GROUP rolename [, ...]
 | ROLE rolename [, ...]
 | ADMIN rolename [, ...]
 | USER rolename [, ...]
 | SYSID uid

CREATE INDEX
Defines a new index.

CREATE [UNIQUE] INDEX name ON table
 [USING btree|bitmap|gist]
 ({column | (expression)} [opclass] [, ...])
 [WITH (FILLFACTOR = value)]
 [TABLESPACE tablespace]
 [WHERE predicate]

CREATE LANGUAGE
Defines a new procedural language.

CREATE [PROCEDURAL] LANGUAGE name

CREATE [TRUSTED] [PROCEDURAL] LANGUAGE name
 HANDLER call_handler [VALIDATOR valfunction]

CREATE OPERATOR
Defines a new operator.

CREATE OPERATOR name (
 PROCEDURE = funcname
 [, LEFTARG = lefttype] [, RIGHTARG = righttype]
 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, MERGES]
 [, SORT1 = left_sort_op] [, SORT2 = right_sort_op]
 [, LTCMP = less_than_op] [, GTCMP = greater_than_op])
SQL Syntax Summary 45

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
CREATE OPERATOR CLASS
Defines a new operator class.

CREATE OPERATOR CLASS name [DEFAULT] FOR TYPE data_type
 USING index_method AS
 {
 OPERATOR strategy_number op_name [(op_type, op_type)] [RECHECK]
 | FUNCTION support_number funcname (argument_type [, ...])
 | STORAGE storage_type
 } [, ...]

CREATE RESOURCE QUEUE
Defines a new resource queue.

CREATE RESOURCE QUEUE name WITH (queue_attribute=value [, ...])

where queue_attribute is:
 ACTIVE_STATEMENTS=integer
 [MAX_COST=float [COST_OVERCOMMIT={TRUE|FALSE}]]
 [MIN_COST=float]
 [PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}]
 [MEMORY_LIMIT='memory_units']

| MAX_COST=float [COST_OVERCOMMIT={TRUE|FALSE}]
 [ACTIVE_STATEMENTS=integer]
 [MIN_COST=float]
 [PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}]
 [MEMORY_LIMIT='memory_units']

CREATE ROLE
Defines a new database role (user or group).

CREATE ROLE name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEEXTTABLE | NOCREATEEXTTABLE
 [(attribute='value'[, ...])]
 where attributes and values are:
 type='readable'|'writable'
 protocol='gpfdist'|'http'
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE rolename [, ...]
 | ROLE rolename [, ...]
 | ADMIN rolename [, ...]
 | RESOURCE QUEUE queue_name
 | [DENY deny_point]
 | [DENY BETWEEN deny_point AND deny_point]
SQL Syntax Summary 46

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
CREATE RULE
Defines a new rewrite rule.

CREATE [OR REPLACE] RULE name AS ON event
 TO table [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING | command | (command; command ...) }

CREATE SCHEMA
Defines a new schema.

CREATE SCHEMA schema_name [AUTHORIZATION username] [schema_element [...]]

CREATE SCHEMA AUTHORIZATION rolename [schema_element [...]]

CREATE SEQUENCE
Defines a new sequence generator.

CREATE [TEMPORARY | TEMP] SEQUENCE name
 [INCREMENT [BY] value]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [START [WITH] start]
 [CACHE cache]
 [[NO] CYCLE]
 [OWNED BY { table.column | NONE }]
SQL Syntax Summary 47

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
CREATE TABLE
Defines a new table.

CREATE [[GLOBAL | LOCAL] {TEMPORARY | TEMP}] TABLE table_name (
[{ column_name data_type [DEFAULT default_expr] [column_constraint [...]
[ENCODING (storage_directive [,...])]
]
 | table_constraint
 | LIKE other_table [{INCLUDING | EXCLUDING}
 {DEFAULTS | CONSTRAINTS}] ...}
 [, ...]]
 [column_reference_storage_directive [, …]]
)
 [INHERITS (parent_table [, ...])]
 [WITH (storage_parameter=value [, ...])
 [ON COMMIT {PRESERVE ROWS | DELETE ROWS | DROP}]
 [TABLESPACE tablespace]
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]
 [PARTITION BY partition_type (column)
 [SUBPARTITION BY partition_type (column)]
 [SUBPARTITION TEMPLATE (template_spec)]
 [...]
 (partition_spec)
 | [SUBPARTITION BY partition_type (column)]
 [...]
 (partition_spec
 [(subpartition_spec
 [(...)]
)]
)

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 ORIENTATION={COLUMN|ROW}
 COMPRESSTYPE={ZLIB|QUICKLZ|RLE_TYPE|NONE}
 COMPRESSLEVEL={0-9}
 FILLFACTOR={10-100}
 OIDS[=TRUE|FALSE]

where column_constraint is:
 [CONSTRAINT constraint_name]
 NOT NULL | NULL
 | UNIQUE [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR = value)]
 | PRIMARY KEY [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR = value)]
 | CHECK (expression)

and table_constraint is:
 [CONSTRAINT constraint_name]
 UNIQUE (column_name [, ...])
 [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR=value)]
 | PRIMARY KEY (column_name [, ...])
 [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR=value)]
 | CHECK (expression)

where partition_type is:
SQL Syntax Summary 48

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
 LIST
 | RANGE

where partition_specification is:
partition_element [, ...]

and partition_element is:
 DEFAULT PARTITION name

 | [PARTITION name] VALUES (list_value [,...])

 | [PARTITION name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

 | [PARTITION name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

[WITH (partition_storage_parameter=value [, ...])]
[column_reference_storage_directive [, …]]
[TABLESPACE tablespace]

where subpartition_spec or template_spec is:
subpartition_element [, ...]

and subpartition_element is:
 DEFAULT SUBPARTITION name

 | [SUBPARTITION name] VALUES (list_value [,...])

 | [SUBPARTITION name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

 | [SUBPARTITION name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

[WITH (partition_storage_parameter=value [, ...])]
[column_reference_storage_directive [, …]]
[TABLESPACE tablespace]

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 ORIENTATION={COLUMN|ROW}
 COMPRESSTYPE={ZLIB|QUICKLZ|RLE_TYPE|NONE}
 COMPRESSLEVEL={0-9}
 FILLFACTOR={10-100}
 OIDS[=TRUE|FALSE]

where storage_directive is:
 COMPRESSTYPE={ZLIB | QUICKLZ | RLE_TYPE | NONE}
 | COMPRESSLEVEL={0-9}
 | BLOCKSIZE={8192-2097152}

Where column_reference_storage_directive is:
COLUMN column_name ENCODING (storage_directive [, ...]), ...
 |
DEFAULT COLUMN ENCODING (storage_directive [, ...])
SQL Syntax Summary 49

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
CREATE TABLE AS
Defines a new table from the results of a query.

CREATE [[GLOBAL | LOCAL] {TEMPORARY | TEMP}] TABLE table_name
 [(column_name [, ...])]
 [WITH (storage_parameter=value [, ...])]
 [ON COMMIT {PRESERVE ROWS | DELETE ROWS | DROP}]
 [TABLESPACE tablespace]
 AS query
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 ORIENTATION={COLUMN|ROW}
 COMPRESSTYPE={ZLIB|QUICKLZ}
 COMPRESSLEVEL={1-9 | 1}
 FILLFACTOR={10-100}
 OIDS[=TRUE|FALSE]

CREATE TABLESPACE
Defines a new tablespace.

CREATE TABLESPACE tablespace_name [OWNER username]
 FILESPACE filespace_name

CREATE TRIGGER
Defines a new trigger. User-defined triggers are not supported in Greenplum Database.

CREATE TRIGGER name {BEFORE | AFTER} {event [OR ...]}
 ON table [FOR [EACH] {ROW | STATEMENT}]
 EXECUTE PROCEDURE funcname (arguments)

CREATE TYPE
Defines a new data type.

CREATE TYPE name AS (attribute_name data_type [, ...])

CREATE TYPE name (
 INPUT = input_function,
 OUTPUT = output_function
 [, RECEIVE = receive_function]
 [, SEND = send_function]
 [, INTERNALLENGTH = {internallength | VARIABLE}]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage]
 [, DEFAULT = default]
 [, ELEMENT = element]
 [, DELIMITER = delimiter]
 [, COMPRESSTYPE = compression_type]
 [, COMPRESSLEVEL = compression_level]
 [, BLOCKSIZE= blocksize]
)

CREATE TYPE name
SQL Syntax Summary 50

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
CREATE USER
Defines a new database role with the LOGIN privilege by default.

CREATE USER name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE rolename [, ...]
 | IN GROUP rolename [, ...]
 | ROLE rolename [, ...]
 | ADMIN rolename [, ...]
 | USER rolename [, ...]
 | SYSID uid
 | RESOURCE QUEUE queue_name

CREATE VIEW
Defines a new view.

CREATE [OR REPLACE] [TEMP | TEMPORARY] VIEW name
 [(column_name [, ...])]
 AS query

DEALLOCATE
Deallocates a prepared statement.

DEALLOCATE [PREPARE] name

DECLARE
Defines a cursor.

DECLARE name [BINARY] [INSENSITIVE] [NO SCROLL] CURSOR
 [{WITH | WITHOUT} HOLD]
 FOR query [FOR READ ONLY]

DELETE
Deletes rows from a table.

DELETE FROM [ONLY] table [[AS] alias]
 [USING usinglist]
 [WHERE condition]

DROP AGGREGATE
Removes an aggregate function.

DROP AGGREGATE [IF EXISTS] name (type [, ...]) [CASCADE | RESTRICT]

DROP CAST
Removes a cast.

DROP CAST [IF EXISTS] (sourcetype AS targettype) [CASCADE | RESTRICT]
SQL Syntax Summary 51

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
DROP CONVERSION
Removes a conversion.

DROP CONVERSION [IF EXISTS] name [CASCADE | RESTRICT]

DROP DATABASE
Removes a database.

DROP DATABASE [IF EXISTS] name

DROP DOMAIN
Removes a domain.

DROP DOMAIN [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP EXTERNAL TABLE
Removes an external table definition.

DROP EXTERNAL [WEB] TABLE [IF EXISTS] name [CASCADE | RESTRICT]

DROP FILESPACE
Removes a filespace.

DROP FILESPACE [IF EXISTS] filespacename

DROP FUNCTION
Removes a function.

DROP FUNCTION [IF EXISTS] name ([[argmode] [argname] argtype [, ...]]) [CASCADE
| RESTRICT]

DROP GROUP
Removes a database role.

DROP GROUP [IF EXISTS] name [, ...]

DROP INDEX
Removes an index.

DROP INDEX [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP LANGUAGE
Removes a procedural language.

DROP [PROCEDURAL] LANGUAGE [IF EXISTS] name [CASCADE | RESTRICT]

DROP OPERATOR
Removes an operator.

DROP OPERATOR [IF EXISTS] name ({lefttype | NONE} , {righttype | NONE}) [CASCADE
| RESTRICT]

DROP OPERATOR CLASS
Removes an operator class.

DROP OPERATOR CLASS [IF EXISTS] name USING index_method [CASCADE | RESTRICT]
SQL Syntax Summary 52

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
DROP OWNED
Removes database objects owned by a database role.

DROP OWNED BY name [, ...] [CASCADE | RESTRICT]

DROP RESOURCE QUEUE
Removes a resource queue.

DROP RESOURCE QUEUE queue_name

DROP ROLE
Removes a database role.

DROP ROLE [IF EXISTS] name [, ...]

DROP RULE
Removes a rewrite rule.

DROP RULE [IF EXISTS] name ON relation [CASCADE | RESTRICT]

DROP SCHEMA
Removes a schema.

DROP SCHEMA [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP SEQUENCE
Removes a sequence.

DROP SEQUENCE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP TABLE
Removes a table.

DROP TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP TABLESPACE
Removes a tablespace.

DROP TABLESPACE [IF EXISTS] tablespacename

DROP TRIGGER
Removes a trigger.

DROP TRIGGER [IF EXISTS] name ON table [CASCADE | RESTRICT]

DROP TYPE
Removes a data type.

DROP TYPE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP USER
Removes a database role.

DROP USER [IF EXISTS] name [, ...]

DROP VIEW
Removes a view.

DROP VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]
SQL Syntax Summary 53

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
END
Commits the current transaction.

END [WORK | TRANSACTION]

EXECUTE
Executes a prepared SQL statement.

EXECUTE name [(parameter [, ...])]

EXPLAIN
Shows the query plan of a statement.

EXPLAIN [ANALYZE] [VERBOSE] statement

FETCH
Retrieves rows from a query using a cursor.

FETCH [forward_direction { FROM | IN }] cursorname

where forward_direction can be empty or one of:
 NEXT
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL

GRANT
Defines access privileges.

GRANT { {SELECT | INSERT | UPDATE | DELETE | REFERENCES | TRIGGER} [,...] | ALL [PRIV-
SQL Syntax Summary 54

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
ILEGES] }
 ON [TABLE] tablename [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { {USAGE | SELECT | UPDATE} [,...] | ALL [PRIVILEGES] }
 ON SEQUENCE sequencename [, ...]
 TO { rolename | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { {CREATE | CONNECT | TEMPORARY | TEMP} [,...] | ALL [PRIVILEGES] }
 ON DATABASE dbname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTION funcname ([[argmode] [argname] argtype [, ...]]) [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE langname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { {CREATE | USAGE} [,...] | ALL [PRIVILEGES] }
 ON SCHEMA schemaname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespacename [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT parent_role [, ...]
 TO member_role [, ...] [WITH ADMIN OPTION]

GRANT { SELECT | INSERT | ALL [PRIVILEGES] }

 ON PROTOCOL protocolname

 TO username

INSERT
Creates new rows in a table.

INSERT INTO table [(column [, ...])]
 {DEFAULT VALUES | VALUES ({expression | DEFAULT} [, ...]) [, ...] | query}

LOAD
Loads or reloads a shared library file.

LOAD 'filename'

LOCK
Locks a table.

LOCK [TABLE] name [, ...] [IN lockmode MODE] [NOWAIT]

where lockmode is one of:
ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE | SHARE | SHARE ROW
EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE
SQL Syntax Summary 55

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
MOVE
Positions a cursor.

MOVE [forward_direction {FROM | IN}] cursorname

where direction can be empty or one of:
 NEXT
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL

PREPARE
Prepare a statement for execution.

PREPARE name [(datatype [, ...])] AS statement

REASSIGN OWNED
Changes the ownership of database objects owned by a database role.

REASSIGN OWNED BY old_role [, ...] TO new_role

REINDEX
Rebuilds indexes.

REINDEX {INDEX | TABLE | DATABASE | SYSTEM} name

RELEASE SAVEPOINT
Destroys a previously defined savepoint.

RELEASE [SAVEPOINT] savepoint_name

RESET
Restores the value of a system configuration parameter to the default value.

RESET configuration_parameter

RESET ALL
SQL Syntax Summary 56

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
REVOKE
Removes access privileges.

REVOKE [GRANT OPTION FOR] { {SELECT | INSERT | UPDATE | DELETE
 | REFERENCES | TRIGGER} [,...] | ALL [PRIVILEGES] }
 ON [TABLE] tablename [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {USAGE | SELECT | UPDATE} [,...]
 | ALL [PRIVILEGES] }
 ON SEQUENCE sequencename [, ...]
 FROM { rolename | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {CREATE | CONNECT
 | TEMPORARY | TEMP} [,...] | ALL [PRIVILEGES] }
 ON DATABASE dbname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] {EXECUTE | ALL [PRIVILEGES]}
 ON FUNCTION funcname ([[argmode] [argname] argtype
 [, ...]]) [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] {USAGE | ALL [PRIVILEGES]}
 ON LANGUAGE langname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {CREATE | USAGE} [,...]
 | ALL [PRIVILEGES] }
 ON SCHEMA schemaname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespacename [, ...]
 FROM { rolename | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [ADMIN OPTION FOR] parent_role [, ...]
 FROM member_role [, ...]
 [CASCADE | RESTRICT]

ROLLBACK
Aborts the current transaction.

ROLLBACK [WORK | TRANSACTION]

ROLLBACK TO SAVEPOINT
Rolls back the current transaction to a savepoint.

ROLLBACK [WORK | TRANSACTION] TO [SAVEPOINT] savepoint_name

SAVEPOINT
Defines a new savepoint within the current transaction.

SAVEPOINT savepoint_name
SQL Syntax Summary 57

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
SELECT
Retrieves rows from a table or view.

SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [[AS] output_name] [, ...]
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY grouping_element [, ...]]
 [HAVING condition [, ...]]
 [WINDOW window_name AS (window_specification)]
 [{UNION | INTERSECT | EXCEPT} [ALL] select]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT {count | ALL}]
 [OFFSET start]
 [FOR {UPDATE | SHARE} [OF table_name [, ...]] [NOWAIT] [...]]

where grouping_element can be one of:
 ()
 expression
 ROLLUP (expression [,...])
 CUBE (expression [,...])
 GROUPING SETS ((grouping_element [, ...]))

where window_specification can be:
 [window_name]
 [PARTITION BY expression [, ...]]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]
 [{RANGE | ROWS}
 { UNBOUNDED PRECEDING
 | expression PRECEDING
 | CURRENT ROW
 | BETWEEN window_frame_bound AND window_frame_bound }]]

 where window_frame_bound can be one of:
 UNBOUNDED PRECEDING
 expression PRECEDING
 CURRENT ROW
 expression FOLLOWING
 UNBOUNDED FOLLOWING

where from_item can be one of:
[ONLY] table_name [[AS] alias [(column_alias [, ...])]]
(select) [AS] alias [(column_alias [, ...])]
function_name ([argument [, ...]]) [AS] alias
 [(column_alias [, ...]
 | column_definition [, ...])]
function_name ([argument [, ...]]) AS
 (column_definition [, ...])
from_item [NATURAL] join_type from_item
 [ON join_condition | USING (join_column [, ...])]
SQL Syntax Summary 58

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
SELECT INTO
Defines a new table from the results of a query.

SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [AS output_name] [, ...]
 INTO [TEMPORARY | TEMP] [TABLE] new_table
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition [, ...]]
 [{UNION | INTERSECT | EXCEPT} [ALL] select]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT {count | ALL}]
 [OFFSET start]
 [FOR {UPDATE | SHARE} [OF table_name [, ...]] [NOWAIT] [...]]

SET
Changes the value of a Greenplum Database configuration parameter.

SET [SESSION | LOCAL] configuration_parameter {TO | =} value | 'value' | DEFAULT}

SET [SESSION | LOCAL] TIME ZONE {timezone | LOCAL | DEFAULT}

SET ROLE
Sets the current role identifier of the current session.

SET [SESSION | LOCAL] ROLE rolename

SET [SESSION | LOCAL] ROLE NONE

RESET ROLE

SET SESSION AUTHORIZATION
Sets the session role identifier and the current role identifier of the current session.

SET [SESSION | LOCAL] SESSION AUTHORIZATION rolename

SET [SESSION | LOCAL] SESSION AUTHORIZATION DEFAULT

RESET SESSION AUTHORIZATION

SET TRANSACTION
Sets the characteristics of the current transaction.

SET TRANSACTION transaction_mode [, ...]

SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode [, ...]

where transaction_mode is one of:
ISOLATION LEVEL {SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED}
READ WRITE | READ ONLY

SHOW
Shows the value of a system configuration parameter.

SHOW configuration_parameter

SHOW ALL

START TRANSACTION
Starts a transaction block.

START TRANSACTION [SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED]
SQL Syntax Summary 59

Greenplum Database Client Tools for UNIX 4.3 – Appendix B: SQL Command Reference
[READ WRITE | READ ONLY]

TRUNCATE
Empties a table of all rows.

TRUNCATE [TABLE] name [, ...] [CASCADE | RESTRICT]

UPDATE
Updates rows of a table.

UPDATE [ONLY] table [[AS] alias]
 SET {column = {expression | DEFAULT} |
 (column [, ...]) = ({expression | DEFAULT} [, ...])} [, ...]
 [FROM fromlist]
 [WHERE condition]

VACUUM
Garbage-collects and optionally analyzes a database.

VACUUM [FULL] [FREEZE] [VERBOSE] [table]

VACUUM [FULL] [FREEZE] [VERBOSE] ANALYZE
 [table [(column [, ...])]]

VALUES
Computes a set of rows.

VALUES (expression [, ...]) [, ...]
[ORDER BY sort_expression [ASC | DESC | USING operator] [, ...]]
[LIMIT {count | ALL}] [OFFSET start]
SQL Syntax Summary 60

	1. Installing the Greenplum Client Tools
	Running the Client Tools Installer
	About Your Installation

	Configuring the Command-Line Tools
	Additional Connection Environment Variables

	Enabling Greenplum Database for Remote Client Connections
	Configuring a Client System for Kerberos Authentication
	Requirements
	Setting Up a Client System with Kerberos Authentication
	Accessing Greenplum Database with psql

	Next Steps

	A. Client Tools Reference
	gpmapreduce
	psql

	B. SQL Command Reference
	SQL Syntax Summary

