
Greenplum® Database 4.2

Reference Guide
Rev: A01

Copyright © 2012 EMC Corporation. All rights reserved.

EMC believes the information in this publication is accurate as of its publication date. The information is subject to
change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” EMC CORPORATION MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY
DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any EMC software described in this publication requires an applicable software
license.

For the most up-to-date listing of EMC product names, see EMC Corporation Trademarks on EMC.com

All other trademarks used herein are the property of their respective owners.

Greenplum Database Reference Guide 4.2 - Contents
Greenplum Database Reference Guide - 4.2 - Contents
Preface ... 1

About This Guide.. 1
About the Greenplum Database Documentation Set 2
Document Conventions .. 2

Text Conventions.. 2
Command Syntax Conventions ... 3

Getting Support.. 4
Product information .. 4
Technical support.. 4

Chapter 1: SQL Command Reference ... 5
SQL Syntax Summary .. 7
ABORT ... 35
ALTER AGGREGATE .. 36
ALTER CONVERSION .. 38
ALTER DATABASE... 39
ALTER DOMAIN .. 41
ALTER EXTERNAL TABLE .. 43
ALTER FILESPACE... 45
ALTER FUNCTION ... 46
ALTER GROUP .. 49
ALTER INDEX ... 50
ALTER LANGUAGE .. 52
ALTER OPERATOR .. 53
ALTER OPERATOR CLASS ... 54
ALTER PROTOCOL .. 55
ALTER RESOURCE QUEUE .. 56
ALTER ROLE ... 59
ALTER SCHEMA .. 63
ALTER SEQUENCE .. 64
ALTER TABLE.. 67
ALTER TABLESPACE ... 79
ALTER TRIGGER ... 80
ALTER TYPE.. 81
ALTER USER... 82
ANALYZE .. 83
BEGIN .. 85
CHECKPOINT.. 87
CLOSE.. 88
CLUSTER .. 89
COMMENT .. 92
COMMIT ... 95
COPY.. 96
CREATE AGGREGATE...105
CREATE CAST..109
CREATE CONVERSION...112
CREATE DATABASE ...114
CREATE DOMAIN...116
Table of Contents iii

Greenplum Database Reference Guide 4.2 - Contents
CREATE EXTERNAL TABLE ...118
CREATE FUNCTION..126
CREATE GROUP...132
CREATE INDEX..133
CREATE LANGUAGE...137
CREATE OPERATOR ...141
CREATE OPERATOR CLASS..146
CREATE RESOURCE QUEUE ...150
CREATE ROLE..154
CREATE RULE..159
CREATE SCHEMA...162
CREATE SEQUENCE ...164
CREATE TABLE ..168
CREATE TABLE AS ...180
CREATE TABLESPACE ..184
CREATE TRIGGER..186
CREATE TYPE ..189
CREATE USER..195
CREATE VIEW..196
DEALLOCATE...199
DECLARE...200
DELETE ...203
DROP AGGREGATE ..206
DROP CAST ...207
DROP CONVERSION ..208
DROP DATABASE...209
DROP DOMAIN ..210
DROP EXTERNAL TABLE ..211
DROP FILESPACE...212
DROP FUNCTION ...213
DROP GROUP ..215
DROP INDEX ...216
DROP LANGUAGE ..217
DROP OPERATOR ..218
DROP OPERATOR CLASS ...220
DROP OWNED ...221
DROP RESOURCE QUEUE ..223
DROP ROLE ...225
DROP RULE ...226
DROP TYPE..227
DROP SCHEMA ..228
DROP SEQUENCE ..229
DROP TABLE..230
DROP TABLESPACE ...231
DROP TRIGGER ...232
DROP USER...233
DROP VIEW...234
END ..235
EXECUTE...236
Table of Contents iv

Greenplum Database Reference Guide 4.2 - Contents
EXPLAIN..237
FETCH ...240
GRANT ..244
INSERT ...249
LOAD...251
LOCK...252
MOVE ..256
PREPARE ...258
REASSIGN OWNED..261
REINDEX ...262
RELEASE SAVEPOINT ..264
RESET ...265
REVOKE ..266
ROLLBACK...269
ROLLBACK TO SAVEPOINT ..270
SAVEPOINT ...272
SELECT ...274
SELECT INTO ..289
SET ...291
SET ROLE..293
SET SESSION AUTHORIZATION...295
SET TRANSACTION..297
SHOW ...300
START TRANSACTION ...301
TRUNCATE...303
UPDATE...304
VACUUM..308
VALUES...311

Chapter 2: SQL 2008 Optional Feature Compliance314

Chapter 3: System Catalog Reference335
System Tables...335
gp_configuration_history...338
gp_distributed_log ..339
gp_distributed_xacts ...340
gp_distribution_policy ...341
gpexpand.expansion_progress ..342
gpexpand.status..343
gpexpand.status_detail ...344
gp_fastsequence ...346
gp_fault_strategy..347
gp_global_sequence..348
gp_id...349
gp_interfaces ..350
gp_master_mirroring ..351
gp_persistent_database_node...352
gp_persistent_filespace_node ...353
gp_persistent_relation_node ...354
gp_persistent_tablespace_node ..355
Table of Contents v

Greenplum Database Reference Guide 4.2 - Contents
gp_pgdatabase..356
gp_relation_node ..357
gp_resqueue_status..358
gp_san_configuration ..359
gp_segment_configuration ..361
gp_transaction_log..362
gp_version_at_initdb...363
pg_aggregate..364
pg_am ..365
pg_amop...367
pg_amproc..368
pg_appendonly..369
pg_attrdef ...371
pg_attribute ..372
pg_attribute_encoding ..374
pg_auth_members ..375
pg_authid..376
pg_autovacuum ..377
pg_cast ...378
pg_class..379
pg_compression ..382
pg_constraint ..383
pg_conversion...384
pg_database ...385
pg_depend ..387
pg_description...388
pg_exttable...389
pg_filespace ..390
pg_filespace_entry ..391
pg_index ...392
pg_inherits..394
pg_language ...395
pg_largeobject ..396
pg_listener ..397
pg_locks..398
pg_opclass ..400
pg_namespace ..401
pg_operator ..402
pg_partition ..403
pg_partition_columns..404
pg_partition_encoding...405
pg_partition_rule...406
pg_partition_templates ...407
pg_partitions...408
pg_pltemplate ...410
pg_proc...411
pg_resourcetype ...413
pg_resqueue ...414
pg_resqueue_attributes ..415
Table of Contents vi

Greenplum Database Reference Guide 4.2 - Contents
pg_resqueuecapability...416
pg_rewrite...417
pg_roles ..418
pg_shdepend...419
pg_shdescription ...420
pg_stat_activity ..421
pg_stat_last_operation..422
pg_stat_last_shoperation ..423
pg_stat_operations ...424
pg_stat_partition_operations...425
pg_statistic ...426
pg_stat_resqueues..428
pg_tablespace ...429
pg_trigger ...430
pg_type...431
pg_type_encoding...434
pg_user_mapping ...435
pg_window..436

Chapter 4: Greenplum Environment Variables438
Required Environment Variables..438
Optional Environment Variables...439

Chapter 5: The gp_toolkit Administrative Schema..............441
Checking for Tables that Need Routine Maintenance......................441

gp_bloat_diag..442
gp_stats_missing...442

Checking for Locks ..442
gp_locks_on_relation...443
gp_locks_on_resqueue ..443

Viewing Greenplum Database Server Log Files444
gp_log_command_timings ...444
gp_log_database ...445
gp_log_master_concise ...446
gp_log_system ..446

Checking Server Configuration Files ..447
gp_param_setting('parameter_name').....................................448
gp_param_settings_seg_value_diffs ..448

Checking for Failed Segments ...448
gp_pgdatabase_invalid ..448

Checking Resource Queue Activity and Status449
gp_resq_activity ..449
gp_resq_activity_by_queue ...450
gp_resq_priority_statement...450
gp_resq_role ...450
gp_resqueue_status ..451

Viewing Users and Groups (Roles)...451
gp_roles_assigned ...452

Checking Database Object Sizes and Disk Space...........................452
gp_size_of_all_table_indexes ..453
Table of Contents vii

Greenplum Database Reference Guide 4.2 - Contents
gp_size_of_database ...453
gp_size_of_index...453
gp_size_of_partition_and_indexes_disk454
gp_size_of_schema_disk ...454
gp_size_of_table_and_indexes_disk ..454
gp_size_of_table_and_indexes_licensing455
gp_size_of_table_disk ...455
gp_size_of_table_uncompressed ...455
gp_disk_free..456

Checking for Uneven Data Distribution ..456
gp_skew_coefficients ...456
gp_skew_idle_fractions..457

Chapter 6: Greenplum Database Data Types458

Chapter 7: Character Set Support ..461
Setting the Character Set..462
Character Set Conversion Between Server and Client....................463

Chapter 8: Server Configuration Parameters466
add_missing_from...467
application_name ..467
array_nulls ..467
authentication_timeout ...467
backslash_quote ...467
block_size ...468
bonjour_name...468
check_function_bodies ..468
client_encoding ...468
client_min_messages ..468
cpu_index_tuple_cost..468
cpu_operator_cost ..468
cpu_tuple_cost..468
cursor_tuple_fraction ..468
custom_variable_classes ...469
DateStyle ..469
db_user_namespace ...469
deadlock_timeout..469
debug_assertions ..469
debug_pretty_print ...469
debug_print_parse ..469
debug_print_plan ..469
debug_print_prelim_plan ..470
debug_print_rewritten...470
debug_print_slice_table ..470
default_statistics_target..470
default_tablespace ..470
default_transaction_isolation...470
default_transaction_read_only ..470
dynamic_library_path..470
effective_cache_size..471
Table of Contents viii

Greenplum Database Reference Guide 4.2 - Contents
enable_bitmapscan ...471
enable_groupagg ..471
enable_hashagg ..471
enable_hashjoin ..471
enable_indexscan..471
enable_mergejoin ...471
enable_nestloop ..472
enable_seqscan...472
enable_sort ...472
enable_tidscan ..472
escape_string_warning..472
explain_pretty_print..472
extra_float_digits ..472
from_collapse_limit ...472
gp_adjust_selectivity_for_outerjoins ...473
gp_analyze_relative_error...473
gp_autostats_mode...473
gp_autostats_on_change_threshold ..473
gp_cached_segworkers_threshold ...474
gp_command_count..474
gp_connectemc_mode...474
gp_connections_per_thread ..474
gp_content..474
gp_dbid...474
gp_debug_linger ...475
gp_dynamic_partition_pruning..475
gp_email_from..475
gp_email_smtp_password ...475
gp_email_smtp_server..475
gp_email_smtp_userid ..475
gp_email_to ..475
gp_enable_adaptive_nestloop ...475
gp_enable_agg_distinct...475
gp_enable_agg_distinct_pruning...476
gp_enable_direct_dispatch..476
gp_enable_fallback_plan ...476
gp_enable_fast_sri ..476
gp_enable_gpperfmon...476
gp_enable_groupext_distinct_gather...476
gp_enable_groupext_distinct_pruning...476
gp_enable_multiphase_agg...477
gp_enable_predicate_propagation...477
gp_enable_preunique..477
gp_enable_sequential_window_plans ..477
gp_enable_sort_distinct ..477
gp_enable_sort_limit...477
gp_external_enable_exec..477
gp_external_grant_privileges ..478
gp_external_max_segs ...478
Table of Contents ix

Greenplum Database Reference Guide 4.2 - Contents
gp_filerep_tcp_keepalives_count...478
gp_filerep_tcp_keepalives_idle..478
gp_filerep_tcp_keepalives_interval..478
gp_fts_probe_interval ...479
gp_fts_probe_threadcount ..479
gp_fts_probe_timeout ...479
gp_gpperfmon_send_interval ..479
gp_hadoop_home..479
gp_hadoop_target_version..479
gp_hashjoin_tuples_per_bucket ..479
gp_idf_deduplicate ..479
auto ..479
gp_interconnect_hash_multiplier...480
gp_interconnect_queue_depth ..480
gp_interconnect_setup_timeout ..480
gp_interconnect_type..480
gp_log_format...480
gp_max_csv_line_length...480
gp_max_databases ...481
gp_max_filespaces..481
gp_max_local_distributed_cache...481
gp_max_packet_size...481
gp_max_tablespaces...481
gp_motion_cost_per_row..481
gp_num_contents_in_cluster ..481
gp_reject_percent_threshold...481
gp_reraise_signal ..481
gp_resqueue_memory_policy..481
gp_resqueue_priority ..481
gp_resqueue_priority_cpucores_per_segment...............................482
gp_resqueue_priority_sweeper_interval ..482
gp_role ...482
gp_safefswritesize...482
gp_segment_connect_timeout ..482
gp_segments_for_planner...482
gp_session_id ...483
gp_set_proc_affinity..483
gp_set_read_only..483
gp_snmp_community..483
gp_snmp_monitor_address ...483
gp_snmp_use_inform_or_trap ..483
gp_statistics_pullup_from_child_partition......................................483
gp_statistics_use_fkeys...483
gp_vmem_idle_resource_timeout ...483
gp_vmem_protect_limit ..484
gp_vmem_protect_segworker_cache_limit....................................484
gp_workfile_checksumming ..484
gp_workfile_compress_algorithm ..484
gpperfmon_port ..484
Table of Contents x

Greenplum Database Reference Guide 4.2 - Contents
integer_datetimes ...485
IntervalStyle ...485
join_collapse_limit...485
krb_caseins_users...485
krb_server_keyfile...485
krb_srvname...485
lc_collate...485
lc_ctype ..485
lc_messages..486
lc_monetary ..486
lc_numeric ..486
lc_time..486
listen_addresses..486
local_preload_libraries...486
log_autostats ..486
log_connections ..487
log_disconnections ..487
log_dispatch_stats ..487
log_duration..487
log_error_verbosity...487
log_executor_stats..487
log_hostname ...487
log_min_duration_statement...487
log_min_error_statement..488
log_min_messages..488
log_parser_stats ...488
log_planner_stats..488
log_rotation_age ...488
log_rotation_size...488
log_statement ...489
log_statement_stats..489
log_timezone ..489
log_truncate_on_rotation ..489
max_appendonly_tables..489
max_connections ..490
max_files_per_process..490
max_fsm_pages..490
max_fsm_relations..490
max_function_args..490
max_identifier_length ...490
max_index_keys ...490
max_locks_per_transaction...491
max_prepared_transactions ..491
max_resource_portals_per_transaction...491
max_resource_queues ..491
max_stack_depth..491
max_statement_mem ...492
password_encryption ..492
pljava_classpath..492
Table of Contents xi

Greenplum Database Reference Guide 4.2 - Contents
pljava_statement_cache_size..492
pljava_release_lingering_savepoints ...492
pljava_vmoptions..492
port...492
random_page_cost..493
regex_flavor..493
resource_cleanup_gangs_on_wait ...493
resource_select_only...493
search_path ..493
seq_page_cost ..493
server_encoding..493
server_version ..493
server_version_num..494
shared_buffers ..494
shared_preload_libraries ...494
ssl ...494
ssl_ciphers ..494
standard_conforming_strings ..494
statement_mem..494
statement_timeout..495
stats_queue_level ...495
superuser_reserved_connections ..495
tcp_keepalives_count ..495
tcp_keepalives_idle ...495
tcp_keepalives_interval...495
temp_buffers...496
TimeZone..496
timezone_abbreviations ..496
track_activities..496
track_counts ...496
transaction_isolation ...496
transaction_read_only...497
transform_null_equals...497
unix_socket_directory ...497
unix_socket_group..497
unix_socket_permissions...497
update_process_title ...497
vacuum_cost_delay...497
vacuum_cost_limit ..497
vacuum_cost_page_dirty ..497
vacuum_cost_page_hit ...497
vacuum_cost_page_miss ..498
vacuum_freeze_min_age ..498

Chapter 9: Greenplum MapReduce Specification499
Greenplum MapReduce Document Format.....................................499
Greenplum MapReduce Document Schema....................................502
Example Greenplum MapReduce Document...................................513

MapReduce Flow Diagram..520
Table of Contents xii

Greenplum Database Reference Guide 4.2 - Contents
Chapter 10: Greenplum PostGIS Extension...........................521
About PostGIS...521
Greenplum PostGIS Extension...521

Greenplum PostGIS Limitations..521
Enabling PostGIS Support ...521
Usage..522

Spatial Indexes..523

Chapter 11: Summary of Greenplum Features524
Greenplum SQL Standard Conformance ..524

Core SQL Conformance..524
SQL 1992 Conformance ...525
SQL 1999 Conformance ...526
SQL 2003 Conformance ...526
SQL 2008 Conformance ...527

Greenplum and PostgreSQL Compatibility528
Table of Contents xiii

Greenplum Database Reference Guide 4.2 – Preface
Preface

This guide provides reference information for Greenplum Database.

• About This Guide
• Document Conventions
• Getting Support

About This Guide
This guide provides reference information for a Greenplum Database system. This
guide is intended for system and database administrators responsible for managing a
Greenplum Database system.

This guide assumes knowledge of Linux/UNIX system administration, database
management systems, database administration, and structured query language (SQL).

Because Greenplum Database is based on PostgreSQL 8.2.15, this guide assumes
some familiarity with PostgreSQL. References to PostgreSQL documentation are
provided throughout this guide for features that are similar to those in Greenplum
Database.

This guide contains the following reference documentation:

• SQL Command Reference
• SQL 2008 Optional Feature Compliance
• System Catalog Reference
• Greenplum Environment Variables
• The gp_toolkit Administrative Schema
• Greenplum Database Data Types
• Character Set Support
• Server Configuration Parameters
• Greenplum MapReduce Specification
• Greenplum PostGIS Extension
• Summary of Greenplum Features
About This Guide 1

http://www.postgresql.org/docs/8.2/static/index.html

Greenplum Database Reference Guide 4.2 – Preface
About the Greenplum Database Documentation Set
As of Release 4.2.3, the Greenplum Database documentation set consists of the
following guides.

Table 0.1 Greenplum Database documentation set

Guide Name Description

Greenplum Database Database
Administrator Guide

Every day DBA tasks such as configuring access control and
workload management, writing queries, managing data,
defining database objects, and performance troubleshooting.

Greenplum Database System
Administrator Guide

Describes the Greenplum Database architecture and concepts
such as parallel processing, and system administration tasks
for Greenplum Database such as configuring the server,
monitoring system activity, enabling high-availability, backing
up and restoring databases, and expanding the system.

Greenplum Database Reference
Guide

Reference information for Greenplum Database systems: SQL
commands, system catalogs, environment variables, character
set support, datatypes, the Greenplum MapReduce
specification, postGIS extension, server parameters, the
gp_toolkit administrative schema, and SQL 2008 support.

Greenplum Database Utility
Guide

Reference information for command-line utilities, client
programs, and Oracle compatibility functions.

Greenplum Database
Installation Guide

Information and instructions for installing and initializing a
Greenplum Database system.

Document Conventions
The following conventions are used throughout the Greenplum Database
documentation to help you identify certain types of information.

• Text Conventions
• Command Syntax Conventions

Text Conventions

Table 0.2 Text Conventions

Text Convention Usage Examples

bold Button, menu, tab, page, and field
names in GUI applications

Click Cancel to exit the page without
saving your changes.

italics New terms where they are defined

Database objects, such as schema,
table, or columns names

The master instance is the postgres
process that accepts client
connections.

Catalog information for Greenplum
Database resides in the pg_catalog
schema.
About the Greenplum Database Documentation Set 2

Greenplum Database Reference Guide 4.2 – Preface
Command Syntax Conventions

monospace File names and path names

Programs and executables

Command names and syntax

Parameter names

Edit the postgresql.conf file.

Use gpstart to start Greenplum
Database.

monospace italics Variable information within file
paths and file names

Variable information within
command syntax

/home/gpadmin/config_file

COPY tablename FROM
'filename'

monospace bold Used to call attention to a particular
part of a command, parameter, or
code snippet.

Change the host name, port, and
database name in the JDBC
connection URL:

jdbc:postgresql://host:5432/m
ydb

UPPERCASE Environment variables

SQL commands

Keyboard keys

Make sure that the Java /bin
directory is in your $PATH.

SELECT * FROM my_table;

Press CTRL+C to escape.

Table 0.2 Text Conventions

Text Convention Usage Examples

Table 0.3 Command Syntax Conventions

Text Convention Usage Examples

{ } Within command syntax, curly
braces group related command
options. Do not type the curly
braces.

FROM { 'filename' | STDIN }

[] Within command syntax, square
brackets denote optional
arguments. Do not type the
brackets.

TRUNCATE [TABLE] name

... Within command syntax, an ellipsis
denotes repetition of a command,
variable, or option. Do not type the
ellipsis.

DROP TABLE name [, ...]
Document Conventions 3

Greenplum Database Reference Guide 4.2 – Preface
Getting Support
EMC support, product, and licensing information can be obtained as follows.

Product information

For documentation, release notes, software updates, or for information about EMC
products, licensing, and service, go to the EMC Powerlink website (registration
required) at:

http://Powerlink.EMC.com

Technical support

For technical support, go to Powerlink and choose Support. On the Support page, you
will see several options, including one for making a service request. Note that to open
a service request, you must have a valid support agreement. Please contact your EMC
sales representative for details about obtaining a valid support agreement or with
questions about your account.

| Within command syntax, the pipe
symbol denotes an “OR”
relationship. Do not type the pipe
symbol.

VACUUM [FULL | FREEZE]

$ system_command

root_system_command

=> gpdb_command

=# su_gpdb_command

Denotes a command prompt - do
not type the prompt symbol. $ and
denote terminal command
prompts. => and =# denote
Greenplum Database interactive
program command prompts (psql
or gpssh, for example).

$ createdb mydatabase

chown gpadmin -R /datadir

=> SELECT * FROM mytable;

=# SELECT * FROM pg_database;

Table 0.3 Command Syntax Conventions

Text Convention Usage Examples
Getting Support 4

http://Powerlink.EMC.com
http://Powerlink.EMC.com

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
1. SQL Command Reference

The following SQL commands are available in Greenplum Database:

• ABORT

• ALTER AGGREGATE

• ALTER CONVERSION

• ALTER DATABASE

• ALTER DOMAIN

• ALTER EXTERNAL TABLE

• ALTER FILESPACE

• ALTER FOREIGN DATA WRAPPER*

• ALTER FOREIGN TABLE*

• ALTER FUNCTION

• ALTER GROUP

• ALTER INDEX

• ALTER LANGUAGE

• ALTER OPERATOR

• ALTER OPERATOR CLASS

• ALTER PROTOCOL

• ALTER RESOURCE QUEUE

• ALTER ROLE

• ALTER SCHEMA

• ALTER SEQUENCE

• ALTER SERVER*

• ALTER TABLE

• ALTER TABLESPACE

• ALTER TRIGGER

• ALTER TYPE

• ALTER USER

• ALTER USER MAPPING*

• ANALYZE

• BEGIN

• CHECKPOINT

• CLOSE

• CLUSTER

• COMMENT

• COMMIT

• COPY

• CREATE AGGREGATE

• CREATE CAST

• CREATE CONVERSION

• CREATE DATABASE

• CREATE DOMAIN

• CREATE EXTERNAL TABLE

• CREATE FOREIGN DATA WRAPPER*

• CREATE FOREIGN TABLE*

• CREATE FUNCTION

• CREATE GROUP

• CREATE INDEX

• CREATE LANGUAGE

• CREATE OPERATOR

• CREATE OPERATOR CLASS

• CREATE RESOURCE QUEUE

• CREATE ROLE

• CREATE RULE

• CREATE SCHEMA

• CREATE SEQUENCE

• CREATE SERVER*

• CREATE TABLE

• CREATE TABLE AS

• CREATE TABLESPACE

• CREATE TRIGGER

• CREATE TYPE

• CREATE USER

• CREATE USER MAPPING*
SQL Command Reference 5

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
• CREATE VIEW

• DEALLOCATE

• DECLARE

• DELETE

• DROP AGGREGATE

• DROP CAST

• DROP CONVERSION

• DROP DATABASE

• DROP DOMAIN

• DROP EXTERNAL TABLE

• DROP FILESPACE

• DROP FOREIGN DATA WRAPPER*

• DROP FOREIGN TABLE*

• DROP FUNCTION

• DROP GROUP

• DROP INDEX

• DROP LANGUAGE

• DROP OPERATOR

• DROP OPERATOR CLASS

• DROP OWNED

• DROP RESOURCE QUEUE

• DROP ROLE

• DROP RULE

• DROP SCHEMA

• DROP SEQUENCE

• DROP SERVER*

• DROP TABLE

• DROP TABLESPACE

• DROP TRIGGER

• DROP TYPE

• DROP USER

• DROP USER MAPPING*

• DROP VIEW

• END

• EXECUTE

• EXPLAIN

• FETCH

• GRANT

• INSERT

• LOAD

• LOCK

• MOVE

• PREPARE

• REASSIGN OWNED

• REINDEX

• RELEASE SAVEPOINT

• RESET

• REVOKE

• ROLLBACK

• ROLLBACK TO SAVEPOINT

• SAVEPOINT

• SELECT

• SELECT INTO

• SET

• SET ROLE

• SET SESSION AUTHORIZATION

• SET TRANSACTION

• SHOW

• START TRANSACTION

• TRUNCATE

• UPDATE

• VACUUM

• VALUES

* Not implemented in 4.2
SQL Command Reference 6

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
SQL Syntax Summary

ABORT
Aborts the current transaction.
ABORT [WORK | TRANSACTION]

ALTER AGGREGATE
Changes the definition of an aggregate function
ALTER AGGREGATE name (type [, ...]) RENAME TO new_name

ALTER AGGREGATE name (type [, ...]) OWNER TO new_owner

ALTER AGGREGATE name (type [, ...]) SET SCHEMA new_schema

ALTER CONVERSION
Changes the definition of a conversion.
ALTER CONVERSION name RENAME TO newname

ALTER CONVERSION name OWNER TO newowner

ALTER DATABASE
Changes the attributes of a database.
ALTER DATABASE name [WITH CONNECTION LIMIT connlimit]

ALTER DATABASE name SET parameter { TO | = } { value | DEFAULT }

ALTER DATABASE name RESET parameter

ALTER DATABASE name RENAME TO newname

ALTER DATABASE name OWNER TO new_owner

ALTER DOMAIN
Changes the definition of a domain.
ALTER DOMAIN name { SET DEFAULT expression | DROP DEFAULT }

ALTER DOMAIN name { SET | DROP } NOT NULL

ALTER DOMAIN name ADD domain_constraint

ALTER DOMAIN name DROP CONSTRAINT constraint_name [RESTRICT | CASCADE]

ALTER DOMAIN name OWNER TO new_owner

ALTER DOMAIN name SET SCHEMA new_schema

ALTER EXTERNAL TABLE
Changes the definition of an external table.
ALTER EXTERNAL TABLE name RENAME [COLUMN] column TO new_column

ALTER EXTERNAL TABLE name RENAME TO new_name

ALTER EXTERNAL TABLE name SET SCHEMA new_schema

ALTER EXTERNAL TABLE name action [, ...]

where action is one of:
 ADD [COLUMN] column_name type
 DROP [COLUMN] column
 ALTER [COLUMN] column TYPE type [USING expression]
 OWNER TO new_owner
ABORT 7

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
ALTER FILESPACE
Changes the definition of a filespace.
ALTER FILESPACE name RENAME TO newname

ALTER FILESPACE name OWNER TO newowner

ALTER FUNCTION
Changes the definition of a function.
ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]]) action [, ...]
[RESTRICT]

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]]) RENAME TO new_name

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]]) OWNER TO new_owner

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]]) SET SCHEMA
new_schema

where action is one of:
{CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT}
{IMMUTABLE | STABLE | VOLATILE}
{[EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER}

ALTER GROUP
Changes a role name or membership.
ALTER GROUP groupname ADD USER username [, ...]

ALTER GROUP groupname DROP USER username [, ...]

ALTER GROUP groupname RENAME TO newname

ALTER INDEX
Changes the definition of an index.
ALTER INDEX name RENAME TO new_name

ALTER INDEX name SET TABLESPACE tablespace_name

ALTER INDEX name SET (FILLFACTOR = value)

ALTER INDEX name RESET (FILLFACTOR)

ALTER LANGUAGE
Changes the name of a procedural language.
ALTER LANGUAGE name RENAME TO newname

ALTER OPERATOR
Changes the definition of an operator.
ALTER OPERATOR name ({lefttype | NONE} , {righttype | NONE}) OWNER TO newowner

ALTER OPERATOR CLASS
Changes the definition of an operator class.
ALTER OPERATOR CLASS name USING index_method RENAME TO newname

ALTER OPERATOR CLASS name USING index_method OWNER TO newowner
ALTER FILESPACE 8

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
ALTER PROTOCOL
Changes the definition of a protocol.
ALTER PROTOCOL name RENAME TO newname

ALTER PROTOCOL name OWNER TO newowner

ALTER RESOURCE QUEUE
Changes the limits of a resource queue.
ALTER RESOURCE QUEUE name WITH (queue_attribute=value [, ...])

where queue_attribute is:
 ACTIVE_STATEMENTS=integer
 MEMORY_LIMIT='memory_units'
 MAX_COST=float
 COST_OVERCOMMIT={TRUE|FALSE}
 MIN_COST=float
 PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}

ALTER RESOURCE QUEUE name WITHOUT (queue_attribute [, ...])

where queue_attribute is:
 ACTIVE_STATEMENTS
 MEMORY_LIMIT
 MAX_COST
 COST_OVERCOMMIT
 MIN_COST

ALTER ROLE
Changes a database role (user or group).
ALTER ROLE name RENAME TO newname

ALTER ROLE name SET config_parameter {TO | =} {value | DEFAULT}

ALTER ROLE name RESET config_parameter

ALTER ROLE name RESOURCE QUEUE {queue_name | NONE}

ALTER ROLE name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEEXTTABLE | NOCREATEEXTTABLE
 [(attribute='value'[, ...])]
 where attributes and values are:
 type='readable'|'writable'
 protocol='gpfdist'|'http'
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | [DENY deny_point]
 | [DENY BETWEEN deny_point AND deny_point]
 | [DROP DENY FOR deny_point]
ALTER PROTOCOL 9

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
ALTER SCHEMA
Changes the definition of a schema.
ALTER SCHEMA name RENAME TO newname

ALTER SCHEMA name OWNER TO newowner

ALTER SEQUENCE
Changes the definition of a sequence generator.
ALTER SEQUENCE name [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [RESTART [WITH] start]
 [CACHE cache] [[NO] CYCLE]
 [OWNED BY {table.column | NONE}]

ALTER SEQUENCE name SET SCHEMA new_schema
ALTER SCHEMA 10

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
ALTER TABLE
Changes the definition of a table.
ALTER TABLE [ONLY] name RENAME [COLUMN] column TO new_column

ALTER TABLE name RENAME TO new_name

ALTER TABLE name SET SCHEMA new_schema

ALTER TABLE [ONLY] name SET
 DISTRIBUTED BY (column, [...])
 | DISTRIBUTED RANDOMLY
 | WITH (REORGANIZE=true|false)

ALTER TABLE [ONLY] name action [, ...]

ALTER TABLE name
 [ALTER PARTITION { partition_name | FOR (RANK(number))
 | FOR (value) } partition_action [...]]
 partition_action

where action is one of:
 ADD [COLUMN] column_name type
 [ENCODING (storage_directive [,...])]
 [column_constraint [...]]
 DROP [COLUMN] column [RESTRICT | CASCADE]
 ALTER [COLUMN] column TYPE type [USING expression]
 ALTER [COLUMN] column SET DEFAULT expression
 ALTER [COLUMN] column DROP DEFAULT
 ALTER [COLUMN] column { SET | DROP } NOT NULL
 ALTER [COLUMN] column SET STATISTICS integer
 ADD table_constraint
 DROP CONSTRAINT constraint_name [RESTRICT | CASCADE]
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET WITHOUT OIDS
 SET (FILLFACTOR = value)
 RESET (FILLFACTOR)
 INHERIT parent_table
 NO INHERIT parent_table
 OWNER TO new_owner
 SET TABLESPACE new_tablespace
 ALTER DEFAULT PARTITION
 DROP DEFAULT PARTITION [IF EXISTS]
 DROP PARTITION [IF EXISTS] { partition_name |
 FOR (RANK(number)) | FOR (value) } [CASCADE]
 TRUNCATE DEFAULT PARTITION
 TRUNCATE PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) }
 RENAME DEFAULT PARTITION TO new_partition_name
 RENAME PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } TO new_partition_name
 ADD DEFAULT PARTITION name [(subpartition_spec)]
 ADD PARTITION [name] partition_element
 [(subpartition_spec)]
 EXCHANGE PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } WITH TABLE table_name
 [WITH | WITHOUT VALIDATION]
 EXCHANGE DEFAULT PARTITION WITH TABLE table_name
ALTER TABLE 11

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
 [WITH | WITHOUT VALIDATION]
 SET SUBPARTITION TEMPLATE (subpartition_spec)
 SPLIT DEFAULT PARTITION
 { AT (list_value)
 | START([datatype] range_value) [INCLUSIVE | EXCLUSIVE]
 END([datatype] range_value) [INCLUSIVE | EXCLUSIVE] }
 [INTO (PARTITION new_partition_name,
 PARTITION default_partition_name)]
 SPLIT PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } AT (value)
 [INTO (PARTITION partition_name, PARTITION partition_name)]

where partition_element is:
 VALUES (list_value [,...])

 | START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]

 | END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]

[WITH (partition_storage_parameter=value [, ...])]
[TABLESPACE tablespace]

where subpartition_spec is:
subpartition_element [, ...]

and subpartition_element is:
 DEFAULT SUBPARTITION subpartition_name

 | [SUBPARTITION subpartition_name] VALUES (list_value [,...])

 | [SUBPARTITION subpartition_name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 [EVERY ([number | datatype] 'interval_value')]

 | [SUBPARTITION subpartition_name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([number | datatype] 'interval_value')]

[WITH (partition_storage_parameter=value [, ...])]
[TABLESPACE tablespace]

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 ORIENTATION={COLUMN|ROW}
 COMPRESSTYPE={ZLIB|QUICKLZ|RLE_TYPE|NONE}
 COMPRESSLEVEL={0-9}
 FILLFACTOR={10-100}
 OIDS[=TRUE|FALSE]

where storage_directive is:
 COMPRESSTYPE={ZLIB | QUICKLZ | RLE_TYPE | NONE}
 | COMPRESSLEVEL={0-9}
 | BLOCKSIZE={8192-2097152}

Where column_reference_storage_directive is:
COLUMN column_name ENCODING (storage_directive [, ...]), ...
 |
DEFAULT COLUMN ENCODING (storage_directive [, ...])
ALTER TABLE 12

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
ALTER TABLESPACE
Changes the definition of a tablespace.
ALTER TABLESPACE name RENAME TO newname

ALTER TABLESPACE name OWNER TO newowner

ALTER TRIGGER
Changes the definition of a trigger.
ALTER TRIGGER name ON table RENAME TO newname

ALTER TYPE
Changes the definition of a data type.
ALTER TYPE name
 SET DEFAULT ENCODING (storage_directive)
 OWNER TO new_owner | SET SCHEMA new_schema

ALTER USER
Changes the definition of a database role (user).
ALTER USER name RENAME TO newname

ALTER USER name SET config_parameter {TO | =} {value | DEFAULT}

ALTER USER name RESET config_parameter

ALTER USER name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'

ANALYZE
Collects statistics about a database.
ANALYZE [VERBOSE] [table [(column [, ...])]]

BEGIN
Starts a transaction block.
BEGIN [WORK | TRANSACTION] [SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ
UNCOMMITTED] [READ WRITE | READ ONLY]

CHECKPOINT
Forces a transaction log checkpoint.
CHECKPOINT

CLOSE
Closes a cursor.
CLOSE cursor_name
ALTER TABLESPACE 13

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
CLUSTER
Physically reorders a heap storage table on disk according to an index. Not a recommended operation
in Greenplum Database.
CLUSTER indexname ON tablename

CLUSTER tablename

CLUSTER

COMMENT
Defines or change the comment of an object.
COMMENT ON
{ TABLE object_name |
 COLUMN table_name.column_name |
 AGGREGATE agg_name (agg_type [, ...]) |
 CAST (sourcetype AS targettype) |
 CONSTRAINT constraint_name ON table_name |
 CONVERSION object_name |
 DATABASE object_name |
 DOMAIN object_name |
 FILESPACE object_name |
 FUNCTION func_name ([[argmode] [argname] argtype [, ...]]) |
 INDEX object_name |
 LARGE OBJECT large_object_oid |
 OPERATOR op (leftoperand_type, rightoperand_type) |
 OPERATOR CLASS object_name USING index_method |
 [PROCEDURAL] LANGUAGE object_name |
 RESOURCE QUEUE object_name |
 ROLE object_name |
 RULE rule_name ON table_name |
 SCHEMA object_name |
 SEQUENCE object_name |
 TABLESPACE object_name |
 TRIGGER trigger_name ON table_name |
 TYPE object_name |
 VIEW object_name }
IS 'text'

COMMIT
Commits the current transaction.
COMMIT [WORK | TRANSACTION]
CLUSTER 14

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
COPY
Copies data between a file and a table.
COPY table [(column [, ...])] FROM {'file' | STDIN}
 [[WITH]
 [OIDS]
 [HEADER]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [CSV [QUOTE [AS] 'quote']
 [FORCE NOT NULL column [, ...]]
 [FILL MISSING FIELDS]
 [[LOG ERRORS INTO error_table] [KEEP]
 SEGMENT REJECT LIMIT count [ROWS | PERCENT]]

COPY {table [(column [, ...])] | (query)} TO {'file' | STDOUT}
 [[WITH]
 [OIDS]
 [HEADER]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [CSV [QUOTE [AS] 'quote']
 [FORCE QUOTE column [, ...]]]

CREATE AGGREGATE
Defines a new aggregate function.
CREATE [ORDERED] AGGREGATE name (input_data_type [, ...])
 (SFUNC = sfunc,
 STYPE = state_data_type
 [, PREFUNC = prefunc]
 [, FINALFUNC = ffunc]
 [, INITCOND = initial_condition]
 [, SORTOP = sort_operator])

CREATE CAST
Defines a new cast.
CREATE CAST (sourcetype AS targettype)
 WITH FUNCTION funcname (argtypes)
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (sourcetype AS targettype) WITHOUT FUNCTION
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CONVERSION
Defines a new encoding conversion.
CREATE [DEFAULT] CONVERSION name FOR source_encoding TO dest_encoding FROM funcname
COPY 15

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
CREATE DATABASE
Creates a new database.
CREATE DATABASE name [[WITH] [OWNER [=] dbowner]
 [TEMPLATE [=] template]
 [ENCODING [=] encoding]
 [TABLESPACE [=] tablespace]
 [CONNECTION LIMIT [=] connlimit]]

CREATE DOMAIN
Defines a new domain.
CREATE DOMAIN name [AS] data_type [DEFAULT expression]
 [CONSTRAINT constraint_name
 | NOT NULL | NULL
 | CHECK (expression) [...]]

CREATE EXTERNAL TABLE
Defines a new external table.
CREATE [READABLE] EXTERNAL TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION ('file://seghost[:port]/path/file' [, ...])
 | ('gpfdist://filehost[:port]/file_pattern[#transform]'
 | ('gpfdists://filehost[:port]/file_pattern[#transform]'
 [, ...])
CREATE DATABASE 16

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
 | ('gphdfs://hdfs_host[:port]/path/file')
 FORMAT 'TEXT'
 [([HEADER]
 [DELIMITER [AS] 'delimiter' | 'OFF']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CSV'
 [([HEADER]
 [QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE NOT NULL column [, ...]]
 [ESCAPE [AS] 'escape']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'encoding']
 [[LOG ERRORS INTO error_table] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

CREATE [READABLE] EXTERNAL WEB TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION ('http://webhost[:port]/path/file' [, ...])
 | EXECUTE 'command' [ON ALL
 | MASTER
 | number_of_segments
 | HOST ['segment_hostname']
 | SEGMENT segment_id]
 FORMAT 'TEXT'
 [([HEADER]
 [DELIMITER [AS] 'delimiter' | 'OFF']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CSV'
 [([HEADER]
 [QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE NOT NULL column [, ...]]
 [ESCAPE [AS] 'escape']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'encoding']
 [[LOG ERRORS INTO error_table] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

CREATE WRITABLE EXTERNAL TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION('gpfdist://outputhost[:port]/filename[#transform]'
CREATE EXTERNAL TABLE 17

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
 | ('gpfdists://outputhost[:port]/file_pattern[#transform]'
 [, ...])
 | ('gphdfs://hdfs_host[:port]/path')
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]]]
 [ESCAPE [AS] 'escape'])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'write_encoding']
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

CREATE WRITABLE EXTERNAL WEB TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 EXECUTE 'command' [ON ALL]
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]]]
 [ESCAPE [AS] 'escape'])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'write_encoding']
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

CREATE FUNCTION
Defines a new function.
CREATE [OR REPLACE] FUNCTION name
 ([[argmode] [argname] argtype [, ...]])
 [RETURNS { [SETOF] rettype
 | TABLE ([{ argname argtype | LIKE other table }
 [, ...]])
 }]
 { LANGUAGE langname
 | IMMUTABLE | STABLE | VOLATILE
 | CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
 | [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 | AS 'definition'
 | AS 'obj_file', 'link_symbol' } ...
 [WITH ({ DESCRIBE = describe_function
 } [, ...])]
CREATE FUNCTION 18

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
CREATE GROUP
Defines a new database role.
CREATE GROUP name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE rolename [, ...]
 | IN GROUP rolename [, ...]
 | ROLE rolename [, ...]
 | ADMIN rolename [, ...]
 | USER rolename [, ...]
 | SYSID uid

CREATE INDEX
Defines a new index.
CREATE [UNIQUE] INDEX name ON table
 [USING btree|bitmap|gist]
 ({column | (expression)} [opclass] [, ...])
 [WITH (FILLFACTOR = value)]
 [TABLESPACE tablespace]
 [WHERE predicate]

CREATE LANGUAGE
Defines a new procedural language.
CREATE [PROCEDURAL] LANGUAGE name

CREATE [TRUSTED] [PROCEDURAL] LANGUAGE name
 HANDLER call_handler [VALIDATOR valfunction]

CREATE OPERATOR
Defines a new operator.
CREATE OPERATOR name (
 PROCEDURE = funcname
 [, LEFTARG = lefttype] [, RIGHTARG = righttype]
 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, MERGES]
 [, SORT1 = left_sort_op] [, SORT2 = right_sort_op]
 [, LTCMP = less_than_op] [, GTCMP = greater_than_op])
CREATE GROUP 19

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
CREATE OPERATOR CLASS
Defines a new operator class.
CREATE OPERATOR CLASS name [DEFAULT] FOR TYPE data_type
 USING index_method AS
 {
 OPERATOR strategy_number op_name [(op_type, op_type)] [RECHECK]
 | FUNCTION support_number funcname (argument_type [, ...])
 | STORAGE storage_type
 } [, ...]

CREATE RESOURCE QUEUE
Defines a new resource queue.
CREATE RESOURCE QUEUE name WITH (queue_attribute=value [, ...])

where queue_attribute is:
 ACTIVE_STATEMENTS=integer
 [MAX_COST=float [COST_OVERCOMMIT={TRUE|FALSE}]]
 [MIN_COST=float]
 [PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}]
 [MEMORY_LIMIT='memory_units']

| MAX_COST=float [COST_OVERCOMMIT={TRUE|FALSE}]
 [ACTIVE_STATEMENTS=integer]
 [MIN_COST=float]
 [PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}]
 [MEMORY_LIMIT='memory_units']

CREATE ROLE
Defines a new database role (user or group).
CREATE ROLE name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEEXTTABLE | NOCREATEEXTTABLE
 [(attribute='value'[, ...])]
 where attributes and values are:
 type='readable'|'writable'
 protocol='gpfdist'|'http'
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE rolename [, ...]
 | ROLE rolename [, ...]
 | ADMIN rolename [, ...]
 | RESOURCE QUEUE queue_name
 | [DENY deny_point]
 | [DENY BETWEEN deny_point AND deny_point]
CREATE OPERATOR CLASS 20

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
CREATE RULE
Defines a new rewrite rule.
CREATE [OR REPLACE] RULE name AS ON event
 TO table [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING | command | (command; command ...) }

CREATE SCHEMA
Defines a new schema.
CREATE SCHEMA schema_name [AUTHORIZATION username] [schema_element [...]]

CREATE SCHEMA AUTHORIZATION rolename [schema_element [...]]

CREATE SEQUENCE
Defines a new sequence generator.
CREATE [TEMPORARY | TEMP] SEQUENCE name
 [INCREMENT [BY] value]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [START [WITH] start]
 [CACHE cache]
 [[NO] CYCLE]
 [OWNED BY { table.column | NONE }]
CREATE RULE 21

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
CREATE TABLE
Defines a new table.
CREATE [[GLOBAL | LOCAL] {TEMPORARY | TEMP}] TABLE table_name (
[{ column_name data_type [DEFAULT default_expr] [column_constraint [...]
[ENCODING (storage_directive [,...])]
]
 | table_constraint
 | LIKE other_table [{INCLUDING | EXCLUDING}
 {DEFAULTS | CONSTRAINTS}] ...}
 [, ...]]
 [column_reference_storage_directive [, …]]
)
 [INHERITS (parent_table [, ...])]
 [WITH (storage_parameter=value [, ...])
 [ON COMMIT {PRESERVE ROWS | DELETE ROWS | DROP}]
 [TABLESPACE tablespace]
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]
 [PARTITION BY partition_type (column)
 [SUBPARTITION BY partition_type (column)]
 [SUBPARTITION TEMPLATE (template_spec)]
 [...]
 (partition_spec)
 | [SUBPARTITION BY partition_type (column)]
 [...]
 (partition_spec
 [(subpartition_spec
 [(...)]
)]
)

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 ORIENTATION={COLUMN|ROW}
 COMPRESSTYPE={ZLIB|QUICKLZ|RLE_TYPE|NONE}
 COMPRESSLEVEL={0-9}
 FILLFACTOR={10-100}
 OIDS[=TRUE|FALSE]

where column_constraint is:
 [CONSTRAINT constraint_name]
 NOT NULL | NULL
 | UNIQUE [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR = value)]
 | PRIMARY KEY [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR = value)]
 | CHECK (expression)

and table_constraint is:
 [CONSTRAINT constraint_name]
 UNIQUE (column_name [, ...])
 [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR=value)]
 | PRIMARY KEY (column_name [, ...])
 [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR=value)]
 | CHECK (expression)

where partition_type is:
CREATE TABLE 22

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
 LIST
 | RANGE

where partition_specification is:
partition_element [, ...]

and partition_element is:
 DEFAULT PARTITION name

 | [PARTITION name] VALUES (list_value [,...])

 | [PARTITION name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

 | [PARTITION name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

[WITH (partition_storage_parameter=value [, ...])]
[column_reference_storage_directive [, …]]
[TABLESPACE tablespace]

where subpartition_spec or template_spec is:
subpartition_element [, ...]

and subpartition_element is:
 DEFAULT SUBPARTITION name

 | [SUBPARTITION name] VALUES (list_value [,...])

 | [SUBPARTITION name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

 | [SUBPARTITION name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

[WITH (partition_storage_parameter=value [, ...])]
[column_reference_storage_directive [, …]]
[TABLESPACE tablespace]

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 ORIENTATION={COLUMN|ROW}
 COMPRESSTYPE={ZLIB|QUICKLZ|RLE_TYPE|NONE}
 COMPRESSLEVEL={0-9}
 FILLFACTOR={10-100}
 OIDS[=TRUE|FALSE]

where storage_directive is:
 COMPRESSTYPE={ZLIB | QUICKLZ | RLE_TYPE | NONE}
 | COMPRESSLEVEL={0-9}
 | BLOCKSIZE={8192-2097152}

Where column_reference_storage_directive is:
COLUMN column_name ENCODING (storage_directive [, ...]), ...
 |
DEFAULT COLUMN ENCODING (storage_directive [, ...])
CREATE TABLE 23

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
CREATE TABLE AS
Defines a new table from the results of a query.
CREATE [[GLOBAL | LOCAL] {TEMPORARY | TEMP}] TABLE table_name
 [(column_name [, ...])]
 [WITH (storage_parameter=value [, ...])]
 [ON COMMIT {PRESERVE ROWS | DELETE ROWS | DROP}]
 [TABLESPACE tablespace]
 AS query
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 ORIENTATION={COLUMN|ROW}
 COMPRESSTYPE={ZLIB|QUICKLZ}
 COMPRESSLEVEL={1-9 | 1}
 FILLFACTOR={10-100}
 OIDS[=TRUE|FALSE]

CREATE TABLESPACE
Defines a new tablespace.
CREATE TABLESPACE tablespace_name [OWNER username]
 FILESPACE filespace_name

CREATE TRIGGER
Defines a new trigger. User-defined triggers are not supported in Greenplum Database.
CREATE TRIGGER name {BEFORE | AFTER} {event [OR ...]}
 ON table [FOR [EACH] {ROW | STATEMENT}]
 EXECUTE PROCEDURE funcname (arguments)

CREATE TYPE
Defines a new data type.
CREATE TYPE name AS (attribute_name data_type [, ...])

CREATE TYPE name (
 INPUT = input_function,
 OUTPUT = output_function
 [, RECEIVE = receive_function]
 [, SEND = send_function]
 [, INTERNALLENGTH = {internallength | VARIABLE}]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage]
 [, DEFAULT = default]
 [, ELEMENT = element]
 [, DELIMITER = delimiter]
 [, COMPRESSTYPE = compression_type]
 [, COMPRESSLEVEL = compression_level]
 [, BLOCKSIZE= blocksize]
)

CREATE TYPE name
CREATE TABLE AS 24

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
CREATE USER
Defines a new database role with the LOGIN privilege by default.
CREATE USER name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE rolename [, ...]
 | IN GROUP rolename [, ...]
 | ROLE rolename [, ...]
 | ADMIN rolename [, ...]
 | USER rolename [, ...]
 | SYSID uid
 | RESOURCE QUEUE queue_name

CREATE VIEW
Defines a new view.
CREATE [OR REPLACE] [TEMP | TEMPORARY] VIEW name
 [(column_name [, ...])]
 AS query

DEALLOCATE
Deallocates a prepared statement.
DEALLOCATE [PREPARE] name

DECLARE
Defines a cursor.
DECLARE name [BINARY] [INSENSITIVE] [NO SCROLL] CURSOR
 [{WITH | WITHOUT} HOLD]
 FOR query [FOR READ ONLY]

DELETE
Deletes rows from a table.
DELETE FROM [ONLY] table [[AS] alias]
 [USING usinglist]
 [WHERE condition]

DROP AGGREGATE
Removes an aggregate function.
DROP AGGREGATE [IF EXISTS] name (type [, ...]) [CASCADE | RESTRICT]

DROP CAST
Removes a cast.
DROP CAST [IF EXISTS] (sourcetype AS targettype) [CASCADE | RESTRICT]
CREATE USER 25

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
DROP CONVERSION
Removes a conversion.
DROP CONVERSION [IF EXISTS] name [CASCADE | RESTRICT]

DROP DATABASE
Removes a database.
DROP DATABASE [IF EXISTS] name

DROP DOMAIN
Removes a domain.
DROP DOMAIN [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP EXTERNAL TABLE
Removes an external table definition.
DROP EXTERNAL [WEB] TABLE [IF EXISTS] name [CASCADE | RESTRICT]

DROP FILESPACE
Removes a filespace.
DROP FILESPACE [IF EXISTS] filespacename

DROP FUNCTION
Removes a function.
DROP FUNCTION [IF EXISTS] name ([[argmode] [argname] argtype [, ...]]) [CASCADE
| RESTRICT]

DROP GROUP
Removes a database role.
DROP GROUP [IF EXISTS] name [, ...]

DROP INDEX
Removes an index.
DROP INDEX [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP LANGUAGE
Removes a procedural language.
DROP [PROCEDURAL] LANGUAGE [IF EXISTS] name [CASCADE | RESTRICT]

DROP OPERATOR
Removes an operator.
DROP OPERATOR [IF EXISTS] name ({lefttype | NONE} , {righttype | NONE}) [CASCADE
| RESTRICT]

DROP OPERATOR CLASS
Removes an operator class.
DROP OPERATOR CLASS [IF EXISTS] name USING index_method [CASCADE | RESTRICT]
DROP CONVERSION 26

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
DROP OWNED
Removes database objects owned by a database role.
DROP OWNED BY name [, ...] [CASCADE | RESTRICT]

DROP RESOURCE QUEUE
Removes a resource queue.
DROP RESOURCE QUEUE queue_name

DROP ROLE
Removes a database role.
DROP ROLE [IF EXISTS] name [, ...]

DROP RULE
Removes a rewrite rule.
DROP RULE [IF EXISTS] name ON relation [CASCADE | RESTRICT]

DROP SCHEMA
Removes a schema.
DROP SCHEMA [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP SEQUENCE
Removes a sequence.
DROP SEQUENCE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP TABLE
Removes a table.
DROP TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP TABLESPACE
Removes a tablespace.
DROP TABLESPACE [IF EXISTS] tablespacename

DROP TRIGGER
Removes a trigger.
DROP TRIGGER [IF EXISTS] name ON table [CASCADE | RESTRICT]

DROP TYPE
Removes a data type.
DROP TYPE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP USER
Removes a database role.
DROP USER [IF EXISTS] name [, ...]

DROP VIEW
Removes a view.
DROP VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]
DROP OWNED 27

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
END
Commits the current transaction.
END [WORK | TRANSACTION]

EXECUTE
Executes a prepared SQL statement.
EXECUTE name [(parameter [, ...])]

EXPLAIN
Shows the query plan of a statement.
EXPLAIN [ANALYZE] [VERBOSE] statement

FETCH
Retrieves rows from a query using a cursor.
FETCH [forward_direction { FROM | IN }] cursorname

where forward_direction can be empty or one of:
 NEXT
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL

GRANT
Defines access privileges.
GRANT { {SELECT | INSERT | UPDATE | DELETE | REFERENCES | TRIGGER} [,...] | ALL [PRIV-
END 28

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
ILEGES] }
 ON [TABLE] tablename [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { {USAGE | SELECT | UPDATE} [,...] | ALL [PRIVILEGES] }
 ON SEQUENCE sequencename [, ...]
 TO { rolename | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { {CREATE | CONNECT | TEMPORARY | TEMP} [,...] | ALL [PRIVILEGES] }
 ON DATABASE dbname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTION funcname ([[argmode] [argname] argtype [, ...]]) [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE langname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { {CREATE | USAGE} [,...] | ALL [PRIVILEGES] }
 ON SCHEMA schemaname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespacename [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT parent_role [, ...]
 TO member_role [, ...] [WITH ADMIN OPTION]

GRANT { SELECT | INSERT | ALL [PRIVILEGES] }

 ON PROTOCOL protocolname

 TO username

INSERT
Creates new rows in a table.
INSERT INTO table [(column [, ...])]
 {DEFAULT VALUES | VALUES ({expression | DEFAULT} [, ...]) [, ...] | query}

LOAD
Loads or reloads a shared library file.
LOAD 'filename'

LOCK
Locks a table.
LOCK [TABLE] name [, ...] [IN lockmode MODE] [NOWAIT]

where lockmode is one of:
ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE | SHARE | SHARE ROW
EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE
INSERT 29

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
MOVE
Positions a cursor.
MOVE [forward_direction {FROM | IN}] cursorname

where direction can be empty or one of:
 NEXT
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL

PREPARE
Prepare a statement for execution.
PREPARE name [(datatype [, ...])] AS statement

REASSIGN OWNED
Changes the ownership of database objects owned by a database role.
REASSIGN OWNED BY old_role [, ...] TO new_role

REINDEX
Rebuilds indexes.
REINDEX {INDEX | TABLE | DATABASE | SYSTEM} name

RELEASE SAVEPOINT
Destroys a previously defined savepoint.
RELEASE [SAVEPOINT] savepoint_name

RESET
Restores the value of a system configuration parameter to the default value.
RESET configuration_parameter

RESET ALL
MOVE 30

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
REVOKE
Removes access privileges.
REVOKE [GRANT OPTION FOR] { {SELECT | INSERT | UPDATE | DELETE
 | REFERENCES | TRIGGER} [,...] | ALL [PRIVILEGES] }
 ON [TABLE] tablename [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {USAGE | SELECT | UPDATE} [,...]
 | ALL [PRIVILEGES] }
 ON SEQUENCE sequencename [, ...]
 FROM { rolename | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {CREATE | CONNECT
 | TEMPORARY | TEMP} [,...] | ALL [PRIVILEGES] }
 ON DATABASE dbname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] {EXECUTE | ALL [PRIVILEGES]}
 ON FUNCTION funcname ([[argmode] [argname] argtype
 [, ...]]) [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] {USAGE | ALL [PRIVILEGES]}
 ON LANGUAGE langname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {CREATE | USAGE} [,...]
 | ALL [PRIVILEGES] }
 ON SCHEMA schemaname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespacename [, ...]
 FROM { rolename | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [ADMIN OPTION FOR] parent_role [, ...]
 FROM member_role [, ...]
 [CASCADE | RESTRICT]

ROLLBACK
Aborts the current transaction.
ROLLBACK [WORK | TRANSACTION]

ROLLBACK TO SAVEPOINT
Rolls back the current transaction to a savepoint.
ROLLBACK [WORK | TRANSACTION] TO [SAVEPOINT] savepoint_name

SAVEPOINT
Defines a new savepoint within the current transaction.
SAVEPOINT savepoint_name
REVOKE 31

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
SELECT
Retrieves rows from a table or view.
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [[AS] output_name] [, ...]
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY grouping_element [, ...]]
 [HAVING condition [, ...]]
 [WINDOW window_name AS (window_specification)]
 [{UNION | INTERSECT | EXCEPT} [ALL] select]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT {count | ALL}]
 [OFFSET start]
 [FOR {UPDATE | SHARE} [OF table_name [, ...]] [NOWAIT] [...]]

where grouping_element can be one of:
 ()
 expression
 ROLLUP (expression [,...])
 CUBE (expression [,...])
 GROUPING SETS ((grouping_element [, ...]))

where window_specification can be:
 [window_name]
 [PARTITION BY expression [, ...]]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]
 [{RANGE | ROWS}
 { UNBOUNDED PRECEDING
 | expression PRECEDING
 | CURRENT ROW
 | BETWEEN window_frame_bound AND window_frame_bound }]]

 where window_frame_bound can be one of:
 UNBOUNDED PRECEDING
 expression PRECEDING
 CURRENT ROW
 expression FOLLOWING
 UNBOUNDED FOLLOWING

where from_item can be one of:
[ONLY] table_name [[AS] alias [(column_alias [, ...])]]
(select) [AS] alias [(column_alias [, ...])]
function_name ([argument [, ...]]) [AS] alias
 [(column_alias [, ...]
 | column_definition [, ...])]
function_name ([argument [, ...]]) AS
 (column_definition [, ...])
from_item [NATURAL] join_type from_item
 [ON join_condition | USING (join_column [, ...])]
SELECT 32

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
SELECT INTO
Defines a new table from the results of a query.
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [AS output_name] [, ...]
 INTO [TEMPORARY | TEMP] [TABLE] new_table
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition [, ...]]
 [{UNION | INTERSECT | EXCEPT} [ALL] select]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT {count | ALL}]
 [OFFSET start]
 [FOR {UPDATE | SHARE} [OF table_name [, ...]] [NOWAIT] [...]]

SET
Changes the value of a Greenplum Database configuration parameter.
SET [SESSION | LOCAL] configuration_parameter {TO | =} value | 'value' | DEFAULT}

SET [SESSION | LOCAL] TIME ZONE {timezone | LOCAL | DEFAULT}

SET ROLE
Sets the current role identifier of the current session.
SET [SESSION | LOCAL] ROLE rolename

SET [SESSION | LOCAL] ROLE NONE

RESET ROLE

SET SESSION AUTHORIZATION
Sets the session role identifier and the current role identifier of the current session.
SET [SESSION | LOCAL] SESSION AUTHORIZATION rolename

SET [SESSION | LOCAL] SESSION AUTHORIZATION DEFAULT

RESET SESSION AUTHORIZATION

SET TRANSACTION
Sets the characteristics of the current transaction.
SET TRANSACTION transaction_mode [, ...]

SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode [, ...]

where transaction_mode is one of:
ISOLATION LEVEL {SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED}
READ WRITE | READ ONLY

SHOW
Shows the value of a system configuration parameter.
SHOW configuration_parameter

SHOW ALL

START TRANSACTION
Starts a transaction block.
START TRANSACTION [SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED]
[READ WRITE | READ ONLY]
SELECT INTO 33

Greenplum Database Reference Guide 4.2 – SQL Syntax Summary
TRUNCATE
Empties a table of all rows.
TRUNCATE [TABLE] name [, ...] [CASCADE | RESTRICT]

UPDATE
Updates rows of a table.
UPDATE [ONLY] table [[AS] alias]
 SET {column = {expression | DEFAULT} |
 (column [, ...]) = ({expression | DEFAULT} [, ...])} [, ...]
 [FROM fromlist]
 [WHERE condition]

VACUUM
Garbage-collects and optionally analyzes a database.
VACUUM [FULL] [FREEZE] [VERBOSE] [table]

VACUUM [FULL] [FREEZE] [VERBOSE] ANALYZE
 [table [(column [, ...])]]

VALUES
Computes a set of rows.
VALUES (expression [, ...]) [, ...]
[ORDER BY sort_expression [ASC | DESC | USING operator] [, ...]]
[LIMIT {count | ALL}] [OFFSET start]
TRUNCATE 34

ABORT 35

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

ABORT
Aborts the current transaction.

Synopsis
ABORT [WORK | TRANSACTION]

Description

ABORT rolls back the current transaction and causes all the updates made by the
transaction to be discarded. This command is identical in behavior to the standard
SQL command ROLLBACK, and is present only for historical reasons.

Parameters

WORK
TRANSACTION

Optional key words. They have no effect.

Notes

Use COMMIT to successfully terminate a transaction.

Issuing ABORT when not inside a transaction does no harm, but it will provoke a
warning message.

Compatibility

This command is a Greenplum Database extension present for historical reasons.
ROLLBACK is the equivalent standard SQL command.

See Also

BEGIN, COMMIT, ROLLBACK

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ALTER AGGREGATE
Changes the definition of an aggregate function

Synopsis
ALTER AGGREGATE name (type [, ...]) RENAME TO new_name

ALTER AGGREGATE name (type [, ...]) OWNER TO new_owner

ALTER AGGREGATE name (type [, ...]) SET SCHEMA new_schema

Description

ALTER AGGREGATE changes the definition of an aggregate function.

You must own the aggregate function to use ALTER AGGREGATE. To change the
schema of an aggregate function, you must also have CREATE privilege on the new
schema. To alter the owner, you must also be a direct or indirect member of the new
owning role, and that role must have CREATE privilege on the aggregate function’s
schema. (These restrictions enforce that altering the owner does not do anything you
could not do by dropping and recreating the aggregate function. However, a superuser
can alter ownership of any aggregate function anyway.)

Parameters

name
The name (optionally schema-qualified) of an existing aggregate function.

type
An input data type on which the aggregate function operates. To reference a
zero-argument aggregate function, write * in place of the list of input data types.

new_name
The new name of the aggregate function.

new_owner
The new owner of the aggregate function.

new_schema
The new schema for the aggregate function.

Examples

To rename the aggregate function myavg for type integer to my_average:

ALTER AGGREGATE myavg(integer) RENAME TO my_average;

To change the owner of the aggregate function myavg for type integer to joe:

ALTER AGGREGATE myavg(integer) OWNER TO joe;
ALTER AGGREGATE 36

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
To move the aggregate function myavg for type integer into schema myschema:

ALTER AGGREGATE myavg(integer) SET SCHEMA myschema;

Compatibility

There is no ALTER AGGREGATE statement in the SQL standard.

See Also

CREATE AGGREGATE, DROP AGGREGATE
ALTER AGGREGATE 37

ALTER CONVERSION 38

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

ALTER CONVERSION
Changes the definition of a conversion.

Synopsis
ALTER CONVERSION name RENAME TO newname

ALTER CONVERSION name OWNER TO newowner

Description

ALTER CONVERSION changes the definition of a conversion.

You must own the conversion to use ALTER CONVERSION. To alter the owner, you
must also be a direct or indirect member of the new owning role, and that role must
have CREATE privilege on the conversion’s schema. (These restrictions enforce that
altering the owner does not do anything you could not do by dropping and recreating
the conversion. However, a superuser can alter ownership of any conversion anyway.)

Parameters

name
The name (optionally schema-qualified) of an existing conversion.

newname
The new name of the conversion.

newowner
The new owner of the conversion.

Examples

To rename the conversion iso_8859_1_to_utf8 to latin1_to_unicode:

ALTER CONVERSION iso_8859_1_to_utf8 RENAME TO
latin1_to_unicode;

To change the owner of the conversion iso_8859_1_to_utf8 to joe:

ALTER CONVERSION iso_8859_1_to_utf8 OWNER TO joe;

Compatibility

There is no ALTER CONVERSION statement in the SQL standard.

See Also

CREATE CONVERSION, DROP CONVERSION

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ALTER DATABASE
Changes the attributes of a database.

Synopsis
ALTER DATABASE name [WITH CONNECTION LIMIT connlimit]

ALTER DATABASE name SET parameter { TO | = } { value | DEFAULT }

ALTER DATABASE name RESET parameter

ALTER DATABASE name RENAME TO newname

ALTER DATABASE name OWNER TO new_owner

Description

ALTER DATABASE changes the attributes of a database.

The first form changes the allowed connection limit for a database. Only the database
owner or a superuser can change this setting.

The second and third forms change the session default for a configuration parameter
for a Greenplum database. Whenever a new session is subsequently started in that
database, the specified value becomes the session default value. The database-specific
default overrides whatever setting is present in the server configuration file
(postgresql.conf). Only the database owner or a superuser can change the session
defaults for a database. Certain parameters cannot be set this way, or can only be set
by a superuser.

The fourth form changes the name of the database. Only the database owner or a
superuser can rename a database; non-superuser owners must also have the CREATEDB
privilege. You cannot rename the current database. Connect to a different database
first.

The fifth form changes the owner of the database. To alter the owner, you must own
the database and also be a direct or indirect member of the new owning role, and you
must have the CREATEDB privilege. (Note that superusers have all these privileges
automatically.)

Parameters

name
The name of the database whose attributes are to be altered.

connlimit
The maximum number of concurrent connections possible. The default of -1 means
there is no limitation.
ALTER DATABASE 39

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
parameter
value

Set this database’s session default for the specified configuration parameter to the
given value. If value is DEFAULT or, equivalently, RESET is used, the
database-specific setting is removed, so the system-wide default setting will be
inherited in new sessions. Use RESET ALL to clear all database-specific settings. See
“Server Configuration Parameters” on page 466 for information about server
parameters. for information about all user-settable configuration parameters.

newname
The new name of the database.

new_owner
The new owner of the database.

Notes

It is also possible to set a configuration parameter session default for a specific role
(user) rather than to a database. Role-specific settings override database-specific ones
if there is a conflict. See ALTER ROLE.

Examples

To set the default schema search path for the mydatabase database:

ALTER DATABASE mydatabase SET search_path TO myschema,
public, pg_catalog;

Compatibility

The ALTER DATABASE statement is a Greenplum Database extension.

See Also

CREATE DATABASE, DROP DATABASE, SET
ALTER DATABASE 40

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ALTER DOMAIN
Changes the definition of a domain.

Synopsis
ALTER DOMAIN name { SET DEFAULT expression | DROP DEFAULT }

ALTER DOMAIN name { SET | DROP } NOT NULL

ALTER DOMAIN name ADD domain_constraint

ALTER DOMAIN name DROP CONSTRAINT constraint_name [RESTRICT |
CASCADE]

ALTER DOMAIN name OWNER TO new_owner

ALTER DOMAIN name SET SCHEMA new_schema

Description

ALTER DOMAIN changes the definition of an existing domain. There are several
sub-forms:

• SET/DROP DEFAULT — These forms set or remove the default value for a domain.
Note that defaults only apply to subsequent INSERT commands. They do not
affect rows already in a table using the domain.

• SET/DROP NOT NULL — These forms change whether a domain is marked to
allow NULL values or to reject NULL values. You may only SET NOT NULL when
the columns using the domain contain no null values.

• ADD domain_constraint — This form adds a new constraint to a domain using
the same syntax as CREATE DOMAIN. This will only succeed if all columns using
the domain satisfy the new constraint.

• DROP CONSTRAINT — This form drops constraints on a domain.
• OWNER — This form changes the owner of the domain to the specified user.
• SET SCHEMA — This form changes the schema of the domain. Any constraints

associated with the domain are moved into the new schema as well.
You must own the domain to use ALTER DOMAIN. To change the schema of a domain,
you must also have CREATE privilege on the new schema. To alter the owner, you must
also be a direct or indirect member of the new owning role, and that role must have
CREATE privilege on the domain’s schema. (These restrictions enforce that altering the
owner does not do anything you could not do by dropping and recreating the domain.
However, a superuser can alter ownership of any domain anyway.)

Parameters

name
The name (optionally schema-qualified) of an existing domain to alter.
ALTER DOMAIN 41

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
domain_constraint
New domain constraint for the domain.

constraint_name
Name of an existing constraint to drop.

CASCADE

Automatically drop objects that depend on the constraint.

RESTRICT

Refuse to drop the constraint if there are any dependent objects. This is the default
behavior.

new_owner
The user name of the new owner of the domain.

new_schema
The new schema for the domain.

Examples

To add a NOT NULL constraint to a domain:

ALTER DOMAIN zipcode SET NOT NULL;

To remove a NOT NULL constraint from a domain:

ALTER DOMAIN zipcode DROP NOT NULL;

To add a check constraint to a domain:

ALTER DOMAIN zipcode ADD CONSTRAINT zipchk CHECK
(char_length(VALUE) = 5);

To remove a check constraint from a domain:

ALTER DOMAIN zipcode DROP CONSTRAINT zipchk;

To move the domain into a different schema:

ALTER DOMAIN zipcode SET SCHEMA customers;

Compatibility

ALTER DOMAIN conforms to the SQL standard, except for the OWNER and SET SCHEMA
variants, which are Greenplum Database extensions.

See Also

CREATE DOMAIN, DROP DOMAIN
ALTER DOMAIN 42

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ALTER EXTERNAL TABLE
Changes the definition of an external table.

Synopsis
ALTER EXTERNAL TABLE name RENAME [COLUMN] column TO new_column

ALTER EXTERNAL TABLE name RENAME TO new_name

ALTER EXTERNAL TABLE name SET SCHEMA new_schema

ALTER EXTERNAL TABLE name action [, ...]

where action is one of:
 ADD [COLUMN] column_name type
 DROP [COLUMN] column
 ALTER [COLUMN] column TYPE type [USING expression]
 OWNER TO new_owner

Description

ALTER EXTERNAL TABLE changes the definition of an existing external table. There
are several subforms:

• ADD COLUMN — Adds a new column to the external table definition.
• DROP COLUMN — Drops a column from the external table definition. Note that if

you drop readable external table columns, it only changes the table definition in
Greenplum Database. External data files are not changed.

• ALTER COLUMN TYPE — Changes the data type of a column of a table. The
optional USING clause specifies how to compute the new column value from the
old. If omitted, the default conversion is the same as an assignment cast from old
data type to new. A USING clause must be provided if there is no implicit or
assignment cast from the old to new type.

• OWNER — Changes the owner of the external table to the specified user.
• RENAME — Changes the name of an external table or the name of an individual

column in the table. There is no effect on the external data.
• SET SCHEMA — Moves the external table into another schema.
You must own the external table to use ALTER EXTERNAL TABLE. To change the
schema of an external table, you must also have CREATE privilege on the new schema.
To alter the owner, you must also be a direct or indirect member of the new owning
role, and that role must have CREATE privilege on the external table’s schema. A
superuser has these privileges automatically.

In this release, ALTER EXTERNAL TABLE cannot modify the external table type, the
data format, or the location of the external data. To modify this information, you must
drop and recreate the external table definition.
ALTER EXTERNAL TABLE 43

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Parameters

name
The name (possibly schema-qualified) of an existing external table definition to
alter.

column
Name of a new or existing column.

new_column
New name for an existing column.

new_name
New name for the external table.

type
Data type of the new column, or new data type for an existing column.

new_owner
The role name of the new owner of the external table.

new_schema
The name of the schema to which the external table will be moved.

Examples

Add a new column to an external table definition:

ALTER EXTERNAL TABLE ext_expenses ADD COLUMN manager text;

Change the name of an external table:

ALTER EXTERNAL TABLE ext_data RENAME TO ext_sales_data;

Change the owner of an external table:

ALTER EXTERNAL TABLE ext_data OWNER TO jojo;

Change the schema of an external table:

ALTER EXTERNAL TABLE ext_leads SET SCHEMA marketing;

Compatibility

ALTER EXTERNAL TABLE is a Greenplum Database extension. There is no ALTER
EXTERNAL TABLE statement in the SQL standard or regular PostgreSQL.

See Also

CREATE EXTERNAL TABLE, DROP EXTERNAL TABLE
ALTER EXTERNAL TABLE 44

ALTER FILESPACE 45

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

ALTER FILESPACE
Changes the definition of a filespace.

Synopsis
ALTER FILESPACE name RENAME TO newname

ALTER FILESPACE name OWNER TO newowner

Description

ALTER FILESPACE changes the definition of a filespace.

You must own the filespace to use ALTER FILESPACE. To alter the owner, you must
also be a direct or indirect member of the new owning role (note that superusers have
these privileges automatically).

Parameters

name
The name of an existing filespace.

newname
The new name of the filespace. The new name cannot begin with pg_ or gp_
(reserved for system filespaces).

newowner
The new owner of the filespace.

Examples

Rename filespace myfs to fast_ssd:

ALTER FILESPACE myfs RENAME TO fast_ssd;

Change the owner of tablespace mysf:
ALTER FILESPACE myfs OWNER TO dba;

Compatibility

There is no ALTER FILESPACE statement in the SQL standard or in PostgreSQL.

See Also

DROP FILESPACE, gpfilespace in the Greenplum Database Utility Guide

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ALTER FUNCTION
Changes the definition of a function.

Synopsis
ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
action [, ...] [RESTRICT]

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
RENAME TO new_name

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
OWNER TO new_owner

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
SET SCHEMA new_schema

where action is one of:

{CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT}
{IMMUTABLE | STABLE | VOLATILE}
{[EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER}

Description

ALTER FUNCTION changes the definition of a function.

You must own the function to use ALTER FUNCTION. To change a function’s schema,
you must also have CREATE privilege on the new schema. To alter the owner, you must
also be a direct or indirect member of the new owning role, and that role must have
CREATE privilege on the function’s schema. (These restrictions enforce that altering
the owner does not do anything you could not do by dropping and recreating the
function. However, a superuser can alter ownership of any function anyway.)

Parameters

name
The name (optionally schema-qualified) of an existing function.

argmode
The mode of an argument: either IN, OUT, or INOUT. If omitted, the default is IN.
Note that ALTER FUNCTION does not actually pay any attention to OUT arguments,
since only the input arguments are needed to determine the function’s identity. So it
is sufficient to list the IN and INOUT arguments.

argname
The name of an argument. Note that ALTER FUNCTION does not actually pay any
attention to argument names, since only the argument data types are needed to
determine the function’s identity.
ALTER FUNCTION 46

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
argtype
The data type(s) of the function’s arguments (optionally schema-qualified), if any.

new_name
The new name of the function.

new_owner
The new owner of the function. Note that if the function is marked SECURITY
DEFINER, it will subsequently execute as the new owner.

new_schema
The new schema for the function.

CALLED ON NULL INPUT
RETURNS NULL ON NULL INPUT
STRICT

CALLED ON NULL INPUT changes the function so that it will be invoked when some
or all of its arguments are null. RETURNS NULL ON NULL INPUT or STRICT changes
the function so that it is not invoked if any of its arguments are null; instead, a null
result is assumed automatically. See CREATE FUNCTION for more information.

IMMUTABLE
STABLE
VOLATILE

Change the volatility of the function to the specified setting. See CREATE FUNCTION
for details.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

Change whether the function is a security definer or not. The key word EXTERNAL is
ignored for SQL conformance. See CREATE FUNCTION for more information about
this capability.

RESTRICT

Ignored for conformance with the SQL standard.

Notes

Greenplum Database has limitations on the use of functions defined as STABLE or
VOLATILE. See CREATE FUNCTION for more information.

Examples

To rename the function sqrt for type integer to square_root:
ALTER FUNCTION sqrt(integer) RENAME TO square_root;

To change the owner of the function sqrt for type integer to joe:

ALTER FUNCTION sqrt(integer) OWNER TO joe;
ALTER FUNCTION 47

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
To change the schema of the function sqrt for type integer to math:

ALTER FUNCTION sqrt(integer) SET SCHEMA math;

Compatibility

This statement is partially compatible with the ALTER FUNCTION statement in the
SQL standard. The standard allows more properties of a function to be modified, but
does not provide the ability to rename a function, make a function a security definer,
or change the owner, schema, or volatility of a function. The standard also requires the
RESTRICT key word, which is optional in Greenplum Database.

See Also

CREATE FUNCTION, DROP FUNCTION
ALTER FUNCTION 48

ALTER GROUP 49

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

ALTER GROUP
Changes a role name or membership.

Synopsis
ALTER GROUP groupname ADD USER username [, ...]

ALTER GROUP groupname DROP USER username [, ...]

ALTER GROUP groupname RENAME TO newname

Description

ALTER GROUP is an obsolete command, though still accepted for backwards
compatibility. Groups (and users) have been superseded by the more general concept
of roles. See ALTER ROLE for more information.

Parameters

groupname
The name of the group (role) to modify.

username
Users (roles) that are to be added to or removed from the group. The users (roles)
must already exist.

newname
The new name of the group (role).

Examples

To add users to a group:

ALTER GROUP staff ADD USER karl, john;

To remove a user from a group:

ALTER GROUP workers DROP USER beth;

Compatibility

There is no ALTER GROUP statement in the SQL standard.

See Also

ALTER ROLE, GRANT, REVOKE

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ALTER INDEX
Changes the definition of an index.

Synopsis
ALTER INDEX name RENAME TO new_name

ALTER INDEX name SET TABLESPACE tablespace_name

ALTER INDEX name SET (FILLFACTOR = value)

ALTER INDEX name RESET (FILLFACTOR)

Description

ALTER INDEX changes the definition of an existing index. There are several subforms:

• RENAME — Changes the name of the index. There is no effect on the stored data.
• SET TABLESPACE — Changes the index’s tablespace to the specified tablespace

and moves the data file(s) associated with the index to the new tablespace. See
also CREATE TABLESPACE.

• SET FILLFACTOR — Changes the index-method-specific storage parameters for
the index. The built-in index methods all accept a single parameter: FILLFACTOR.
The fillfactor for an index is a percentage that determines how full the index
method will try to pack index pages. Index contents will not be modified
immediately by this command. Use REINDEX to rebuild the index to get the
desired effects.

• RESET FILLFACTOR — Resets FILLFACTOR to the default. As with SET, a
REINDEX may be needed to update the index entirely.

Parameters

name
The name (optionally schema-qualified) of an existing index to alter.

new_name
New name for the index.

tablespace_name
The tablespace to which the index will be moved.

FILLFACTOR

The fillfactor for an index is a percentage that determines how full the index method
will try to pack index pages. For B-trees, leaf pages are filled to this percentage
during initial index build, and also when extending the index at the right (largest key
values). If pages subsequently become completely full, they will be split, leading to
gradual degradation in the index’s efficiency.
ALTER INDEX 50

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
B-trees use a default fillfactor of 90, but any value from 10 to 100 can be selected. If
the table is static then fillfactor 100 is best to minimize the index's physical size, but
for heavily updated tables a smaller fillfactor is better to minimize the need for page
splits. The other index methods use fillfactor in different but roughly analogous
ways; the default fillfactor varies between methods.

Notes

These operations are also possible using ALTER TABLE.

Changing any part of a system catalog index is not permitted.

Examples

To rename an existing index:

ALTER INDEX distributors RENAME TO suppliers;

To move an index to a different tablespace:

ALTER INDEX distributors SET TABLESPACE fasttablespace;

To change an index’s fill factor (assuming that the index method supports it):

ALTER INDEX distributors SET (fillfactor = 75);

REINDEX INDEX distributors;

Compatibility

ALTER INDEX is a Greenplum Database extension.

See Also

CREATE INDEX, REINDEX, ALTER TABLE
ALTER INDEX 51

ALTER LANGUAGE 52

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

ALTER LANGUAGE
Changes the name of a procedural language.

Synopsis
ALTER LANGUAGE name RENAME TO newname

Description

ALTER LANGUAGE changes the name of a procedural language. Only a superuser can
rename languages.

Parameters

name
Name of a language.

newname
The new name of the language.

Compatibility

There is no ALTER LANGUAGE statement in the SQL standard.

See Also

CREATE LANGUAGE, DROP LANGUAGE

ALTER OPERATOR 53

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

ALTER OPERATOR
Changes the definition of an operator.

Synopsis
ALTER OPERATOR name ({lefttype | NONE} , {righttype | NONE})
OWNER TO newowner

Description

ALTER OPERATOR changes the definition of an operator. The only currently available
functionality is to change the owner of the operator.

You must own the operator to use ALTER OPERATOR. To alter the owner, you must also
be a direct or indirect member of the new owning role, and that role must have CREATE
privilege on the operator’s schema. (These restrictions enforce that altering the owner
does not do anything you could not do by dropping and recreating the operator.
However, a superuser can alter ownership of any operator anyway.)

Parameters

name
The name (optionally schema-qualified) of an existing operator.

lefttype
The data type of the operator’s left operand; write NONE if the operator has no left
operand.

righttype
The data type of the operator’s right operand; write NONE if the operator has no right
operand.

newowner
The new owner of the operator.

Examples

Change the owner of a custom operator a @@ b for type text:
ALTER OPERATOR @@ (text, text) OWNER TO joe;

Compatibility

There is no ALTER OPERATOR statement in the SQL standard.

See Also

CREATE OPERATOR, DROP OPERATOR

ALTER OPERATOR CLASS 54

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

ALTER OPERATOR CLASS
Changes the definition of an operator class.

Synopsis
ALTER OPERATOR CLASS name USING index_method RENAME TO newname

ALTER OPERATOR CLASS name USING index_method OWNER TO newowner

Description

ALTER OPERATOR CLASS changes the definition of an operator class.

You must own the operator class to use ALTER OPERATOR CLASS. To alter the owner,
you must also be a direct or indirect member of the new owning role, and that role
must have CREATE privilege on the operator class’s schema. (These restrictions
enforce that altering the owner does not do anything you could not do by dropping and
recreating the operator class. However, a superuser can alter ownership of any
operator class anyway.)

Parameters

name
The name (optionally schema-qualified) of an existing operator class.

index_method
The name of the index method this operator class is for.

newname
The new name of the operator class.

newowner
The new owner of the operator class

Compatibility

There is no ALTER OPERATOR CLASS statement in the SQL standard.

See Also

CREATE OPERATOR CLASS, DROP OPERATOR CLASS

ALTER PROTOCOL 55

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

ALTER PROTOCOL
Changes the definition of a protocol.

Synopsis
ALTER PROTOCOL name RENAME TO newname

ALTER PROTOCOL name OWNER TO newowner

Description

ALTER PROTOCOL changes the definition of a protocol. Only the protocol name or
owner can be altered.

You must own the protocol to use ALTER PROTOCOL. To alter the owner, you must also
be a direct or indirect member of the new owning role, and that role must have CREATE
privilege on schema of the conversion.

These restrictions are in place to ensure that altering the owner only makes changes
that could by made by dropping and recreating the protocol. Note that a superuser can
alter ownership of any protocol.

Parameters

name
The name (optionally schema-qualified) of an existing protocol.

newname
The new name of the protocol.

newowner
The new owner of the protocol.

Examples

To rename the conversion GPDBauth to GPDB_authentication:

ALTER PROTOCOL GPDBauth RENAME TO GPDB_authentication;

To change the owner of the conversion GPDB_authentication to joe:

ALTER PROTOCOL GPDB_authentication OWNER TO joe;

Compatibility

There is no ALTER PROTOCOL statement in the SQL standard.

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ALTER RESOURCE QUEUE
Changes the limits of a resource queue.

Synopsis
ALTER RESOURCE QUEUE name WITH (queue_attribute=value [, ...])

where queue_attribute is:
 ACTIVE_STATEMENTS=integer
 MEMORY_LIMIT='memory_units'
 MAX_COST=float
 COST_OVERCOMMIT={TRUE|FALSE}
 MIN_COST=float
 PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}

ALTER RESOURCE QUEUE name WITHOUT (queue_attribute [, ...])

where queue_attribute is:
 ACTIVE_STATEMENTS
 MEMORY_LIMIT
 MAX_COST
 COST_OVERCOMMIT
 MIN_COST

Note: A resource queue must have either an ACTIVE_STATEMENTS or a MAX_COST
value. Do not remove both these queue_attributes from a resource queue.

Description

ALTER RESOURCE QUEUE changes the limits of a resource queue. Only a superuser
can alter a resource queue. A resource queue must have either an
ACTIVE_STATEMENTS or a MAX_COST value (or it can have both). You can also set or
reset priority for a resource queue to control the relative share of available CPU
resources used by queries associated with the queue, or memory limit of a resource
queue to control the amount of memory that all queries submitted through the queue
can consume on a segment host.

ALTER RESOURCE QUEUE WITHOUT removes the specified limits on a resource that
were previously set. A resource queue must have either an ACTIVE_STATEMENTS or
a MAX_COST value. Do not remove both these queue_attributes from a resource
queue.

Parameters

name
The name of the resource queue whose limits are to be altered.
ALTER RESOURCE QUEUE 56

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ACTIVE_STATEMENTS integer
The number of active statements submitted from users in this resource queue
allowed on the system at any one time. The value for ACTIVE_STATEMENTS should
be an integer greater than 0. To reset ACTIVE_STATEMENTS to have no limit, enter a
value of -1.

MEMORY_LIMIT 'memory_units'
Sets the total memory quota for all statements submitted from users in this resource
queue. Memory units can be specified in kB, MB or GB. The minimum memory
quota for a resource queue is 10MB. There is no maximum; however the upper
boundary at query execution time is limited by the physical memory of a segment
host. The default value is no limit (-1).

MAX_COST float
The total query planner cost of statements submitted from users in this resource
queue allowed on the system at any one time. The value for MAX_COST is specified
as a floating point number (for example 100.0) or can also be specified as an
exponent (for example 1e+2). To reset MAX_COST to have no limit, enter a value of
-1.0.

COST_OVERCOMMIT boolean
If a resource queue is limited based on query cost, then the administrator can allow
cost overcommit (COST_OVERCOMMIT=TRUE, the default). This means that a query
that exceeds the allowed cost threshold will be allowed to run but only when the
system is idle. If COST_OVERCOMMIT=FALSE is specified, queries that exceed the
cost limit will always be rejected and never allowed to run.

MIN_COST float
Queries with a cost under this limit will not be queued and run immediately. Cost is
measured in units of disk page fetches; 1.0 equals one sequential disk page read. The
value for MIN_COST is specified as a floating point number (for example 100.0) or
can also be specified as an exponent (for example 1e+2). To reset MIN_COST to have
no limit, enter a value of -1.0.

PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}
Sets the priority of queries associated with a resource queue. Queries or statements
in queues with higher priority levels will receive a larger share of available CPU
resources in case of contention. Queries in low-priority queues may be delayed
while higher priority queries are executed.

Notes

Use CREATE ROLE or ALTER ROLE to add a role (user) to a resource queue.

Examples

Change the active query limit for a resource queue:

ALTER RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=20);
ALTER RESOURCE QUEUE 57

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Change the memory limit for a resource queue:

ALTER RESOURCE QUEUE myqueue WITH (MEMORY_LIMIT='2GB');

Reset the maximum and minimum query cost limit for a resource queue to no limit:

ALTER RESOURCE QUEUE myqueue WITH (MAX_COST=-1.0, MIN_COST=
-1.0);

Reset the query cost limit for a resource queue to 310 (or 30000000000.0) and do not
allow overcommit:

ALTER RESOURCE QUEUE myqueue WITH (MAX_COST=3e+10,
COST_OVERCOMMIT=FALSE);

Reset the priority of queries associated with a resource queue to the minimum level:

ALTER RESOURCE QUEUE myqueue WITH (PRIORITY=MIN);

Remove the MAX_COST and MEMORY_LIMIT limits from a resource queue:

ALTER RESOURCE QUEUE myqueue WITHOUT (MAX_COST, MEMORY_LIMIT);

Compatibility

The ALTER RESOURCE QUEUE statement is a Greenplum Database extension. This
command does not exist in standard PostgreSQL.

See Also

CREATE RESOURCE QUEUE, DROP RESOURCE QUEUE, CREATE ROLE, ALTER ROLE
ALTER RESOURCE QUEUE 58

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ALTER ROLE
Changes a database role (user or group).

Synopsis
ALTER ROLE name RENAME TO newname

ALTER ROLE name SET config_parameter {TO | =} {value | DEFAULT}

ALTER ROLE name RESET config_parameter

ALTER ROLE name RESOURCE QUEUE {queue_name | NONE}

ALTER ROLE name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEEXTTABLE | NOCREATEEXTTABLE
 [(attribute='value'[, ...])]
 where attributes and values are:
 type='readable'|'writable'
 protocol='gpfdist'|'http'
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | [DENY deny_point]
 | [DENY BETWEEN deny_point AND deny_point]
 | [DROP DENY FOR deny_point]

Description

ALTER ROLE changes the attributes of a Greenplum Database role. There are several
variants of this command:

• RENAME — Changes the name of the role. Database superusers can rename any
role. Roles having CREATEROLE privilege can rename non-superuser roles. The
current session user cannot be renamed (connect as a different user to rename a
role). Because MD5-encrypted passwords use the role name as cryptographic salt,
renaming a role clears its password if the password is MD5-encrypted.
ALTER ROLE 59

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
• SET | RESET — changes a role’s session default for a specified configuration
parameter. Whenever the role subsequently starts a new session, the specified
value becomes the session default, overriding whatever setting is present in server
configuration file (postgresql.conf). For a role without LOGIN privilege,
session defaults have no effect. Ordinary roles can change their own session
defaults. Superusers can change anyone’s session defaults. Roles having
CREATEROLE privilege can change defaults for non-superuser roles. See the
Greenplum Database Server Parameters Guide for information about all
user-settable configuration parameters.

• RESOURCE QUEUE — Assigns the role to a workload management resource queue.
The role would then be subject to the limits assigned to the resource queue when
issuing queries. Specify NONE to assign the role to the default resource queue. A
role can only belong to one resource queue. For a role without LOGIN privilege,
resource queues have no effect. See CREATE RESOURCE QUEUE for more
information.

• WITH option — Changes many of the role attributes that can be specified in
CREATE ROLE. Attributes not mentioned in the command retain their previous
settings. Database superusers can change any of these settings for any role. Roles
having CREATEROLE privilege can change any of these settings, but only for
non-superuser roles. Ordinary roles can only change their own password.

Parameters

name
The name of the role whose attributes are to be altered.

newname
The new name of the role.

config_parameter=value
Set this role’s session default for the specified configuration parameter to the given
value. If value is DEFAULT or if RESET is used, the role-specific variable setting is
removed, so the role will inherit the system-wide default setting in new sessions.
Use RESET ALL to clear all role-specific settings. See SET and “Server
Configuration Parameters” on page 466 for information about user-settable
configuration parameters.

queue_name
The name of the resource queue to which the user-level role is to be assigned. Only
roles with LOGIN privilege can be assigned to a resource queue. To unassign a role
from a resource queue and put it in the default resource queue, specify NONE. A role
can only belong to one resource queue.

SUPERUSER | NOSUPERUSER
CREATEDB | NOCREATEDB
ALTER ROLE 60

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATEROLE | NOCREATEROLE
CREATEEXTTABLE | NOCREATEEXTTABLE [(attribute='value')]

If CREATEEXTTABLE is specified, the role being defined is allowed to create external
tables. The default type is readable and the default protocol is gpfdist if not
specified. NOCREATEEXTTABLE (the default) denies the role the ability to create
external tables. Note that external tables that use the file or execute protocols can
only be created by superusers.

INHERIT | NOINHERIT
LOGIN | NOLOGIN
CONNECTION LIMIT connlimit
PASSWORD password
ENCRYPTED | UNENCRYPTED
VALID UNTIL 'timestamp'

These clauses alter role attributes originally set by CREATE ROLE.

DENY deny_point
DENY BETWEEN deny_point AND deny_point

The DENY and DENY BETWEEN keywords set time-based constraints that are enforced
at login. DENY sets a day or a day and time to deny access. DENY BETWEEN sets an
interval during which access is denied. Both use the parameter deny_point that has
following format:

DAY day [TIME 'time']

The two parts of the deny_point parameter use the following formats:

For day:
{'Sunday' | 'Monday' | 'Tuesday' |'Wednesday' | 'Thursday' | 'Friday' |
'Saturday' | 0-6 }
For time:
{ 00-23 : 00-59 | 01-12 : 00-59 { AM | PM }}

The DENY BETWEEN clause uses two deny_point parameters.

DENY BETWEEN deny_point AND deny_point

For more information about time-based constraints and examples, see the
Greenplum Database Database Administrator Guide.

DROP DENY FOR deny_point
The DROP DENY FOR clause removes a time-based constraint from the role. It uses
the deny_point parameter described above.

For more information on removing a time-based constraint and examples, see the
Greenplum Database Database Administrator Guide.

Notes

Use GRANT and REVOKE for adding and removing role memberships.
ALTER ROLE 61

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Caution must be exercised when specifying an unencrypted password with this
command. The password will be transmitted to the server in clear text, and it might
also be logged in the client’s command history or the server log. The psql
command-line client contains a meta-command \password that can be used to safely
change a role’s password.

It is also possible to tie a session default to a specific database rather than to a role.
Role-specific settings override database-specific ones if there is a conflict. See ALTER
DATABASE.

Examples

Change the password for a role:

ALTER ROLE daria WITH PASSWORD 'passwd123';

Change a password expiration date:

ALTER ROLE scott VALID UNTIL 'May 4 12:00:00 2015 +1';

Make a password valid forever:

ALTER ROLE luke VALID UNTIL 'infinity';

Give a role the ability to create other roles and new databases:

ALTER ROLE joelle CREATEROLE CREATEDB;

Give a role a non-default setting of the maintenance_work_mem parameter:

ALTER ROLE admin SET maintenance_work_mem = 100000;

Assign a role to a resource queue:

ALTER ROLE sammy RESOURCE QUEUE poweruser;

Give a role permission to create writable external tables:

ALTER ROLE load CREATEEXTTABLE (type='writable');

Alter a role so it does not allow login access on Sundays:

ALTER ROLE user3 DENY DAY 'Sunday';

Alter a role to remove the constraint that does not allow login access on Sundays:

ALTER ROLE user3 DROP DENY FOR DAY 'Sunday';

Compatibility

The ALTER ROLE statement is a Greenplum Database extension.

See Also

CREATE ROLE, DROP ROLE, SET, CREATE RESOURCE QUEUE, GRANT, REVOKE
ALTER ROLE 62

ALTER SCHEMA 63

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

ALTER SCHEMA
Changes the definition of a schema.

Synopsis
ALTER SCHEMA name RENAME TO newname

ALTER SCHEMA name OWNER TO newowner

Description

ALTER SCHEMA changes the definition of a schema.

You must own the schema to use ALTER SCHEMA. To rename a schema you must also
have the CREATE privilege for the database. To alter the owner, you must also be a
direct or indirect member of the new owning role, and you must have the CREATE
privilege for the database. Note that superusers have all these privileges automatically.

Parameters

name
The name of an existing schema.

newname
The new name of the schema. The new name cannot begin with pg_, as such names
are reserved for system schemas.

newowner
The new owner of the schema.

Compatibility

There is no ALTER SCHEMA statement in the SQL standard.

See Also

CREATE SCHEMA, DROP SCHEMA

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ALTER SEQUENCE
Changes the definition of a sequence generator.

Synopsis
ALTER SEQUENCE name [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [RESTART [WITH] start]
 [CACHE cache] [[NO] CYCLE]
 [OWNED BY {table.column | NONE}]

ALTER SEQUENCE name SET SCHEMA new_schema

Description

ALTER SEQUENCE changes the parameters of an existing sequence generator. Any
parameters not specifically set in the ALTER SEQUENCE command retain their prior
settings.

You must own the sequence to use ALTER SEQUENCE. To change a sequence’s schema,
you must also have CREATE privilege on the new schema. Note that superusers have
all these privileges automatically.

Parameters

name
The name (optionally schema-qualified) of a sequence to be altered.

increment
The clause INCREMENT BY increment is optional. A positive value will make an
ascending sequence, a negative one a descending sequence. If unspecified, the old
increment value will be maintained.

minvalue
NO MINVALUE

The optional clause MINVALUE minvalue determines the minimum value a
sequence can generate. If NO MINVALUE is specified, the defaults of 1 and -263-1 for
ascending and descending sequences, respectively, will be used. If neither option is
specified, the current minimum value will be maintained.

maxvalue
NO MAXVALUE

The optional clause MAXVALUE maxvalue determines the maximum value for the
sequence. If NO MAXVALUE is specified, the defaults are 263-1 and -1 for ascending
and descending sequences, respectively, will be used. If neither option is specified,
the current maximum value will be maintained.
ALTER SEQUENCE 64

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
start
The optional clause RESTART WITH start changes the current value of the sequence.

cache
The clause CACHE cache enables sequence numbers to be preallocated and stored in
memory for faster access. The minimum value is 1 (only one value can be generated
at a time, i.e., no cache). If unspecified, the old cache value will be maintained.

CYCLE

The optional CYCLE key word may be used to enable the sequence to wrap around
when the maxvalue or minvalue has been reached by an ascending or descending
sequence. If the limit is reached, the next number generated will be the respective
minvalue or maxvalue.

NO CYCLE

If the optional NO CYCLE key word is specified, any calls to nextval after the
sequence has reached its maximum value will return an error. If neither CYCLE or NO
CYCLE are specified, the old cycle behavior will be maintained.

OWNED BY table.column
OWNED BY NONE

The OWNED BY option causes the sequence to be associated with a specific table
column, such that if that column (or its whole table) is dropped, the sequence will be
automatically dropped as well. If specified, this association replaces any previously
specified association for the sequence. The specified table must have the same
owner and be in the same schema as the sequence. Specifying OWNED BY NONE
removes any existing table column association.

new_schema
The new schema for the sequence.

Notes

To avoid blocking of concurrent transactions that obtain numbers from the same
sequence, ALTER SEQUENCE’s effects on the sequence generation parameters are never
rolled back; those changes take effect immediately and are not reversible. However,
the OWNED BY and SET SCHEMA clauses are ordinary catalog updates and can be rolled
back.

ALTER SEQUENCE will not immediately affect nextval results in sessions, other than
the current one, that have preallocated (cached) sequence values. They will use up all
cached values prior to noticing the changed sequence generation parameters. The
current session will be affected immediately.

Some variants of ALTER TABLE can be used with sequences as well. For example, to
rename a sequence use ALTER TABLE RENAME.
ALTER SEQUENCE 65

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Examples

Restart a sequence called serial, at 105:

ALTER SEQUENCE serial RESTART WITH 105;

Compatibility

ALTER SEQUENCE conforms to the SQL standard, except for the OWNED BY and SET
SCHEMA clauses, which are Greenplum Database extensions.

See Also

CREATE SEQUENCE, DROP SEQUENCE, ALTER TABLE
ALTER SEQUENCE 66

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ALTER TABLE
Changes the definition of a table.

Synopsis
ALTER TABLE [ONLY] name RENAME [COLUMN] column TO new_column

ALTER TABLE name RENAME TO new_name

ALTER TABLE name SET SCHEMA new_schema

ALTER TABLE [ONLY] name SET
 DISTRIBUTED BY (column, [...])
 | DISTRIBUTED RANDOMLY
 | WITH (REORGANIZE=true|false)

ALTER TABLE [ONLY] name action [, ...]

ALTER TABLE name
 [ALTER PARTITION { partition_name | FOR (RANK(number))
 | FOR (value) } partition_action [...]]
 partition_action

where action is one of:
 ADD [COLUMN] column_name type
... [column_constraint [...]]
 DROP [COLUMN] column [RESTRICT | CASCADE]
 ALTER [COLUMN] column TYPE type [USING expression]
 ALTER [COLUMN] column SET DEFAULT expression
 ALTER [COLUMN] column DROP DEFAULT
 ALTER [COLUMN] column { SET | DROP } NOT NULL
 ALTER [COLUMN] column SET STATISTICS integer
 ADD table_constraint
 DROP CONSTRAINT constraint_name [RESTRICT | CASCADE]
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET WITHOUT OIDS
 SET (FILLFACTOR = value)
 RESET (FILLFACTOR)
 INHERIT parent_table
 NO INHERIT parent_table
 OWNER TO new_owner
 SET TABLESPACE new_tablespace

where partition_action is one of:

 ALTER DEFAULT PARTITION
 DROP DEFAULT PARTITION [IF EXISTS]
 DROP PARTITION [IF EXISTS] { partition_name |
ALTER TABLE 67

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
 FOR (RANK(number)) | FOR (value) } [CASCADE]
 TRUNCATE DEFAULT PARTITION
 TRUNCATE PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) }
 RENAME DEFAULT PARTITION TO new_partition_name
 RENAME PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } TO new_partition_name
 ADD DEFAULT PARTITION name [(subpartition_spec)]
 ADD PARTITION [name] partition_element
 [(subpartition_spec)]
 EXCHANGE PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } WITH TABLE table_name
 [WITH | WITHOUT VALIDATION]
 EXCHANGE DEFAULT PARTITION WITH TABLE table_name
 [WITH | WITHOUT VALIDATION]
 SET SUBPARTITION TEMPLATE (subpartition_spec)
 SPLIT DEFAULT PARTITION
 { AT (list_value)
 | START([datatype] range_value) [INCLUSIVE | EXCLUSIVE]
 END([datatype] range_value) [INCLUSIVE | EXCLUSIVE] }
 [INTO (PARTITION new_partition_name,
 PARTITION default_partition_name)]
 SPLIT PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } AT (value)
 [INTO (PARTITION partition_name, PARTITION
partition_name)]

where partition_element is:

 VALUES (list_value [,...])

 | START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]

 | END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]

[WITH (partition_storage_parameter=value [, ...])]
[TABLESPACE tablespace]

where subpartition_spec is:
subpartition_element [, ...]

and subpartition_element is:
 DEFAULT SUBPARTITION subpartition_name

 | [SUBPARTITION subpartition_name] VALUES (list_value [,...])

 | [SUBPARTITION subpartition_name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 [EVERY ([number | datatype] 'interval_value')]

 | [SUBPARTITION subpartition_name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([number | datatype] 'interval_value')]
ALTER TABLE 68

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
[WITH (partition_storage_parameter=value [, ...])]
[TABLESPACE tablespace]

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 ORIENTATION={COLUMN|ROW}
 COMPRESSTYPE={ZLIB|QUICKLZ|NONE}
 COMPRESSLEVEL={0-9}
 FILLFACTOR={10-100}
 OIDS[=TRUE|FALSE]
{0-9}
......

Description

ALTER TABLE changes the definition of an existing table. There are several subforms:

• ADD COLUMN — Adds a new column to the table, using the same syntax as CREATE
TABLE. DROP COLUMN — Drops a column from a table. Note that if you drop table
columns that are being used as the Greenplum Database distribution key, the
distribution policy for the table will be changed to DISTRIBUTED RANDOMLY.
Indexes and table constraints involving the column will be automatically dropped
as well. You will need to say CASCADE if anything outside the table depends on the
column (such as views).

• ALTER COLUMN TYPE — Changes the data type of a column of a table. Note that
you cannot alter column data types that are being used as distribution or
partitioning keys. Indexes and simple table constraints involving the column will
be automatically converted to use the new column type by reparsing the originally
supplied expression. The optional USING clause specifies how to compute the new
column value from the old. If omitted, the default conversion is the same as an
assignment cast from old data type to new. A USING clause must be provided if
there is no implicit or assignment cast from old to new type.

• SET/DROP DEFAULT — Sets or removes the default value for a column. The
default values only apply to subsequent INSERT commands. They do not cause
rows already in the table to change. Defaults may also be created for views, in
which case they are inserted into statements on the view before the view’s ON
INSERT rule is applied.

• SET/DROP NOT NULL — Changes whether a column is marked to allow null
values or to reject null values. You can only use SET NOT NULL when the column
contains no null values.

• SET STATISTICS — Sets the per-column statistics-gathering target for
subsequent ANALYZE operations. The target can be set in the range 0 to 1000, or
set to -1 to revert to using the system default statistics target
(default_statistics_target).

• ADD table_constraint — Adds a new constraint to a table (not just a partition)
using the same syntax as CREATE TABLE.

• DROP CONSTRAINT — Drops the specified constraint on a table.
ALTER TABLE 69

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
• DISABLE/ENABLE TRIGGER — Disables or enables trigger(s) belonging to the
table. A disabled trigger is still known to the system, but is not executed when its
triggering event occurs. For a deferred trigger, the enable status is checked when
the event occurs, not when the trigger function is actually executed. One may
disable or enable a single trigger specified by name, or all triggers on the table, or
only user-created triggers. Disabling or enabling constraint triggers requires
superuser privileges. Note that foreign key constraint triggers are not currently
supported in Greenplum Database, and triggers in general have very limited
functionality due to the parallelism of Greenplum Database. See CREATE
TRIGGER for more information.

• CLUSTER/SET WITHOUT CLUSTER — Selects or removes the default index for
future CLUSTER operations. It does not actually re-cluster the table. Note that
CLUSTER is not the recommended way to physically reorder a table in Greenplum
Database because it takes so long. It is better to recreate the table with CREATE
TABLE AS and order it by the index column(s).

• SET WITHOUT OIDS — Removes the OID system column from the table. Note
that there is no variant of ALTER TABLE that allows OIDs to be restored to a table
once they have been removed.

• SET (FILLFACTOR = value) / RESET (FILLFACTOR) — Changes the
fillfactor for the table. The fillfactor for a table is a percentage between 10 and
100. 100 (complete packing) is the default. When a smaller fillfactor is specified,
INSERT operations pack table pages only to the indicated percentage; the
remaining space on each page is reserved for updating rows on that page. This
gives UPDATE a chance to place the updated copy of a row on the same page as the
original, which is more efficient than placing it on a different page. For a table
whose entries are never updated, complete packing is the best choice, but in
heavily updated tables smaller fillfactors are appropriate. Note that the table
contents will not be modified immediately by this command. You will need to
rewrite the table to get the desired effects.

• SET DISTRIBUTED — Changes the distribution policy of a table. Changes to
a hash distribution policy will cause the table data to be physically redistributed
on disk, which can be resource intensive.

• INHERIT parent_table / NO INHERIT parent_table — Adds or removes
the target table as a child of the specified parent table. Queries against the parent
will include records of its child table. To be added as a child, the target table must
already contain all the same columns as the parent (it could have additional
columns, too). The columns must have matching data types, and if they have NOT
NULL constraints in the parent then they must also have NOT NULL constraints in
the child. There must also be matching child-table constraints for all CHECK
constraints of the parent.

• OWNER — Changes the owner of the table, sequence, or view to the specified user.
• SET TABLESPACE — Changes the table’s tablespace to the specified tablespace

and moves the data file(s) associated with the table to the new tablespace. Indexes
on the table, if any, are not moved; but they can be moved separately with
additional SET TABLESPACE commands. See also CREATE TABLESPACE. If
changing the tablespace of a partitioned table, all child table partitions will also be
moved to the new tablespace.
ALTER TABLE 70

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
• RENAME — Changes the name of a table (or an index, sequence, or view) or the
name of an individual column in a table. There is no effect on the stored data.
Note that Greenplum Database distribution key columns cannot be renamed.

• SET SCHEMA — Moves the table into another schema. Associated indexes,
constraints, and sequences owned by table columns are moved as well.

• ALTER PARTITION | DROP PARTITION | RENAME PARTITION | TRUNCATE
PARTITION | ADD PARTITION | SPLIT PARTITION | EXCHANGE PARTITION
| SET SUBPARTITION TEMPLATE — Changes the structure of a partitioned
table. In most cases, you must go through the parent table to alter one of its child
table partitions.

Note: If you add a partition to a table that has subpartition encodings, the new
partition inherits the storage directives for the subpartitions. For more information
about the precedence of compression settings, see the Greenplum Database Database
Administrator Guide.

You must own the table to use ALTER TABLE. To change the schema of a table, you
must also have CREATE privilege on the new schema. To add the table as a new child
of a parent table, you must own the parent table as well. To alter the owner, you must
also be a direct or indirect member of the new owning role, and that role must have
CREATE privilege on the table’s schema. A superuser has these privileges
automatically.

Note: Memory usage increases significantly when a table has many partitions, if a
table has compression, or if the blocksize for a table is large. If the number of relations
associated with the table is large, this condition can force an operation on the table to
use more memory. For example, if the table is a CO table and has a large number of
columns, each column is a relation. An operation like ALTER TABLE ALTER COLUMN
opens all the columns in the table allocates associated buffers. If a CO table has 40
columns and 100 partitions, and the columns are compressed and the blocksize is 2
MB (with a system factor of 3), the system attempts to allocate 24 GB, that is
(40 ×100) × (2 ×3) MB or 24 GB.

Parameters

ONLY

Only perform the operation on the table name specified. If the ONLY keyword is not
used, the operation will be performed on the named table and any child table
partitions associated with that table.

name
The name (possibly schema-qualified) of an existing table to alter. If ONLY is
specified, only that table is altered. If ONLY is not specified, the table and all its
descendant tables (if any) are updated.

Note: Constraints can only be added to an entire table, not to a partition. Because of
that restriction, the name parameter can only contain a table name, not a
partition name.
ALTER TABLE 71

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
column
Name of a new or existing column. Note that Greenplum Database distribution key
columns must be treated with special care. Altering or dropping these columns can
change the distribution policy for the table.

new_column
New name for an existing column.

new_name
New name for the table.

type
Data type of the new column, or new data type for an existing column. If changing
the data type of a Greenplum distribution key column, you are only allowed to
change it to a compatible type (for example, text to varchar is OK, but text to
int is not).

table_constraint
New table constraint for the table. Note that foreign key constraints are currently not
supported in Greenplum Database. Also a table is only allowed one unique
constraint and the uniqueness must be within the Greenplum Database distribution
key.

constraint_name
Name of an existing constraint to drop.

CASCADE

Automatically drop objects that depend on the dropped column or constraint (for
example, views referencing the column).

RESTRICT

Refuse to drop the column or constraint if there are any dependent objects. This is
the default behavior.

trigger_name
Name of a single trigger to disable or enable. Note that Greenplum Database has
limited support of triggers. See CREATE TRIGGER for more information.

ALL

Disable or enable all triggers belonging to the table including constraint related
triggers. This requires superuser privilege.

USER

Disable or enable all user-created triggers belonging to the table.
ALTER TABLE 72

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
index_name
The index name on which the table should be marked for clustering. Note that
CLUSTER is not the recommended way to physically reorder a table in Greenplum
Database because it takes so long. It is better to recreate the table with CREATE
TABLE AS and order it by the index column(s).

FILLFACTOR

Set the fillfactor percentage for a table.

value
The new value for the FILLFACTOR parameter, which is a percentage between 10
and 100. 100 is the default.

DISTRIBUTED BY (column) | DISTRIBUTED RANDOMLY
Specifies the distribution policy for a table. Changing a hash distribution policy will
cause the table data to be physically redistributed on disk, which can be resource
intensive. If you declare the same hash distribution policy or change from hash to
random distribution, data will not be redistributed unless you declare SET WITH
(REORGANIZE=true).

REORGANIZE=true|false

Use REORGANIZE=true when the hash distribution policy has not changed or when
you have changed from a hash to a random distribution, and you want to redistribute
the data anyways.

parent_table
A parent table to associate or de-associate with this table.

new_owner
The role name of the new owner of the table.

new_tablespace
The name of the tablespace to which the table will be moved.

new_schema
The name of the schema to which the table will be moved.

parent_table_name

When altering a partitioned table, the name of the top-level parent table.

ALTER [DEFAULT] PARTITION

If altering a partition deeper than the first level of partitions, the ALTER PARTITION
clause is used to specify which subpartition in the hierarchy you want to alter.

DROP [DEFAULT] PARTITION

Drops the specified partition. If the partition has subpartitions, the subpartitions are
automatically dropped as well.
ALTER TABLE 73

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
TRUNCATE [DEFAULT] PARTITION

Truncates the specified partition. If the partition has subpartitions, the subpartitions
are automatically truncated as well.

RENAME [DEFAULT] PARTITION

Changes the partition name of a partition (not the relation name). Partitioned tables
are created using the naming convention:
<parentname>_<level>_prt_<partition_name>.

ADD DEFAULT PARTITION

Adds a default partition to an existing partition design. When data does not match to
an existing partition, it is inserted into the default partition. Partition designs that do
not have a default partition will reject incoming rows that do not match to an
existing partition. Default partitions must be given a name.

ADD PARTITION

partition_element - Using the existing partition type of the table (range or
list), defines the boundaries of new partition you are adding.

name - A name for this new partition.

VALUES - For list partitions, defines the value(s) that the partition will contain.

START - For range partitions, defines the starting range value for the partition. By
default, start values are INCLUSIVE. For example, if you declared a start date of
‘2008-01-01’, then the partition would contain all dates greater than or equal to
‘2008-01-01’. Typically the data type of the START expression is the same type
as the partition key column. If that is not the case, then you must explicitly cast to
the intended data type.

END - For range partitions, defines the ending range value for the partition. By
default, end values are EXCLUSIVE. For example, if you declared an end date of
‘2008-02-01’, then the partition would contain all dates less than but not equal to
‘2008-02-01’. Typically the data type of the END expression is the same type as
the partition key column. If that is not the case, then you must explicitly cast to the
intended data type.

WITH - Sets the table storage options for a partition. For example, you may want
older partitions to be append-only tables and newer partitions to be regular heap
tables. See CREATE TABLE for a description of the storage options.

TABLESPACE - The name of the tablespace in which the partition is to be created.

subpartition_spec - Only allowed on partition designs that were created
without a subpartition template. Declares a subpartition specification for the new
partition you are adding. If the partitioned table was originally defined using a
subpartition template, then the template will be used to generate the subpartitions
automatically.
ALTER TABLE 74

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
EXCHANGE [DEFAULT] PARTITION

Exchanges another table into the partition hierarchy into the place of an existing
partition. In a multi-level partition design, you can only exchange the lowest level
partitions (those that contain data).

WITH TABLE table_name - The name of the table you are swapping in to the
partition design.

WITH | WITHOUT VALIDATION - Validates that the data in the table matches
the CHECK constraint of the partition you are exchanging. The default is to validate
the data against the CHECK constraint.

SET SUBPARTITION TEMPLATE

Modifies the subpartition template for an existing partition. After a new subpartition
template is set, all new partitions added will have the new subpartition design
(existing partitions are not modified).

SPLIT DEFAULT PARTITION

Splits a default partition. In a multi-level partition design, you can only split the
lowest level default partitions (those that contain data). Splitting a default partition
creates a new partition containing the values specified and leaves the default
partition containing any values that do not match to an existing partition.

AT - For list partitioned tables, specifies a single list value that should be used as
the criteria for the split.

START - For range partitioned tables, specifies a starting value for the new
partition.

END - For range partitioned tables, specifies an ending value for the new partition.

INTO - Allows you to specify a name for the new partition. When using the INTO
clause to split a default partition, the second partition name specified should
always be that of the existing default partition. If you do not know the name of the
default partition, you can look it up using the pg_partitions view.

SPLIT PARTITION

Splits an existing partition into two partitions. In a multi-level partition design, you
can only split the lowest level partitions (those that contain data).

AT - Specifies a single value that should be used as the criteria for the split. The
partition will be divided into two new partitions with the split value specified
being the starting range for the latter partition.

INTO - Allows you to specify names for the two new partitions created by the
split.

partition_name
The given name of a partition.

FOR (RANK(number))
For range partitions, the rank of the partition in the range.
ALTER TABLE 75

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
FOR ('value')

Specifies a partition by declaring a value that falls within the partition boundary
specification. If the value declared with FOR matches to both a partition and one of
its subpartitions (for example, if the value is a date and the table is partitioned by
month and then by day), then FOR will operate on the first level where a match is
found (for example, the monthly partition). If your intent is to operate on a
subpartition, you must declare so as follows:
ALTER TABLE name ALTER PARTITION FOR ('2008-10-01') DROP
PARTITION FOR ('2008-10-01');

Notes

Take special care when altering or dropping columns that are part of the Greenplum
Database distribution key as this can change the distribution policy for the table.

Greenplum Database does not currently support foreign key constraints. For a unique
constraint to be enforced in Greenplum Database, the table must be hash-distributed
(not DISTRIBUTED RANDOMLY), and all of the distribution key columns must be the
same as the initial columns of the unique constraint columns.

Note: The table name specified in the ALTER TABLE command cannot be the name
of a partition within a table.

Adding a CHECK or NOT NULL constraint requires scanning the table to verify that
existing rows meet the constraint.

When a column is added with ADD COLUMN, all existing rows in the table are
initialized with the column’s default value (NULL if no DEFAULT clause is specified).
Adding a column with a non-null default or changing the type of an existing column
will require the entire table to be rewritten. This may take a significant amount of time
for a large table; and it will temporarily require double the disk space.

You can specify multiple changes in a single ALTER TABLE command, which will be
done in a single pass over the table.

The DROP COLUMN form does not physically remove the column, but simply makes it
invisible to SQL operations. Subsequent insert and update operations in the table will
store a null value for the column. Thus, dropping a column is quick but it will not
immediately reduce the on-disk size of your table, as the space occupied by the
dropped column is not reclaimed. The space will be reclaimed over time as existing
rows are updated.

The fact that ALTER TYPE requires rewriting the whole table is sometimes an
advantage, because the rewriting process eliminates any dead space in the table. For
example, to reclaim the space occupied by a dropped column immediately, the fastest
way is: ALTER TABLE table ALTER COLUMN anycol TYPE sametype; Where
anycol is any remaining table column and sametype is the same type that column
already has. This results in no semantically-visible change in the table, but the
command forces rewriting, which gets rid of no-longer-useful data.

If a table is partitioned or has any descendant tables, it is not permitted to add, rename,
or change the type of a column in the parent table without doing the same to the
descendants. This ensures that the descendants always have columns matching the
parent.
ALTER TABLE 76

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
To see the structure of a partitioned table, you can use the view pg_partitions. This
view can help identify the particular partitions you may want to alter.

A recursive DROP COLUMN operation will remove a descendant table’s column only if
the descendant does not inherit that column from any other parents and never had an
independent definition of the column. A nonrecursive DROP COLUMN (ALTER TABLE
ONLY ... DROP COLUMN) never removes any descendant columns, but instead marks
them as independently defined rather than inherited.

The TRIGGER, CLUSTER, OWNER, and TABLESPACE actions never recurse to descendant
tables; that is, they always act as though ONLY were specified. Adding a constraint can
recurse only for CHECK constraints.

Changing any part of a system catalog table is not permitted.

Examples

Add a column to a table:

ALTER TABLE distributors ADD COLUMN address varchar(30);

Rename an existing column:

ALTER TABLE distributors RENAME COLUMN address TO city;

Rename an existing table:

ALTER TABLE distributors RENAME TO suppliers;

Add a not-null constraint to a column:

ALTER TABLE distributors ALTER COLUMN street SET NOT NULL;

Add a check constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK
(char_length(zipcode) = 5);

Move a table to a different schema:

ALTER TABLE myschema.distributors SET SCHEMA yourschema;

Add a new partition to a partitioned table:

ALTER TABLE sales ADD PARTITION

 START (date '2009-02-01') INCLUSIVE

 END (date '2009-03-01') EXCLUSIVE;

Add a default partition to an existing partition design:

ALTER TABLE sales ADD DEFAULT PARTITION other;

Rename a partition:

ALTER TABLE sales RENAME PARTITION FOR ('2008-01-01') TO
jan08;

Drop the first (oldest) partition in a range sequence:

ALTER TABLE sales DROP PARTITION FOR (RANK(1));

Exchange a table into your partition design:
ALTER TABLE 77

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ALTER TABLE sales EXCHANGE PARTITION FOR ('2008-01-01') WITH
TABLE jan08;

Split the default partition (where the existing default partition’s name is ‘other’) to add
a new monthly partition for January 2009:

ALTER TABLE sales SPLIT DEFAULT PARTITION

START ('2009-01-01') INCLUSIVE

END ('2009-02-01') EXCLUSIVE

INTO (PARTITION jan09, PARTITION other);

Split a monthly partition into two with the first partition containing dates January 1-15
and the second partition containing dates January 16-31:

ALTER TABLE sales SPLIT PARTITION FOR ('2008-01-01')

AT ('2008-01-16')

INTO (PARTITION jan081to15, PARTITION jan0816to31);

Compatibility

The ADD, DROP, and SET DEFAULT forms conform with the SQL standard. The other
forms are Greenplum Database extensions of the SQL standard. Also, the ability to
specify more than one manipulation in a single ALTER TABLE command is an
extension.

ALTER TABLE DROP COLUMN can be used to drop the only column of a table, leaving
a zero-column table. This is an extension of SQL, which disallows zero-column
tables.

See Also

CREATE TABLE, DROP TABLE
ALTER TABLE 78

ALTER TABLESPACE 79

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

ALTER TABLESPACE
Changes the definition of a tablespace.

Synopsis
ALTER TABLESPACE name RENAME TO newname

ALTER TABLESPACE name OWNER TO newowner

Description

ALTER TABLESPACE changes the definition of a tablespace.

You must own the tablespace to use ALTER TABLESPACE. To alter the owner, you must
also be a direct or indirect member of the new owning role. (Note that superusers have
these privileges automatically.)

Parameters

name
The name of an existing tablespace.

newname
The new name of the tablespace. The new name cannot begin with pg_ or gp_
(reserved for system tablespaces).

newowner
The new owner of the tablespace.

Examples

Rename tablespace index_space to fast_raid:

ALTER TABLESPACE index_space RENAME TO fast_raid;

Change the owner of tablespace index_space:

ALTER TABLESPACE index_space OWNER TO mary;

Compatibility

There is no ALTER TABLESPACE statement in the SQL standard.

See Also

CREATE TABLESPACE, DROP TABLESPACE

ALTER TRIGGER 80

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

ALTER TRIGGER
Changes the definition of a trigger.

Synopsis
ALTER TRIGGER name ON table RENAME TO newname

Description

ALTER TRIGGER changes properties of an existing trigger. The RENAME clause changes
the name of the given trigger without otherwise changing the trigger definition. You
must own the table on which the trigger acts to be allowed to change its properties.

Parameters

name
The name of an existing trigger to alter.

table
The name of the table on which this trigger acts.

newname
The new name for the trigger.

Notes

The ability to temporarily enable or disable a trigger is provided by ALTER TABLE, not
by ALTER TRIGGER, because ALTER TRIGGER has no convenient way to express the
option of enabling or disabling all of a table’s triggers at once.

Note that Greenplum Database has limited support of triggers in this release. See
CREATE TRIGGER for more information.

Examples

To rename an existing trigger:

ALTER TRIGGER emp_stamp ON emp RENAME TO emp_track_chgs;

Compatibility

ALTER TRIGGER is a Greenplum Database extension of the SQL standard.

See Also

ALTER TABLE, CREATE TRIGGER, DROP TRIGGER

ALTER TYPE 81

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

ALTER TYPE
Changes the definition of a data type.

Synopsis
ALTER TYPE name
 OWNER TO new_owner | SET SCHEMA new_schema

Description

ALTER TYPE changes the definition of an existing type. You can change the owner and
the schema of a type.

You must own the type to use ALTER TYPE. To change the schema of a type, you must
also have CREATE privilege on the new schema. To alter the owner, you must also be a
direct or indirect member of the new owning role, and that role must have CREATE
privilege on the type’s schema. (These restrictions enforce that altering the owner does
not do anything that could be done by dropping and recreating the type. However, a
superuser can alter ownership of any type.)

Parameters

name
The name (optionally schema-qualified) of an existing type to alter.

new_owner
The user name of the new owner of the type.

new_schema
The new schema for the type.

Examples

To change the owner of the user-defined type email to joe:

ALTER TYPE email OWNER TO joe;

To change the schema of the user-defined type email to customers:

ALTER TYPE email SET SCHEMA customers;

Compatibility

There is no ALTER TYPE statement in the SQL standard.

See Also

CREATE TYPE, DROP TYPE

ALTER USER 82

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

ALTER USER
Changes the definition of a database role (user).

Synopsis
ALTER USER name RENAME TO newname

ALTER USER name SET config_parameter {TO | =} {value | DEFAULT}

ALTER USER name RESET config_parameter

ALTER USER name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'

Description

ALTER USER is a deprecated command but is still accepted for historical reasons. It is
an alias for ALTER ROLE. See ALTER ROLE for more information.

Compatibility

The ALTER USER statement is a Greenplum Database extension. The SQL standard
leaves the definition of users to the implementation.

See Also

ALTER ROLE

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ANALYZE
Collects statistics about a database.

Synopsis
ANALYZE [VERBOSE] [table [(column [, ...])]]

Description

ANALYZE collects statistics about the contents of tables in the database, and stores the
results in the system table pg_statistic. Subsequently, the query planner uses these
statistics to help determine the most efficient execution plans for queries.

With no parameter, ANALYZE examines every table in the current database. With a
parameter, ANALYZE examines only that table. It is further possible to give a list of
column names, in which case only the statistics for those columns are collected.

Parameters

VERBOSE

Enables display of progress messages. When specified, ANALYZE emits progress
messages to indicate which table is currently being processed. Various statistics
about the tables are printed as well.

table
The name (possibly schema-qualified) of a specific table to analyze. Defaults to all
tables in the current database.

column
The name of a specific column to analyze. Defaults to all columns.

Notes

It is a good idea to run ANALYZE periodically, or just after making major changes in the
contents of a table. Accurate statistics will help the query planner to choose the most
appropriate query plan, and thereby improve the speed of query processing. A
common strategy is to run VACUUM and ANALYZE once a day during a low-usage time of
day.

ANALYZE requires only a read lock on the target table, so it can run in parallel with
other activity on the table.

The statistics collected by ANALYZE usually include a list of some of the most common
values in each column and a histogram showing the approximate data distribution in
each column. One or both of these may be omitted if ANALYZE deems them
uninteresting (for example, in a unique-key column, there are no common values) or if
the column data type does not support the appropriate operators.
ANALYZE 83

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
For large tables, ANALYZE takes a random sample of the table contents, rather than
examining every row. This allows even very large tables to be analyzed in a small
amount of time. Note, however, that the statistics are only approximate, and will
change slightly each time ANALYZE is run, even if the actual table contents did not
change. This may result in small changes in the planner’s estimated costs shown by
EXPLAIN. In rare situations, this non-determinism will cause the query optimizer to
choose a different query plan between runs of ANALYZE. To avoid this, raise the
amount of statistics collected by ANALYZE by adjusting the default_statistics_target
configuration parameter, or on a column-by-column basis by setting the per-column
statistics target with ALTER TABLE ... ALTER COLUMN ... SET STATISTICS (see
ALTER TABLE). The target value sets the maximum number of entries in the
most-common-value list and the maximum number of bins in the histogram. The
default target value is 10, but this can be adjusted up or down to trade off accuracy of
planner estimates against the time taken for ANALYZE and the amount of space
occupied in pg_statistic. In particular, setting the statistics target to zero disables
collection of statistics for that column. It may be useful to do that for columns that are
never used as part of the WHERE, GROUP BY, or ORDER BY clauses of queries, since the
planner will have no use for statistics on such columns.

The largest statistics target among the columns being analyzed determines the number
of table rows sampled to prepare the statistics. Increasing the target causes a
proportional increase in the time and space needed to do ANALYZE.

Examples

Collect statistics for the table mytable:

ANALYZE mytable;

Compatibility

There is no ANALYZE statement in the SQL standard.

See Also

ALTER TABLE, EXPLAIN, VACUUM
ANALYZE 84

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
BEGIN
Starts a transaction block.

Synopsis
BEGIN [WORK | TRANSACTION][transaction_mode][READ ONLY | READ
WRITE]

where transaction_mode is one of:

ISOLATION LEVEL | {SERIALIZABLE | REPEATABLE READ | READ
COMMITTED | READ UNCOMMITTED}

Description

BEGIN initiates a transaction block, that is, all statements after a BEGIN command will
be executed in a single transaction until an explicit COMMIT or ROLLBACK is given. By
default (without BEGIN), Greenplum Database executes transactions in autocommit
mode, that is, each statement is executed in its own transaction and a commit is
implicitly performed at the end of the statement (if execution was successful,
otherwise a rollback is done).

Statements are executed more quickly in a transaction block, because transaction
start/commit requires significant CPU and disk activity. Execution of multiple
statements inside a transaction is also useful to ensure consistency when making
several related changes: other sessions will be unable to see the intermediate states
wherein not all the related updates have been done.

If the isolation level or read/write mode is specified, the new transaction has those
characteristics, as if SET TRANSACTION was executed.

Parameters

WORK
TRANSACTION

Optional key words. They have no effect.

SERIALIZABLE
REPEATABLE READ
READ COMMITTED
READ UNCOMMITTED

The SQL standard defines four transaction isolation levels: READ COMMITTED, READ
UNCOMMITTED, SERIALIZABLE, and REPEATABLE READ. The default behavior is that
a statement can only see rows committed before it began (READ COMMITTED). In
Greenplum Database READ UNCOMMITTED is treated the same as READ COMMITTED.
SERIALIZABLE is supported the same as REPEATABLE READ wherein all statements
of the current transaction can only see rows committed before the first statement
was executed in the transaction. SERIALIZABLE is the strictest transaction isolation.
BEGIN 85

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
This level emulates serial transaction execution, as if transactions had been executed
one after another, serially, rather than concurrently. Applications using this level
must be prepared to retry transactions due to serialization failures.

READ WRITE
READ ONLY

Determines whether the transaction is read/write or read-only. Read/write is the
default. When a transaction is read-only, the following SQL commands are
disallowed: INSERT, UPDATE, DELETE, and COPY FROM if the table they would write
to is not a temporary table; all CREATE, ALTER, and DROP commands; GRANT,
REVOKE, TRUNCATE; and EXPLAIN ANALYZE and EXECUTE if the command they
would execute is among those listed.

Notes

START TRANSACTION has the same functionality as BEGIN.

Use COMMIT or ROLLBACK to terminate a transaction block.

Issuing BEGIN when already inside a transaction block will provoke a warning
message. The state of the transaction is not affected. To nest transactions within a
transaction block, use savepoints (see SAVEPOINT).

Examples

To begin a transaction block:

BEGIN;

To begin a transaction block with the serializable isolation level:

BEGIN TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Compatibility

BEGIN is a Greenplum Database language extension. It is equivalent to the
SQL-standard command START TRANSACTION.

Incidentally, the BEGIN key word is used for a different purpose in embedded SQL.
You are advised to be careful about the transaction semantics when porting database
applications.

See Also

COMMIT, ROLLBACK, START TRANSACTION, SAVEPOINT
BEGIN 86

CHECKPOINT 87

Greenplum Database Reference Guide 4.2– CHapter 1: SQL Command Reference

CHECKPOINT
Forces a transaction log checkpoint.

Synopsis
CHECKPOINT

Description

Write-Ahead Logging (WAL) puts a checkpoint in the transaction log every so often.
The automatic checkpoint interval is set per Greenplum Database segment instance by
the server configuration parameters checkpoint_segments and checkpoint_timeout.
The CHECKPOINT command forces an immediate checkpoint when the command is
issued, without waiting for a scheduled checkpoint.

A checkpoint is a point in the transaction log sequence at which all data files have
been updated to reflect the information in the log. All data files will be flushed to disk.

Only superusers may call CHECKPOINT. The command is not intended for use during
normal operation.

Compatibility

The CHECKPOINT command is a Greenplum Database language extension.

CLOSE 88

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

CLOSE
Closes a cursor.

Synopsis
CLOSE cursor_name

Description

CLOSE frees the resources associated with an open cursor. After the cursor is closed,
no subsequent operations are allowed on it. A cursor should be closed when it is no
longer needed.

Every non-holdable open cursor is implicitly closed when a transaction is terminated
by COMMIT or ROLLBACK. A holdable cursor is implicitly closed if the transaction that
created it aborts via ROLLBACK. If the creating transaction successfully commits, the
holdable cursor remains open until an explicit CLOSE is executed, or the client
disconnects.

Parameters

cursor_name
The name of an open cursor to close.

Notes

Greenplum Database does not have an explicit OPEN cursor statement. A cursor is
considered open when it is declared. Use the DECLARE statement to declare (and open)
a cursor.

You can see all available cursors by querying the pg_cursors system view.

Examples

Close the cursor portala:

CLOSE portala;

Compatibility

CLOSE is fully conforming with the SQL standard.

See Also

DECLARE, FETCH, MOVE

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CLUSTER
Physically reorders a heap storage table on disk according to an index. Not a
recommended operation in Greenplum Database.

Synopsis
CLUSTER indexname ON tablename

CLUSTER tablename

CLUSTER

Description

CLUSTER orders a heap storage table based on an index. CLUSTER is not supported on
append-only storage tables. Clustering an index means that the records are physically
ordered on disk according to the index information. If the records you need are
distributed randomly on disk, then the database has to seek across the disk to get the
records requested. If those records are stored more closely together, then the fetching
from disk is more sequential. A good example for a clustered index is on a date
column where the data is ordered sequentially by date. A query against a specific date
range will result in an ordered fetch from the disk, which leverages faster sequential
access.

Clustering is a one-time operation: when the table is subsequently updated, the
changes are not clustered. That is, no attempt is made to store new or updated rows
according to their index order. If one wishes, one can periodically recluster by issuing
the command again.

When a table is clustered using this command, Greenplum Database remembers on
which index it was clustered. The form CLUSTER tablename reclusters the table on
the same index that it was clustered before. CLUSTER without any parameter reclusters
all previously clustered tables in the current database that the calling user owns, or all
tables if called by a superuser. This form of CLUSTER cannot be executed inside a
transaction block.

When a table is being clustered, an ACCESS EXCLUSIVE lock is acquired on it. This
prevents any other database operations (both reads and writes) from operating on the
table until the CLUSTER is finished.

Parameters

indexname
The name of an index.

tablename
The name (optionally schema-qualified) of a table.
CLUSTER 89

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Notes

In cases where you are accessing single rows randomly within a table, the actual order
of the data in the table is unimportant. However, if you tend to access some data more
than others, and there is an index that groups them together, you will benefit from
using CLUSTER. If you are requesting a range of indexed values from a table, or a
single indexed value that has multiple rows that match, CLUSTER will help because
once the index identifies the table page for the first row that matches, all other rows
that match are probably already on the same table page, and so you save disk accesses
and speed up the query.

During the cluster operation, a temporary copy of the table is created that contains the
table data in the index order. Temporary copies of each index on the table are created
as well. Therefore, you need free space on disk at least equal to the sum of the table
size and the index sizes.

Because the query planner records statistics about the ordering of tables, it is advisable
to run ANALYZE on the newly clustered table. Otherwise, the planner may make poor
choices of query plans.

There is another way to cluster data. The CLUSTER command reorders the original
table by scanning it using the index you specify. This can be slow on large tables
because the rows are fetched from the table in index order, and if the table is
disordered, the entries are on random pages, so there is one disk page retrieved for
every row moved. (Greenplum Database has a cache, but the majority of a big table
will not fit in the cache.) The other way to cluster a table is to use a statement such as:

CREATE TABLE newtable AS SELECT * FROM table ORDER BY column;

This uses the Greenplum Database sorting code to produce the desired order, which is
usually much faster than an index scan for disordered data. Then you drop the old
table, use ALTER TABLE ... RENAME to rename newtable to the old name, and
recreate the table’s indexes. The big disadvantage of this approach is that it does not
preserve OIDs, constraints, granted privileges, and other ancillary properties of the
table — all such items must be manually recreated. Another disadvantage is that this
way requires a sort temporary file about the same size as the table itself, so peak disk
usage is about three times the table size instead of twice the table size.

Examples

Cluster the table employees on the basis of its index emp_ind:

CLUSTER emp_ind ON emp;

Cluster a large table by recreating it and loading it in the correct index order:

CREATE TABLE newtable AS SELECT * FROM table ORDER BY column;

DROP table;

ALTER TABLE newtable RENAME TO table;

CREATE INDEX column_ix ON table (column);

VACUUM ANALYZE table;
CLUSTER 90

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Compatibility

There is no CLUSTER statement in the SQL standard.

See Also

CREATE TABLE AS, CREATE INDEX
CLUSTER 91

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
COMMENT
Defines or change the comment of an object.

Synopsis
COMMENT ON
{ TABLE object_name |
 COLUMN table_name.column_name |
 AGGREGATE agg_name (agg_type [, ...]) |
 CAST (sourcetype AS targettype) |
 CONSTRAINT constraint_name ON table_name |
 CONVERSION object_name |
 DATABASE object_name |
 DOMAIN object_name |
 FILESPACE object_name |
 FUNCTION func_name ([[argmode] [argname] argtype [, ...]]) |
 INDEX object_name |
 LARGE OBJECT large_object_oid |
 OPERATOR op (leftoperand_type, rightoperand_type) |
 OPERATOR CLASS object_name USING index_method |
 [PROCEDURAL] LANGUAGE object_name |
 RESOURCE QUEUE object_name |
 ROLE object_name |
 RULE rule_name ON table_name |
 SCHEMA object_name |
 SEQUENCE object_name |
 TABLESPACE object_name |
 TRIGGER trigger_name ON table_name |
 TYPE object_name |
 VIEW object_name }
IS 'text'

Description

COMMENT stores a comment about a database object. To modify a comment, issue a
new COMMENT command for the same object. Only one comment string is stored for
each object. To remove a comment, write NULL in place of the text string. Comments
are automatically dropped when the object is dropped.

Comments can be easily retrieved with the psql meta-commands \dd, \d+, and \l+.
Other user interfaces to retrieve comments can be built atop the same built-in
functions that psql uses, namely obj_description, col_description, and
shobj_description.

Parameters

object_name
table_name.column_name
COMMENT 92

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
agg_name
constraint_name
func_name
op
rule_name
trigger_name

The name of the object to be commented. Names of tables, aggregates, domains,
functions, indexes, operators, operator classes, sequences, types, and views may be
schema-qualified.

agg_type
An input data type on which the aggregate function operates. To reference a
zero-argument aggregate function, write * in place of the list of input data types.

sourcetype
The name of the source data type of the cast.

targettype
The name of the target data type of the cast.

argmode
The mode of a function argument: either IN, OUT, or INOUT. If omitted, the default is
IN. Note that COMMENT ON FUNCTION does not actually pay any attention to OUT
arguments, since only the input arguments are needed to determine the function’s
identity. So it is sufficient to list the IN and INOUT arguments.

argname
The name of a function argument. Note that COMMENT ON FUNCTION does not
actually pay any attention to argument names, since only the argument data types are
needed to determine the function’s identity.

argtype
The data type(s) of the function’s arguments (optionally schema-qualified), if any.

large_object_oid
The OID of the large object.

PROCEDURAL

This is a noise word.

text
The new comment, written as a string literal; or NULL to drop the comment.

Notes

There is presently no security mechanism for comments: any user connected to a
database can see all the comments for objects in that database (although only
superusers can change comments for objects that they do not own). For shared objects
COMMENT 93

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
such as databases, roles, and tablespaces comments are stored globally and any user
connected to any database can see all the comments for shared objects. Therefore, do
not put security-critical information in comments.

Examples

Attach a comment to the table mytable:

COMMENT ON TABLE mytable IS 'This is my table.';

Remove it again:

COMMENT ON TABLE mytable IS NULL;

Compatibility

There is no COMMENT statement in the SQL standard.
COMMENT 94

COMMIT 95

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

COMMIT
Commits the current transaction.

Synopsis
COMMIT [WORK | TRANSACTION]

Description

COMMIT commits the current transaction. All changes made by the transaction become
visible to others and are guaranteed to be durable if a crash occurs.

Parameters

WORK
TRANSACTION

Optional key words. They have no effect.

Notes

Use ROLLBACK to abort a transaction.

Issuing COMMIT when not inside a transaction does no harm, but it will provoke a
warning message.

Examples

To commit the current transaction and make all changes permanent:

COMMIT;

Compatibility

The SQL standard only specifies the two forms COMMIT and COMMIT WORK.
Otherwise, this command is fully conforming.

See Also

BEGIN, END, START TRANSACTION, ROLLBACK

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
COPY
Copies data between a file and a table.

Synopsis
COPY table [(column [, ...])] FROM {'file' | STDIN}
 [[WITH]
 [OIDS]
 [HEADER]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [CSV [QUOTE [AS] 'quote']
 [FORCE NOT NULL column [, ...]]
 [FILL MISSING FIELDS]
 [[LOG ERRORS INTO error_table] [KEEP]
 SEGMENT REJECT LIMIT count [ROWS | PERCENT]]

COPY {table [(column [, ...])] | (query)} TO {'file' | STDOUT}
 [[WITH]
 [OIDS]
 [HEADER]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [CSV [QUOTE [AS] 'quote']
 [FORCE QUOTE column [, ...]]]

Description

COPY moves data between Greenplum Database tables and standard file-system files.
COPY TO copies the contents of a table to a file, while COPY FROM copies data from a
file to a table (appending the data to whatever is in the table already). COPY TO can
also copy the results of a SELECT query.

If a list of columns is specified, COPY will only copy the data in the specified columns
to or from the file. If there are any columns in the table that are not in the column list,
COPY FROM will insert the default values for those columns.

COPY with a file name instructs the Greenplum Database master host to directly read
from or write to a file. The file must be accessible to the master host and the name
must be specified from the viewpoint of the master host. When STDIN or STDOUT is
specified, data is transmitted via the connection between the client and the master.

If SEGMENT REJECT LIMIT is used, then a COPY FROM operation will operate in single
row error isolation mode. In this release, single row error isolation mode only applies
to rows in the input file with format errors — for example, extra or missing attributes,
attributes of a wrong data type, or invalid client encoding sequences. Constraint errors
such as violation of a NOT NULL, CHECK, or UNIQUE constraint will still be handled in
COPY 96

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
‘all-or-nothing’ input mode. The user can specify the number of error rows acceptable
(on a per-segment basis), after which the entire COPY FROM operation will be aborted
and no rows will be loaded. Note that the count of error rows is per-segment, not per
entire load operation. If the per-segment reject limit is not reached, then all rows not
containing an error will be loaded. If the limit is not reached, all good rows will be
loaded and any error rows discarded. If you would like to keep error rows for further
examination, you can optionally declare an error table using the LOG ERRORS INTO
clause. Any rows containing a format error would then be logged to the specified error
table.

Outputs

On successful completion, a COPY command returns a command tag of the form,
where count is the number of rows copied:

COPY count

If running a COPY FROM command in single row error isolation mode, the following
notice message will be returned if any rows were not loaded due to format errors,
where count is the number of rows rejected:

NOTICE: Rejected count badly formatted rows.

Parameters

table
The name (optionally schema-qualified) of an existing table.

column
An optional list of columns to be copied. If no column list is specified, all columns
of the table will be copied.

query
A SELECT or VALUES command whose results are to be copied. Note that
parentheses are required around the query.

file
The absolute path name of the input or output file.

STDIN

Specifies that input comes from the client application.

STDOUT

Specifies that output goes to the client application.

OIDS

Specifies copying the OID for each row. (An error is raised if OIDS is specified for
a table that does not have OIDs, or in the case of copying a query.)
COPY 97

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
delimiter
The single ASCII character that separates columns within each row (line) of the file.
The default is a tab character in text mode, a comma in CSV mode.

null string
The string that represents a null value. The default is \N (backslash-N) in text mode,
and a empty value with no quotes in CSV mode. You might prefer an empty string
even in text mode for cases where you don’t want to distinguish nulls from empty
strings. When using COPY FROM, any data item that matches this string will be stored
as a null value, so you should make sure that you use the same string as you used
with COPY TO.

escape
Specifies the single character that is used for C escape sequences (such as
\n,\t,\100, and so on) and for quoting data characters that might otherwise be
taken as row or column delimiters. Make sure to choose an escape character that is
not used anywhere in your actual column data. The default escape character is \
(backslash) for text files or " (double quote) for CSV files, however it is possible to
specify any other character to represent an escape. It is also possible to disable
escaping on text-formatted files by specifying the value 'OFF' as the escape value.
This is very useful for data such as web log data that has many embedded
backslashes that are not intended to be escapes.

NEWLINE

Specifies the newline used in your data files — LF (Line feed, 0x0A), CR (Carriage
return, 0x0D), or CRLF (Carriage return plus line feed, 0x0D 0x0A). If not specified,
a Greenplum Database segment will detect the newline type by looking at the first
row of data it receives and using the first newline type encountered.

CSV

Selects Comma Separated Value (CSV) mode.

HEADER

Specifies that a file contains a header line with the names of each column in the file.
On output, the first line contains the column names from the table, and on input, the
first line is ignored.

quote
Specifies the quotation character in CSV mode. The default is double-quote.

FORCE QUOTE

In CSV COPY TO mode, forces quoting to be used for all non-NULL values in each
specified column. NULL output is never quoted.
COPY 98

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
FORCE NOT NULL

In CSV COPY FROM mode, process each specified column as though it were quoted
and hence not a NULL value. For the default null string in CSV mode (nothing
between two delimiters), this causes missing values to be evaluated as zero-length
strings.

FILL MISSING FIELDS

In COPY FROM more for both TEXT and CSV, specifying FILL MISSING FIELDS will
set missing trailing field values to NULL (instead of reporting an error) when a row of
data has missing data fields at the end of a line or row. Blank rows, fields with a NOT
NULL constraint, and trailing delimiters on a line will still report an error.

LOG ERRORS INTO error_table [KEEP]
This is an optional clause that may precede a SEGMENT REJECT LIMIT clause. It
specifies an error table where rows with formatting errors will be logged when
running in single row error isolation mode. You can then examine this error table to
see error rows that were not loaded (if any). If the error_table specified already
exists, it will be used. If it does not exist, it will be automatically generated. If the
command auto-generates the error table and no errors are produced, the default is to
drop the error table after the operation completes unless KEEP is specified. If the
table is auto-generated and the error limit is exceeded, the entire transaction is rolled
back and no error data is saved. If you want the error table to persist in this case,
create the error table prior to running the COPY. An error table is defined as follows:

CREATE TABLE error_table_name (cmdtime timestamptz,
relname text, filename text, linenum int, bytenum int,
errmsg text, rawdata text, rawbytes bytea)
DISTRIBUTED RANDOMLY;

SEGMENT REJECT LIMIT count [ROWS | PERCENT]

Runs a COPY FROM operation in single row error isolation mode. If the input rows
have format errors they will be discarded provided that the reject limit count is not
reached on any Greenplum segment instance during the load operation. The reject
limit count can be specified as number of rows (the default) or percentage of total
rows (1-100). If PERCENT is used, each segment starts calculating the bad row
percentage only after the number of rows specified by the parameter
gp_reject_percent_threshold has been processed. The default for
gp_reject_percent_threshold is 300 rows. Constraint errors such as violation
of a NOT NULL, CHECK, or UNIQUE constraint will still be handled in ‘all-or-nothing’
input mode. If the limit is not reached, all good rows will be loaded and any error
rows discarded.

Notes

COPY can only be used with tables, not with views. However, you can write COPY
(SELECT * FROM viewname) TO
COPY 99

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
The BINARY key word causes all data to be stored/read as binary format rather than as
text. It is somewhat faster than the normal text mode, but a binary-format file is less
portable across machine architectures and Greenplum Database versions. Also, you
cannot run COPY FROM in single row error isolation mode if the data is in binary
format.

You must have SELECT privilege on the table whose values are read by COPY TO, and
insert privilege on the table into which values are inserted by COPY FROM.

Files named in a COPY command are read or written directly by the database server,
not by the client application. Therefore, they must reside on or be accessible to the
Greenplum Database master host machine, not the client. They must be accessible to
and readable or writable by the Greenplum Database system user (the user ID the
server runs as), not the client. COPY naming a file is only allowed to database
superusers, since it allows reading or writing any file that the server has privileges to
access.

COPY FROM will invoke any triggers and check constraints on the destination table.
However, it will not invoke rewrite rules. Note that in this release, violations of
constraints are not evaluated for single row error isolation mode.

COPY input and output is affected by DateStyle. To ensure portability to other
Greenplum Database installations that might use non-default DateStyle settings,
DateStyle should be set to ISO before using COPY TO.

By default, COPY stops operation at the first error. This should not lead to problems in
the event of a COPY TO, but the target table will already have received earlier rows in a
COPY FROM. These rows will not be visible or accessible, but they still occupy disk
space. This may amount to a considerable amount of wasted disk space if the failure
happened well into a large COPY FROM operation. You may wish to invoke VACUUM to
recover the wasted space. Another option would be to use single row error isolation
mode to filter out error rows while still loading good rows.

File Formats

Text Format

When COPY is used without the BINARY or CSV options, the data read or written is a
text file with one line per table row. Columns in a row are separated by the
delimiter character (tab by default). The column values themselves are strings
generated by the output function, or acceptable to the input function, of each
attribute’s data type. The specified null string is used in place of columns that are null.
COPY FROM will raise an error if any line of the input file contains more or fewer
columns than are expected. If OIDS is specified, the OID is read or written as the first
column, preceding the user data columns.

The data file has two reserved characters that have special meaning to COPY:

• The designated delimiter character (tab by default), which is used to separate
fields in the data file.
COPY 100

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
• A UNIX-style line feed (\n or 0x0a), which is used to designate a new row in the
data file. It is strongly recommended that applications generating COPY data
convert data line feeds to UNIX-style line feeds rather than Microsoft Windows
style carriage return line feeds (\r\n or 0x0a 0x0d).

If your data contains either of these characters, you must escape the character so COPY
treats it as data and not as a field separator or new row.

By default, the escape character is a \ (backslash) for text-formatted files and a "
(double quote) for csv-formatted files. If you want to use a different escape character,
you can do so using the ESCAPE AS clause. Make sure to choose an escape character
that is not used anywhere in your data file as an actual data value. You can also disable
escaping in text-formatted files by using ESCAPE 'OFF'.

For example, suppose you have a table with three columns and you want to load the
following three fields using COPY.

• percentage sign = %
• vertical bar = |
• backslash = \
Your designated DELIMITER character is | (pipe character), and your designated
ESCAPE character is * (asterisk). The formatted row in your data file would look like
this:

percentage sign = % | vertical bar = *| | backslash = \

Notice how the pipe character that is part of the data has been escaped using the
asterisk character (*). Also notice that we do not need to escape the backslash since
we are using an alternative escape character.

The following characters must be preceded by the escape character if they appear as
part of a column value: the escape character itself, newline, carriage return, and the
current delimiter character. You can specify a different escape character using the
ESCAPE AS clause.

CSV Format

This format is used for importing and exporting the Comma Separated Value (CSV)
file format used by many other programs, such as spreadsheets. Instead of the
escaping used by Greenplum Database standard text mode, it produces and recognizes
the common CSV escaping mechanism.

The values in each record are separated by the DELIMITER character. If the value
contains the delimiter character, the QUOTE character, the ESCAPE character (which is
double quote by default), the NULL string, a carriage return, or line feed character, then
the whole value is prefixed and suffixed by the QUOTE character. You can also use
FORCE QUOTE to force quotes when outputting non-NULL values in specific columns.

The CSV format has no standard way to distinguish a NULL value from an empty
string. Greenplum Database COPY handles this by quoting. A NULL is output as the
NULL string and is not quoted, while a data value matching the NULL string is quoted.
Therefore, using the default settings, a NULL is written as an unquoted empty string,
COPY 101

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
while an empty string is written with double quotes (""). Reading values follows
similar rules. You can use FORCE NOT NULL to prevent NULL input comparisons for
specific columns.

Because backslash is not a special character in the CSV format, \., the end-of-data
marker, could also appear as a data value. To avoid any misinterpretation, a \. data
value appearing as a lone entry on a line is automatically quoted on output, and on
input, if quoted, is not interpreted as the end-of-data marker. If you are loading a file
created by another application that has a single unquoted column and might have a
value of \., you might need to quote that value in the input file.

Note: In CSV mode, all characters are significant. A quoted value surrounded by white
space, or any characters other than DELIMITER, will include those characters. This can
cause errors if you import data from a system that pads CSV lines with white space
out to some fixed width. If such a situation arises you might need to preprocess the
CSV file to remove the trailing white space, before importing the data into Greenplum
Database.

Note: CSV mode will both recognize and produce CSV files with quoted values
containing embedded carriage returns and line feeds. Thus the files are not strictly one
line per table row like text-mode files.

Note: Many programs produce strange and occasionally perverse CSV files, so the
file format is more a convention than a standard. Thus you might encounter some files
that cannot be imported using this mechanism, and COPY might produce files that other
programs cannot process.

Binary Format

The BINARY format consists of a file header, zero or more tuples containing the row
data, and a file trailer. Headers and data are in network byte order.

• File Header — The file header consists of 15 bytes of fixed fields, followed by a
variable-length header extension area. The fixed fields are:
• Signature — 11-byte sequence PGCOPY\n\377\r\n\0 — note that the zero

byte is a required part of the signature. (The signature is designed to allow
easy identification of files that have been munged by a non-8-bit-clean
transfer. This signature will be changed by end-of-line-translation filters,
dropped zero bytes, dropped high bits, or parity changes.)

• Flags field — 32-bit integer bit mask to denote important aspects of the file
format. Bits are numbered from 0 (LSB) to 31 (MSB). Note that this field is
stored in network byte order (most significant byte first), as are all the integer
fields used in the file format. Bits 16-31 are reserved to denote critical file
format issues; a reader should abort if it finds an unexpected bit set in this
range. Bits 0-15 are reserved to signal backwards-compatible format issues; a
reader should simply ignore any unexpected bits set in this range. Currently
only one flag is defined, and the rest must be zero (Bit 16: 1 if data has OIDs,
0 if not).

• Header extension area length — 32-bit integer, length in bytes of remainder
of header, not including self. Currently, this is zero, and the first tuple follows
immediately. Future changes to the format might allow additional data to be
present in the header. A reader should silently skip over any header extension
COPY 102

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
data it does not know what to do with. The header extension area is
envisioned to contain a sequence of self-identifying chunks. The flags field is
not intended to tell readers what is in the extension area. Specific design of
header extension contents is left for a later release.

• Tuples — Each tuple begins with a 16-bit integer count of the number of fields in
the tuple. (Presently, all tuples in a table will have the same count, but that might
not always be true.) Then, repeated for each field in the tuple, there is a 32-bit
length word followed by that many bytes of field data. (The length word does not
include itself, and can be zero.) As a special case, -1 indicates a NULL field value.
No value bytes follow in the NULL case.
There is no alignment padding or any other extra data between fields.
Presently, all data values in a COPY BINARY file are assumed to be in binary
format (format code one). It is anticipated that a future extension may add a
header field that allows per-column format codes to be specified.
If OIDs are included in the file, the OID field immediately follows the field-count
word. It is a normal field except that it's not included in the field-count. In
particular it has a length word — this will allow handling of 4-byte vs. 8-byte
OIDs without too much pain, and will allow OIDs to be shown as null if that ever
proves desirable.

• File Trailer — The file trailer consists of a 16-bit integer word containing -1.
This is easily distinguished from a tuple’s field-count word. A reader should
report an error if a field-count word is neither -1 nor the expected number of
columns. This provides an extra check against somehow getting out of sync with
the data.

Examples

Copy a table to the client using the vertical bar (|) as the field delimiter:

COPY country TO STDOUT WITH DELIMITER '|';

Copy data from a file into the country table:

COPY country FROM '/home/usr1/sql/country_data';

Copy into a file just the countries whose names start with 'A':

COPY (SELECT * FROM country WHERE country_name LIKE 'A%') TO
'/home/usr1/sql/a_list_countries.copy';

Create an error table called err_sales to use with single row error isolation mode:

CREATE TABLE err_sales (cmdtime timestamptz, relname
text, filename text, linenum int, bytenum int, errmsg
text, rawdata text, rawbytes bytea)
DISTRIBUTED RANDOMLY;

Copy data from a file into the sales table using single row error isolation mode:

COPY sales FROM '/home/usr1/sql/sales_data' LOG ERRORS INTO
err_sales SEGMENT REJECT LIMIT 10 ROWS;
COPY 103

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Compatibility

There is no COPY statement in the SQL standard.

See Also

CREATE EXTERNAL TABLE
COPY 104

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE AGGREGATE
Defines a new aggregate function.

Synopsis
CREATE [ORDERED] AGGREGATE name (input_data_type [, ...])
 (SFUNC = sfunc,
 STYPE = state_data_type
 [, PREFUNC = prefunc]
 [, FINALFUNC = ffunc]
 [, INITCOND = initial_condition]
 [, SORTOP = sort_operator])

Description

CREATE AGGREGATE defines a new aggregate function. Some basic and
commonly-used aggregate functions such as count, min, max, sum, avg and so on are
already provided in Greenplum Database. If one defines new types or needs an
aggregate function not already provided, then CREATE AGGREGATE can be used to
provide the desired features.

An aggregate function is identified by its name and input data type(s). Two aggregates
in the same schema can have the same name if they operate on different input types.
The name and input data type(s) of an aggregate must also be distinct from the name
and input data type(s) of every ordinary function in the same schema.

An aggregate function is made from one, two or three ordinary functions (all of which
must be IMMUTABLE functions): a state transition function sfunc, an optional
preliminary segment-level calculation function prefunc, and an optional final
calculation function ffunc. These are used as follows:
sfunc(internal-state, next-data-values) ---> next-internal-state

prefunc(internal-state, internal-state) ---> next-internal-state

ffunc(internal-state) ---> aggregate-value

Greenplum Database creates a temporary variable of data type stype to hold the
current internal state of the aggregate. At each input row, the aggregate argument
value(s) are calculated and the state transition function is invoked with the current
state value and the new argument value(s) to calculate a new internal state value. After
all the rows have been processed, the final function is invoked once to calculate the
aggregate’s return value. If there is no final function then the ending state value is
returned as-is.

An aggregate function may provide an initial condition, that is, an initial value for the
internal state value. This is specified and stored in the database as a value of type text,
but it must be a valid external representation of a constant of the state value data type.
If it is not supplied then the state value starts out null.

If the state transition function is declared strict, then it cannot be called with null
inputs. With such a transition function, aggregate execution behaves as follows. Rows
with any null input values are ignored (the function is not called and the previous state
CREATE AGGREGATE 105

Greenplum Database Reference Guide 4.2– CHapter 1: SQL Command Reference
value is retained). If the initial state value is null, then at the first row with all-nonnull
input values, the first argument value replaces the state value, and the transition
function is invoked at subsequent rows with all-nonnull input values. This is handy for
implementing aggregates like max. Note that this behavior is only available when
state_data_type is the same as the first input_data_type. When these types are
different, you must supply a nonnull initial condition or use a nonstrict transition
function.

If the state transition function is not strict, then it will be called unconditionally at each
input row, and must deal with null inputs and null transition values for itself. This
allows the aggregate author to have full control over the aggregate’s handling of null
values.

If the final function is declared strict, then it will not be called when the ending state
value is null; instead a null result will be returned automatically. (Of course this is just
the normal behavior of strict functions.) In any case the final function has the option of
returning a null value. For example, the final function for avg returns null when it sees
there were zero input rows.

Single argument aggregate functions, such as min or max, can sometimes be
optimized by looking into an index instead of scanning every input row. If this
aggregate can be so optimized, indicate it by specifying a sort operator. The basic
requirement is that the aggregate must yield the first element in the sort ordering
induced by the operator; in other words

SELECT agg(col) FROM tab;

must be equivalent to:

SELECT col FROM tab ORDER BY col USING sortop LIMIT 1;

Further assumptions are that the aggregate ignores null inputs, and that it delivers a
null result if and only if there were no non-null inputs. Ordinarily, a data type’s <
operator is the proper sort operator for MIN, and > is the proper sort operator for MAX.
Note that the optimization will never actually take effect unless the specified operator
is the “less than” or “greater than” strategy member of a B-tree index operator class.

Ordered Aggregates

If the optional qualification ORDERED appears, the created aggregate function is an
ordered aggregate. In this case, the preliminary aggregation function, prefunc cannot
be specified.

An ordered aggregate is called with the following syntax.

name (arg [, ...] [ORDER BY sortspec [, ...]])

If the optional ORDER BY is omitted, a system-defined ordering is used. The transition
function of an ordered aggregate sfunc is called on its input arguments in the
specified order and on a single segment. There is a new column aggordered in the
pg_aggregate table to indicate the aggregate function is defined as an ordered
aggregate.
CREATE AGGREGATE 106

Greenplum Database Reference Guide 4.2– CHapter 1: SQL Command Reference
Parameters

name
The name (optionally schema-qualified) of the aggregate function to create.

input_data_type
An input data type on which this aggregate function operates. To create a
zero-argument aggregate function, write * in place of the list of input data types. An
example of such an aggregate is count(*).

sfunc
The name of the state transition function to be called for each input row. For an
N-argument aggregate function, the sfunc must take N+1 arguments, the first being
of type state_data_type and the rest matching the declared input data type(s) of
the aggregate. The function must return a value of type state_data_type. This
function takes the current state value and the current input data value(s), and returns
the next state value.

state_data_type
The data type for the aggregate’s state value.

prefunc
The name of a preliminary aggregation function. This is a function of two
arguments, both of type state_data_type. It must return a value of
state_data_type. A preliminary function takes two transition state values and
returns a new transition state value representing the combined aggregation. In
Greenplum Database, if the result of the aggregate function is computed in a
segmented fashion, the preliminary aggregation function is invoked on the
individual internal states in order to combine them into an ending internal state.

Note that this function is also called in hash aggregate mode within a segment.
Therefore if you call this aggregate function without a preliminary function, hash
aggregate is never chosen. Since hash aggregate is efficient, consider defining
preliminary function whenever possible.

ffunc
The name of the final function called to compute the aggregate’s result after all input
rows have been traversed. The function must take a single argument of type
state_data_type. The return data type of the aggregate is defined as the return type of
this function. If ffunc is not specified, then the ending state value is used as the
aggregate's result, and the return type is state_data_type.

initial_condition
The initial setting for the state value. This must be a string constant in the form
accepted for the data type state_data_type. If not specified, the state value starts out
null.
CREATE AGGREGATE 107

Greenplum Database Reference Guide 4.2– CHapter 1: SQL Command Reference
sort_operator
The associated sort operator for a MIN- or MAX-like aggregate. This is just an
operator name (possibly schema-qualified). The operator is assumed to have the
same input data types as the aggregate (which must be a single-argument aggregate).

Notes

The ordinary functions used to define a new aggregate function must be defined first.
Note that in this release of Greenplum Database, it is required that the sfunc, ffunc,
and prefunc functions used to create the aggregate are defined as IMMUTABLE.

Any compiled code (shared library files) for custom functions must be placed in the
same location on every host in your Greenplum Database array (master and all
segments). This location must also be in the LD_LIBRARY_PATH so that the server can
locate the files.

Examples

Create a sum of cubes aggregate:

CREATE FUNCTION scube_accum(numeric, numeric) RETURNS
numeric

 AS 'select $1 + $2 * $2 * $2'

 LANGUAGE SQL

 IMMUTABLE

 RETURNS NULL ON NULL INPUT;

CREATE AGGREGATE scube(numeric) (

 SFUNC = scube_accum,

 STYPE = numeric,

 INITCOND = 0);

To test this aggregate:

CREATE TABLE x(a INT);

INSERT INTO x VALUES (1),(2),(3);

SELECT scube(a) FROM x;

Correct answer for reference:

SELECT sum(a*a*a) FROM x;

Compatibility

CREATE AGGREGATE is a Greenplum Database language extension. The SQL standard
does not provide for user-defined aggregate functions.

See Also

ALTER AGGREGATE, DROP AGGREGATE, CREATE FUNCTION
CREATE AGGREGATE 108

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE CAST
Defines a new cast.

Synopsis
CREATE CAST (sourcetype AS targettype)
 WITH FUNCTION funcname (argtypes)
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (sourcetype AS targettype) WITHOUT FUNCTION
 [AS ASSIGNMENT | AS IMPLICIT]

Description

CREATE CAST defines a new cast. A cast specifies how to perform a conversion
between two data types. For example,

SELECT CAST(42 AS text);

converts the integer constant 42 to type text by invoking a previously specified
function, in this case text(int4). If no suitable cast has been defined, the conversion
fails.

Two types may be binary compatible, which means that they can be converted into
one another without invoking any function. This requires that corresponding values
use the same internal representation. For instance, the types text and varchar are
binary compatible.

By default, a cast can be invoked only by an explicit cast request, that is an explicit
CAST(x AS typename) or x::typename construct.

If the cast is marked AS ASSIGNMENT then it can be invoked implicitly when assigning
a value to a column of the target data type. For example, supposing that foo.f1 is a
column of type text, then

INSERT INTO foo (f1) VALUES (42);

will be allowed if the cast from type integer to type text is marked AS
ASSIGNMENT, otherwise not. The term assignment cast is typically used to describe
this kind of cast.

If the cast is marked AS IMPLICIT then it can be invoked implicitly in any context,
whether assignment or internally in an expression. The term implicit cast is typically
used to describe this kind of cast. For example, since || takes text operands,

SELECT 'The time is ' || now();

will be allowed only if the cast from type timestamp to text is marked AS
IMPLICIT. Otherwise, it will be necessary to write the cast explicitly, for example

SELECT 'The time is ' || CAST(now() AS text);

It is wise to be conservative about marking casts as implicit. An overabundance of
implicit casting paths can cause Greenplum Database to choose surprising
interpretations of commands, or to be unable to resolve commands at all because there
CREATE CAST 109

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
are multiple possible interpretations. A good rule of thumb is to make a cast implicitly
invokable only for information-preserving transformations between types in the same
general type category. For example, the cast from int2 to int4 can reasonably be
implicit, but the cast from float8 to int4 should probably be assignment-only.
Cross-type-category casts, such as text to int4, are best made explicit-only.

To be able to create a cast, you must own the source or the target data type. To create a
binary-compatible cast, you must be superuser.

Parameters

sourcetype
The name of the source data type of the cast.

targettype
The name of the target data type of the cast.

funcname(argtypes)
The function used to perform the cast. The function name may be schema-qualified.
If it is not, the function will be looked up in the schema search path. The function’s
result data type must match the target type of the cast.

Cast implementation functions may have one to three arguments. The first argument
type must be identical to the cast’s source type. The second argument, if present,
must be type integer; it receives the type modifier associated with the destination
type, or -1 if there is none. The third argument, if present, must be type boolean; it
receives true if the cast is an explicit cast, false otherwise. The SQL specification
demands different behaviors for explicit and implicit casts in some cases. This
argument is supplied for functions that must implement such casts. It is not
recommended that you design your own data types this way.

Ordinarily a cast must have different source and target data types. However, it is
allowed to declare a cast with identical source and target types if it has a cast
implementation function with more than one argument. This is used to represent
type-specific length coercion functions in the system catalogs. The named function
is used to coerce a value of the type to the type modifier value given by its second
argument. (Since the grammar presently permits only certain built-in data types to
have type modifiers, this feature is of no use for user-defined target types.)

When a cast has different source and target types and a function that takes more than
one argument, it represents converting from one type to another and applying a
length coercion in a single step. When no such entry is available, coercion to a type
that uses a type modifier involves two steps, one to convert between data types and a
second to apply the modifier.

WITHOUT FUNCTION

Indicates that the source type and the target type are binary compatible, so no
function is required to perform the cast.
CREATE CAST 110

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
AS ASSIGNMENT

Indicates that the cast may be invoked implicitly in assignment contexts.

AS IMPLICIT

Indicates that the cast may be invoked implicitly in any context.

Notes

Note that in this release of Greenplum Database, user-defined functions used in a
user-defined cast must be defined as IMMUTABLE. Any compiled code (shared library
files) for custom functions must be placed in the same location on every host in your
Greenplum Database array (master and all segments). This location must also be in the
LD_LIBRARY_PATH so that the server can locate the files.

Remember that if you want to be able to convert types both ways you need to declare
casts both ways explicitly.

It is recommended that you follow the convention of naming cast implementation
functions after the target data type, as the built-in cast implementation functions are
named. Many users are used to being able to cast data types using a function-style
notation, that is typename(x).

Examples

To create a cast from type text to type int4 using the function int4(text) (This cast is
already predefined in the system.):

CREATE CAST (text AS int4) WITH FUNCTION int4(text);

Compatibility

The CREATE CAST command conforms to the SQL standard, except that SQL does not
make provisions for binary-compatible types or extra arguments to implementation
functions. AS IMPLICIT is a Greenplum Database extension, too.

See Also

CREATE FUNCTION, CREATE TYPE, DROP CAST
CREATE CAST 111

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE CONVERSION
Defines a new encoding conversion.

Synopsis
CREATE [DEFAULT] CONVERSION name FOR source_encoding TO
dest_encoding FROM funcname

Description

CREATE CONVERSION defines a new conversion between character set encodings.
Conversion names may be used in the convert function to specify a particular
encoding conversion. Also, conversions that are marked DEFAULT can be used for
automatic encoding conversion between client and server. For this purpose, two
conversions, from encoding A to B and from encoding B to A, must be defined.

To create a conversion, you must have EXECUTE privilege on the function and CREATE
privilege on the destination schema.

Parameters

DEFAULT

Indicates that this conversion is the default for this particular source to destination
encoding. There should be only one default encoding in a schema for the encoding
pair.

name
The name of the conversion. The conversion name may be schema-qualified. If it is
not, the conversion is defined in the current schema. The conversion name must be
unique within a schema.

source_encoding
The source encoding name.

dest_encoding
The destination encoding name.

funcname
The function used to perform the conversion. The function name may be
schema-qualified. If it is not, the function will be looked up in the path. The function
must have the following signature:
conv_proc(

 integer, -- source encoding ID

 integer, -- destination encoding ID

 cstring, -- source string (null terminated C string)

 internal, -- destination (fill with a null terminated C string)

 integer -- source string length
CREATE CONVERSION 112

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
) RETURNS void;

Notes

Note that in this release of Greenplum Database, user-defined functions used in a
user-defined conversion must be defined as IMMUTABLE. Any compiled code (shared
library files) for custom functions must be placed in the same location on every host in
your Greenplum Database array (master and all segments). This location must also be
in the LD_LIBRARY_PATH so that the server can locate the files.

Examples

To create a conversion from encoding UTF8 to LATIN1 using myfunc:

CREATE CONVERSION myconv FOR 'UTF8' TO 'LATIN1' FROM myfunc;

Compatibility

There is no CREATE CONVERSION statement in the SQL standard.

See Also

ALTER CONVERSION, CREATE FUNCTION, DROP CONVERSION
CREATE CONVERSION 113

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE DATABASE
Creates a new database.

Synopsis
CREATE DATABASE name [[WITH] [OWNER [=] dbowner]
 [TEMPLATE [=] template]
 [ENCODING [=] encoding]
 [TABLESPACE [=] tablespace]
 [CONNECTION LIMIT [=] connlimit]]

Description

CREATE DATABASE creates a new database. To create a database, you must be a
superuser or have the special CREATEDB privilege.

The creator becomes the owner of the new database by default. Superusers can create
databases owned by other users by using the OWNER clause. They can even create
databases owned by users with no special privileges. Non-superusers with CREATEDB
privilege can only create databases owned by themselves.

By default, the new database will be created by cloning the standard system database
template1. A different template can be specified by writing TEMPLATE name. In
particular, by writing TEMPLATE template0, you can create a clean database
containing only the standard objects predefined by Greenplum Database. This is
useful if you wish to avoid copying any installation-local objects that may have been
added to template1.

Parameters

name
The name of a database to create.

dbowner
The name of the database user who will own the new database, or DEFAULT to use
the default owner (the user executing the command).

template
The name of the template from which to create the new database, or DEFAULT to use
the default template (template1).

encoding
Character set encoding to use in the new database. Specify a string constant (such as
'SQL_ASCII'), an integer encoding number, or DEFAULT to use the default
encoding. See “Character Set Support” on page 461.
CREATE DATABASE 114

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
tablespace
The name of the tablespace that will be associated with the new database, or
DEFAULT to use the template database’s tablespace. This tablespace will be the
default tablespace used for objects created in this database.

connlimit
The maximum number of concurrent connections posible. The default of -1 means
there is no limitation.

Notes

CREATE DATABASE cannot be executed inside a transaction block.

When you copy a database by specifying its name as the template, no other sessions
can be connected to the template database while it is being copied. New connections
to the template database are locked out until CREATE DATABASE completes.

The CONNECTION LIMIT is not enforced against superusers.

Examples

To create a new database:

CREATE DATABASE gpdb;

To create a database sales owned by user salesapp with a default tablespace of
salesspace:

CREATE DATABASE sales OWNER salesapp TABLESPACE salesspace;

To create a database music which supports the ISO-8859-1 character set:

CREATE DATABASE music ENCODING 'LATIN1';

Compatibility

There is no CREATE DATABASE statement in the SQL standard. Databases are
equivalent to catalogs, whose creation is implementation-defined.

See Also

ALTER DATABASE, DROP DATABASE
CREATE DATABASE 115

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE DOMAIN
Defines a new domain.

Synopsis
CREATE DOMAIN name [AS] data_type [DEFAULT expression]
 [CONSTRAINT constraint_name
 | NOT NULL | NULL
 | CHECK (expression) [...]]

Description

CREATE DOMAIN creates a new domain. A domain is essentially a data type with
optional constraints (restrictions on the allowed set of values). The user who defines a
domain becomes its owner. The domain name must be unique among the data types
and domains existing in its schema.

Domains are useful for abstracting common constraints on fields into a single location
for maintenance. For example, several tables might contain email address columns, all
requiring the same CHECK constraint to verify the address syntax. It is easier to define
a domain rather than setting up a column constraint for each table that has an email
column.

Parameters

name
The name (optionally schema-qualified) of a domain to be created.

data_type
The underlying data type of the domain. This may include array specifiers.

DEFAULT expression
Specifies a default value for columns of the domain data type. The value is any
variable-free expression (but subqueries are not allowed). The data type of the
default expression must match the data type of the domain. If no default value is
specified, then the default value is the null value. The default expression will be
used in any insert operation that does not specify a value for the column. If a default
value is defined for a particular column, it overrides any default associated with the
domain. In turn, the domain default overrides any default value associated with the
underlying data type.

CONSTRAINT constraint_name
An optional name for a constraint. If not specified, the system generates a name.

NOT NULL

Values of this domain are not allowed to be null.
CREATE DOMAIN 116

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
NULL

Values of this domain are allowed to be null. This is the default. This clause is only
intended for compatibility with nonstandard SQL databases. Its use is discouraged
in new applications.

CHECK (expression)
CHECK clauses specify integrity constraints or tests which values of the domain must
satisfy. Each constraint must be an expression producing a Boolean result. It should
use the key word VALUE to refer to the value being tested. Currently, CHECK
expressions cannot contain subqueries nor refer to variables other than VALUE.

Examples

Create the us_zip_code data type. A regular expression test is used to verify that the
value looks like a valid US zip code.

CREATE DOMAIN us_zip_code AS TEXT CHECK
 (VALUE ~ '^\\d{5}$' OR VALUE ~ '^\\d{5}-\\d{4}$');

Compatibility

CREATE DOMAIN conforms to the SQL standard.

See Also

ALTER DOMAIN, DROP DOMAIN
CREATE DOMAIN 117

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE EXTERNAL TABLE
Defines a new external table.

Synopsis
CREATE [READABLE] EXTERNAL TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION ('file://seghost[:port]/path/file' [, ...])
 | ('gpfdist://filehost[:port]/file_pattern[#transform]'
 | ('gpfdists://filehost[:port]/file_pattern[#transform]'
 [, ...])
 | ('gphdfs://hdfs_host[:port]/path/file')
 FORMAT 'TEXT'
 [([HEADER]
 [DELIMITER [AS] 'delimiter' | 'OFF']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CSV'
 [([HEADER]
 [QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE NOT NULL column [, ...]]
 [ESCAPE [AS] 'escape']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'encoding']
 [[LOG ERRORS INTO error_table] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

CREATE [READABLE] EXTERNAL WEB TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION ('http://webhost[:port]/path/file' [, ...])
 | EXECUTE 'command' [ON ALL
 | MASTER
 | number_of_segments
 | HOST ['segment_hostname']
 | SEGMENT segment_id]
 FORMAT 'TEXT'
 [([HEADER]
 [DELIMITER [AS] 'delimiter' | 'OFF']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
CREATE EXTERNAL TABLE 118

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
 | 'CSV'
 [([HEADER]
 [QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE NOT NULL column [, ...]]
 [ESCAPE [AS] 'escape']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'encoding']
 [[LOG ERRORS INTO error_table] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

CREATE WRITABLE EXTERNAL TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION('gpfdist://outputhost[:port]/filename[#transform]'
 | ('gpfdists://outputhost[:port]/file_pattern[#transform]'
 [, ...])
 | ('gphdfs://hdfs_host[:port]/path')
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]]]
 [ESCAPE [AS] 'escape'])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'write_encoding']
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

CREATE WRITABLE EXTERNAL WEB TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 EXECUTE 'command' [ON ALL]
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]]]
 [ESCAPE [AS] 'escape'])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'write_encoding']
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]
CREATE EXTERNAL TABLE 119

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Description
See the Greenplum Database Database Administrator Guide for detailed information
about external tables.
CREATE EXTERNAL TABLE or CREATE EXTERNAL WEB TABLE creates a new readable
external table definition in Greenplum Database. Readable external tables are
typically used for fast, parallel data loading. Once an external table is defined, you can
query its data directly (and in parallel) using SQL commands. For example, you can
select, join, or sort external table data. You can also create views for external tables.
DML operations (UPDATE, INSERT, DELETE, or TRUNCATE) are not allowed on
readable external tables, and you cannot create indexes on readable external tables.

CREATE WRITABLE EXTERNAL TABLE or CREATE WRITABLE EXTERNAL WEB TABLE
creates a new writable external table definition in Greenplum Database. Writable
external tables are typically used for unloading data from the database into a set of
files or named pipes. Writable external web tables can also be used to output data to an
executable program. Writable external tables can also be used as output targets for
Greenplum parallel MapReduce calculations. Once a writable external table is
defined, data can be selected from database tables and inserted into the writable
external table. Writable external tables only allow INSERT operations – SELECT,
UPDATE, DELETE or TRUNCATE are not allowed.

The main difference between regular external tables and web external tables is their
data sources. Regular readable external tables access static flat files, whereas web
external tables access dynamic data sources – either on a web server or by executing
OS commands or scripts.

The FORMAT clause is used to describe how the external table files are formatted. Valid
file formats are delimited text (TEXT) for all protocols and comma separated values
(CSV) format for gpfdist and file protocols, similar to the formatting options
available with the PostgreSQL COPY command. If the data in the file does not use the
default column delimiter, escape character, null string and so on, you must specify the
additional formatting options so that the data in the external file is read correctly by
Greenplum Database. For information about using a custom format, see the
Greenplum Database Database Administrator Guide.

Parameters

READABLE | WRITABLE

Specifiies the type of external table, readable being the default. Readable external
tables are used for loading data into Greenplum Database. Writable external tables
are used for unloading data.

WEB

Creates a readable or wrtiable web external table definition in Greenplum Database.
There are two forms of readable web external tables – those that access files via the
http:// protocol or those that access data by executing OS commands. Writable
web external tables output data to an executable program that can accept an input
stream of data. Web external tables are not rescannable during query execution.
CREATE EXTERNAL TABLE 120

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
table_name
The name of the new external table.

column_name
The name of a column to create in the external table definition. Unlike regular
tables, external tables do not have column constraints or default values, so do not
specify those.

LIKE other_table
The LIKE clause specifies a table from which the new external table automatically
copies all column names, data types and Greenplum distribution policy. If the
original table specifies any column constraints or default column values, those will
not be copied over to the new external table definition.

data_type
The data type of the column.

LOCATION ('protocol://host[:port]/path/file' [, ...])
For readable external tables, specifies the URI of the external data source(s) to be
used to populate the external table or web table. Regular readable external tables
allow the gpfdist or file protocols. Web external tables allow the http protocol.
If port is omitted, port 8080 is assumed for http and gpfdist protocols, and port
9000 for the gphdfs protocol. If using the gpfdist protocol, the path is relative to
the directory from which gpfdist is serving files (the directory specified when you
started the gpfdist program). Also, gpfdist can use wildcards (or other C-style
pattern matching) to denote multiple files in a directory. For example:

'gpfdist://filehost:8081/*'

'gpfdist://masterhost/my_load_file'

'file://seghost1/dbfast1/external/myfile.txt'

'http://intranet.mycompany.com/finance/expenses.csv'

For writable external tables, specifies the URI location of the gpfdist process that
will collect data output from the Greenplum segments and write it to the named file.
The path is relative to the directory from which gpfdist is serving files (the
directory specified when you started the gpfdist program). If multiple gpfdist
locations are listed, the segments sending data will be evenly divided across the
available output locations. For example:

'gpfdist://outputhost:8081/data1.out',

'gpfdist://outputhost:8081/data2.out'

With two gpfdist locations listed as in the above example, half of the segments
would send their output data to the data1.out file and the other half to the
data2.out file.
CREATE EXTERNAL TABLE 121

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
EXECUTE 'command' [ON ...]
Allowed for readable web external tables or writable external tables only. For
readable web external tables, specifies the OS command to be executed by the
segment instances. The command can be a single OS command or a script. The ON
clause is used to specify which segment instances will execute the given command.

• ON ALL is the default. The command will be executed by every active
(primary) segment instance on all segment hosts in the Greenplum Database
system. If the command executes a script, that script must reside in the same
location on all of the segment hosts and be executable by the Greenplum
superuser (gpadmin).

• ON MASTER runs the command on the master host only.
• ON number means the command will be executed by the specified number

of segments. The particular segments are chosen randomly at runtime by the
Greenplum Database system. If the command executes a script, that script
must reside in the same location on all of the segment hosts and be executable
by the Greenplum superuser (gpadmin).

• HOST means the command will be executed by one segment on each segment
host (once per segment host), regardless of the number of active segment
instances per host.

• HOST segment_hostname means the command will be executed by all
active (primary) segment instances on the specified segment host.

• SEGMENT segment_id means the command will be executed only once
by the specified segment. You can determine a segment instance’s ID by
looking at the content number in the system catalog table
gp_segment_configuration. The content ID of the Greenplum Database
master is always -1.

For writable external tables, the command specified in the EXECUTE clause must be
prepared to have data piped into it. Since all segments that have data to send will
write their output to the specified command or program, the only available option
for the ON clause is ON ALL.

FORMAT 'TEXT | CSV' (options)
Specifies the format of the external or web table data - either plain text (TEXT) or
comma separated values (CSV) format.

DELIMITER

Specifies a single ASCII character that separates columns within each row (line) of
data. The default is a tab character in TEXT mode, a comma in CSV mode. In TEXT
mode for readable external tables, the delimiter can be set to OFF for special use
cases in which unstructured data is loaded into a single-column table.

NULL

Specifies the string that represents a null value. The default is \N (backslash-N) in
TEXT mode, and an empty value with no quotations in CSV mode. You might prefer
an empty string even in TEXT mode for cases where you do not want to distinguish
nulls from empty strings. When using external and web tables, any data item that
matches this string will be considered a null value.
CREATE EXTERNAL TABLE 122

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ESCAPE

Specifies the single character that is used for C escape sequences (such as
\n,\t,\100, and so on) and for escaping data characters that might otherwise be
taken as row or column delimiters. Make sure to choose an escape character that is
not used anywhere in your actual column data. The default escape character is a \
(backslash) for text-formatted files and a " (double quote) for csv-formatted files,
however it is possible to specify another character to represent an escape. It is also
possible to disable escaping in text-formatted files by specifying the value 'OFF' as
the escape value. This is very useful for data such as text-formatted web log data
that has many embedded backslashes that are not intended to be escapes.

NEWLINE

Specifies the newline used in your data files – LF (Line feed, 0x0A), CR (Carriage
return, 0x0D), or CRLF (Carriage return plus line feed, 0x0D 0x0A). If not specified,
a Greenplum Database segment will detect the newline type by looking at the first
row of data it receives and using the first newline type encountered.

HEADER

For readable external tables, specifies that the first line in the data file(s) is a header
row (contains the names of the table columns) and should not be included as data for
the table. If using multiple data source files, all files must have a header row.

QUOTE

Specifies the quotation character for CSV mode. The default is double-quote (").

FORCE NOT NULL

In CSV mode, processes each specified column as though it were quoted and hence
not a NULL value. For the default null string in CSV mode (nothing between two
delimiters), this causes missing values to be evaluated as zero-length strings.

FORCE QUOTE

In CSV mode for writable external tables, forces quoting to be used for all non-NULL
values in each specified column. NULL output is never quoted.

FILL MISSING FIELDS

In both TEXT and CSV mode for readable external tables, specifying FILL MISSING
FIELDS will set missing trailing field values to NULL (instead of reporting an error)
when a row of data has missing data fields at the end of a line or row. Blank rows,
fields with a NOT NULL constraint, and trailing delimiters on a line will still report an
error.

ENCODING 'encoding'
Character set encoding to use for the external table. Specify a string constant (such
as 'SQL_ASCII'), an integer encoding number, or DEFAULT to use the default client
encoding. See “Character Set Support” on page 461.
CREATE EXTERNAL TABLE 123

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
LOG ERRORS INTO error_table
This is an optional clause that may precede a SEGMENT REJECT LIMIT clause. It
specifies an error table where rows with formatting errors will be logged when
running in single row error isolation mode. You can then examine this error table to
see error rows that were not loaded (if any). If the error_table specified already
exists, it will be used. If it does not exist, it will be automatically generated.

SEGMENT REJECT LIMIT count [ROWS | PERCENT]
Runs a COPY FROM operation in single row error isolation mode. If the input rows
have format errors they will be discarded provided that the reject limit count is not
reached on any Greenplum segment instance during the load operation. The reject
limit count can be specified as number of rows (the default) or percentage of total
rows (1-100). If PERCENT is used, each segment starts calculating the bad row
percentage only after the number of rows specified by the parameter
gp_reject_percent_threshold has been processed. The default for
gp_reject_percent_threshold is 300 rows. Constraint errors such as violation
of a NOT NULL, CHECK, or UNIQUE constraint will still be handled in “all-or-nothing”
input mode. If the limit is not reached, all good rows will be loaded and any error
rows discarded.

DISTRIBUTED BY (column, [...])
DISTRIBUTED RANDOMLY

Used to declare the Greenplum Database distribution policy for a writable external
table. By default, writable external tables are distributed randomly. If the source
table you are exporting data from has a hash distribution policy, defining the same
distribution key column(s) for the writable external table will improve unload
performance by eliminating the need to move rows over the interconnect. When you
issue an unload command such as INSERT INTO wex_table SELECT * FROM
source_table, the rows that are unloaded can be sent directly from the segments
to the output location if the two tables have the same hash distribution policy.

Examples

Start the gpfdist file server program in the background on port 8081 serving files
from directory /var/data/staging:

gpfdist -p 8081 -d /var/data/staging -l /home/gpadmin/log &

Create a readable external table named ext_customer using the gpfdist protocol and
any text formatted files (*.txt) found in the gpfdist directory. The files are
formatted with a pipe (|) as the column delimiter and an empty space as null. Also
access the external table in single row error isolation mode:

CREATE EXTERNAL TABLE ext_customer
 (id int, name text, sponsor text)
 LOCATION ('gpfdist://filehost:8081/*.txt')
 FORMAT 'TEXT' (DELIMITER '|' NULL ' ')
 LOG ERRORS INTO err_customer SEGMENT REJECT LIMIT 5;

Create the same readable external table definition as above, but with CSV formatted
files:
CREATE EXTERNAL TABLE 124

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE EXTERNAL TABLE ext_customer
 (id int, name text, sponsor text)
 LOCATION ('gpfdist://filehost:8081/*.csv')
 FORMAT 'CSV' (DELIMITER ',');

Create a readable external table named ext_expenses using the file protocol and
several CSV formatted files that have a header row:

CREATE EXTERNAL TABLE ext_expenses (name text, date date,
amount float4, category text, description text)
LOCATION (
'file://seghost1/dbfast/external/expenses1.csv',
'file://seghost1/dbfast/external/expenses2.csv',
'file://seghost2/dbfast/external/expenses3.csv',
'file://seghost2/dbfast/external/expenses4.csv',
'file://seghost3/dbfast/external/expenses5.csv',
'file://seghost3/dbfast/external/expenses6.csv'
)
FORMAT 'CSV' (HEADER);

Create a readable web external table that executes a script once per segment host:

CREATE EXTERNAL WEB TABLE log_output (linenum int, message
text) EXECUTE '/var/load_scripts/get_log_data.sh' ON HOST
 FORMAT 'TEXT' (DELIMITER '|');

Create a writable external table named sales_out that uses gpfdist to write output
data to a file named sales.out. The files are formatted with a pipe (|) as the column
delimiter and an empty space as null.

CREATE WRITABLE EXTERNAL TABLE sales_out (LIKE sales)

 LOCATION ('gpfdist://etl1:8081/sales.out')

 FORMAT 'TEXT' (DELIMITER '|' NULL ' ')

 DISTRIBUTED BY (txn_id);

Create a writable external web table that pipes output data received by the segments to
an executable script named to_adreport_etl.sh:

CREATE WRITABLE EXTERNAL WEB TABLE campaign_out
(LIKE campaign)
 EXECUTE '/var/unload_scripts/to_adreport_etl.sh'
 FORMAT 'TEXT' (DELIMITER '|');

Use the writable external table defined above to unload selected data:

INSERT INTO campaign_out SELECT * FROM campaign WHERE
customer_id=123;

Compatibility

CREATE EXTERNAL TABLE is a Greenplum Database extension. The SQL standard
makes no provisions for external tables.

See Also

CREATE TABLE AS, CREATE TABLE, COPY, SELECT INTO, INSERT
CREATE EXTERNAL TABLE 125

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE FUNCTION
Defines a new function.

Synopsis
CREATE [OR REPLACE] FUNCTION name
 ([[argmode] [argname] argtype [, ...]])
 [RETURNS { [SETOF] rettype
 | TABLE ([{ argname argtype | LIKE other table }
 [, ...]])
 }]
 { LANGUAGE langname
 | IMMUTABLE | STABLE | VOLATILE
 | CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
 | [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 | AS 'definition'
 | AS 'obj_file', 'link_symbol' } ...
 [WITH ({ DESCRIBE = describe_function
 } [, ...])]

Description

CREATE FUNCTION defines a new function. CREATE OR REPLACE FUNCTION will
either create a new function, or replace an existing definition.

The name of the new function must not match any existing function with the same
argument types in the same schema. However, functions of different argument types
may share a name (overloading).

To update the definition of an existing function, use CREATE OR REPLACE FUNCTION.
It is not possible to change the name or argument types of a function this way (this
would actually create a new, distinct function). Also, CREATE OR REPLACE
FUNCTION will not let you change the return type of an existing function. To do that,
you must drop and recreate the function. If you drop and then recreate a function, you
will have to drop existing objects (rules, views, triggers, and so on) that refer to the old
function. Use CREATE OR REPLACE FUNCTION to change a function definition
without breaking objects that refer to the function.

For more information about creating functions, see the User Defined Functions
section of the PostgreSQL documentation.

Limited Use of VOLATILE and STABLE Functions

To prevent data from becoming out-of-sync across the segments in Greenplum
Database, any function classified as STABLE or VOLATILE cannot be executed at the
segment level if it contains SQL or modifies the database in any way. For example,
functions such as random() or timeofday() are not allowed to execute on
distributed data in Greenplum Database because they could potentially cause
inconsistent data between the segment instances.
CREATE FUNCTION 126

http://www.postgresql.org/docs/8.2/static/xfunc.html

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
To ensure data consistency, VOLATILE and STABLE functions can safely be used in
statements that are evaluated on and execute from the master. For example, the
following statements are always executed on the master (statements without a FROM
clause):

SELECT setval('myseq', 201);

SELECT foo();

In cases where a statement has a FROM clause containing a distributed table and the
function used in the FROM clause simply returns a set of rows, execution may be
allowed on the segments:

SELECT * FROM foo();

One exception to this rule are functions that return a table reference (rangeFuncs) or
functions that use the refCursor data type. Note that you cannot return a refcursor
from any kind of function in Greenplum Database.

Parameters

name
The name (optionally schema-qualified) of the function to create.

argmode
The mode of an argument: either IN, OUT, or INOUT. If omitted, the default is IN.

argname
The name of an argument. Some languages (currently only PL/pgSQL) let you use
the name in the function body. For other languages the name of an input argument is
just extra documentation. But the name of an output argument is significant, since it
defines the column name in the result row type. (If you omit the name for an output
argument, the system will choose a default column name.)

argtype
The data type(s) of the function's arguments (optionally schema-qualified), if any.
The argument types may be base, composite, or domain types, or may reference the
type of a table column.

Depending on the implementation language it may also be allowed to specify
pseudotypes such as cstring. Pseudotypes indicate that the actual argument type is
either incompletely specified, or outside the set of ordinary SQL data types.

The type of a column is referenced by writing tablename.columnname%TYPE.
Using this feature can sometimes help make a function independent of changes to
the definition of a table.
CREATE FUNCTION 127

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
rettype
The return data type (optionally schema-qualified). The return type can be a base,
composite, or domain type, or may reference the type of a table column. Depending
on the implementation language it may also be allowed to specify pseudotypes such
as cstring. If the function is not supposed to return a value, specify void as the
return type.

When there are OUT or INOUT parameters, the RETURNS clause may be omitted. If
present, it must agree with the result type implied by the output parameters: RECORD
if there are multiple output parameters, or the same type as the single output
parameter.

The SETOF modifier indicates that the function will return a set of items, rather than
a single item.

The type of a column is referenced by writing tablename.columnname%TYPE.

langname
The name of the language that the function is implemented in. May be SQL, C,
internal, or the name of a user-defined procedural language. See CREATE
LANGUAGE for the procedural languages supported in Greenplum Database. For
backward compatibility, the name may be enclosed by single quotes.

IMMUTABLE
STABLE
VOLATILE

These attributes inform the query optimizer about the behavior of the function. At
most one choice may be specified. If none of these appear, VOLATILE is the default
assumption. Since Greenplum Database currently has limited use of VOLATILE
functions, if a function is truly IMMUTABLE, you must declare it as so to be able to
use it without restrictions.

IMMUTABLE indicates that the function cannot modify the database and always
returns the same result when given the same argument values. It does not do
database lookups or otherwise use information not directly present in its argument
list. If this option is given, any call of the function with all-constant arguments can
be immediately replaced with the function value.

STABLE indicates that the function cannot modify the database, and that within a
single table scan it will consistently return the same result for the same argument
values, but that its result could change across SQL statements. This is the
appropriate selection for functions whose results depend on database lookups,
parameter values (such as the current time zone), and so on. Also note that the
current_timestamp family of functions qualify as stable, since their values do not
change within a transaction.

VOLATILE indicates that the function value can change even within a single table
scan, so no optimizations can be made. Relatively few database functions are
volatile in this sense; some examples are random(), currval(), timeofday().
But note that any function that has side-effects must be classified volatile, even if its
result is quite predictable, to prevent calls from being optimized away; an example
is setval().
CREATE FUNCTION 128

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CALLED ON NULL INPUT
RETURNS NULL ON NULL INPUT
STRICT

CALLED ON NULL INPUT (the default) indicates that the function will be called
normally when some of its arguments are null. It is then the function author’s
responsibility to check for null values if necessary and respond appropriately.
RETURNS NULL ON NULL INPUT or STRICT indicates that the function always
returns null whenever any of its arguments are null. If this parameter is specified, the
function is not executed when there are null arguments; instead a null result is
assumed automatically.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

SECURITY INVOKER (the default) indicates that the function is to be executed with
the privileges of the user that calls it. SECURITY DEFINER specifies that the function
is to be executed with the privileges of the user that created it. The key word
EXTERNAL is allowed for SQL conformance, but it is optional since, unlike in SQL,
this feature applies to all functions not just external ones.

definition
A string constant defining the function; the meaning depends on the language. It
may be an internal function name, the path to an object file, an SQL command, or
text in a procedural language.

obj_file, link_symbol
This form of the AS clause is used for dynamically loadable C language functions
when the function name in the C language source code is not the same as the name
of the SQL function. The string obj_file is the name of the file containing the
dynamically loadable object, and link_symbol is the name of the function in the C
language source code. If the link symbol is omitted, it is assumed to be the same as
the name of the SQL function being defined. It is recommended to locate shared
libraries either relative to $libdir (which is located at $GPHOME/lib) or through
the dynamic library path (set by the dynamic_library_path server configuration
parameter). This simplifies version upgrades if the new installation is at a different
location.

describe_function
The name of a callback function to execute when a query that calls this function is
parsed. The callback function returns a tuple descriptor that indicates the result type.

Notes

Any compiled code (shared library files) for custom functions must be placed in the
same location on every host in your Greenplum Database array (master and all
segments). This location must also be in the LD_LIBRARY_PATH so that the server can
locate the files. It is recommended to locate shared libraries either relative to $libdir
(which is located at $GPHOME/lib) or through the dynamic library path (set by the
dynamic_library_path server configuration parameter) on all master segment
instances in the Greenplum array.
CREATE FUNCTION 129

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
The full SQL type syntax is allowed for input arguments and return value. However,
some details of the type specification (such as the precision field for type numeric) are
the responsibility of the underlying function implementation and are not recognized or
enforced by the CREATE FUNCTION command.

Greenplum Database allows function overloading. The same name can be used for
several different functions so long as they have distinct argument types. However, the
C names of all functions must be different, so you must give overloaded C functions
different C names (for example, use the argument types as part of the C names).

Two functions are considered the same if they have the same names and input
argument types, ignoring any OUT parameters. Thus for example these declarations
conflict:

CREATE FUNCTION foo(int) ...

CREATE FUNCTION foo(int, out text) ...

When repeated CREATE FUNCTION calls refer to the same object file, the file is only
loaded once. To unload and reload the file, use the LOAD command.

To be able to define a function, the user must have the USAGE privilege on the
language.

It is often helpful to use dollar quoting to write the function definition string, rather
than the normal single quote syntax. Without dollar quoting, any single quotes or
backslashes in the function definition must be escaped by doubling them. A
dollar-quoted string constant consists of a dollar sign ($), an optional tag of zero or
more characters, another dollar sign, an arbitrary sequence of characters that makes up
the string content, a dollar sign, the same tag that began this dollar quote, and a dollar
sign. Inside the dollar-quoted string, single quotes, backslashes, or any character can
be used without escaping. The string content is always written literally. For example,
here are two different ways to specify the string “Dianne’s horse” using dollar
quoting:

$$Dianne's horse$$

$SomeTag$Dianne's horse$SomeTag$

Examples

A very simple addition function:

CREATE FUNCTION add(integer, integer) RETURNS integer

 AS 'select $1 + $2;'

 LANGUAGE SQL

 IMMUTABLE

 RETURNS NULL ON NULL INPUT;

Increment an integer, making use of an argument name, in PL/pgSQL:

CREATE OR REPLACE FUNCTION increment(i integer) RETURNS
integer AS $$

 BEGIN

 RETURN i + 1;

 END;
CREATE FUNCTION 130

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
$$ LANGUAGE plpgsql;

Return a record containing multiple output parameters:

CREATE FUNCTION dup(in int, out f1 int, out f2 text)

 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$

 LANGUAGE SQL;

SELECT * FROM dup(42);

You can do the same thing more verbosely with an explicitly named composite type:

CREATE TYPE dup_result AS (f1 int, f2 text);

CREATE FUNCTION dup(int) RETURNS dup_result

 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$

 LANGUAGE SQL;

SELECT * FROM dup(42);

Compatibility

CREATE FUNCTION is defined in SQL:1999 and later. The Greenplum Database
version is similar but not fully compatible. The attributes are not portable, neither are
the different available languages.

For compatibility with some other database systems, argmode can be written either
before or after argname. But only the first way is standard-compliant.

See Also

ALTER FUNCTION, DROP FUNCTION, LOAD
CREATE FUNCTION 131

CREATE GROUP 132

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

CREATE GROUP
Defines a new database role.

Synopsis
CREATE GROUP name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE rolename [, ...]
 | IN GROUP rolename [, ...]
 | ROLE rolename [, ...]
 | ADMIN rolename [, ...]
 | USER rolename [, ...]
 | SYSID uid

Description

As of Greenplum Database release 2.2, CREATE GROUP has been replaced by CREATE
ROLE, although it is still accepted for backwards compatibility.

Compatibility

There is no CREATE GROUP statement in the SQL standard.

See Also

CREATE ROLE

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE INDEX
Defines a new index.

Synopsis
CREATE [UNIQUE] INDEX name ON table
 [USING btree|bitmap|gist]
 ({column | (expression)} [opclass] [, ...])
 [WITH (FILLFACTOR = value)]
 [TABLESPACE tablespace]
 [WHERE predicate]

Description

CREATE INDEX constructs an index on the specified table. Indexes are primarily used
to enhance database performance (though inappropriate use can result in slower
performance).

The key field(s) for the index are specified as column names, or alternatively as
expressions written in parentheses. Multiple fields can be specified if the index
method supports multicolumn indexes.

An index field can be an expression computed from the values of one or more
columns of the table row. This feature can be used to obtain fast access to data based
on some transformation of the basic data. For example, an index computed on
upper(col) would allow the clause WHERE upper(col) = 'JIM' to use an index.

Greenplum Database provides the index methods B-tree, bitmap, and GiST. Users can
also define their own index methods, but that is fairly complicated.

When the WHERE clause is present, a partial index is created. A partial index is an
index that contains entries for only a portion of a table, usually a portion that is more
useful for indexing than the rest of the table. For example, if you have a table that
contains both billed and unbilled orders where the unbilled orders take up a small
fraction of the total table and yet is most often selected, you can improve performance
by creating an index on just that portion.

The expression used in the WHERE clause may refer only to columns of the underlying
table, but it can use all columns, not just the ones being indexed. Subqueries and
aggregate expressions are also forbidden in WHERE. The same restrictions apply to
index fields that are expressions.

All functions and operators used in an index definition must be immutable. Their
results must depend only on their arguments and never on any outside influence (such
as the contents of another table or a parameter value). This restriction ensures that the
behavior of the index is well-defined. To use a user-defined function in an index
expression or WHERE clause, remember to mark the function IMMUTABLE when you
create it.
CREATE INDEX 133

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Parameters

UNIQUE

Checks for duplicate values in the table when the index is created and each time data
is added. Duplicate entries will generate an error. Unique indexes only apply to
B-tree indexes. In Greenplum Database, unique indexes are allowed only if the
columns of the index key are the same as (or a superset of) the Greenplum
distribution key. On partitioned tables, a unique index is only supported within an
individual partition - not across all partitions.

name
The name of the index to be created. The index is always created in the same schema
as its parent table.

table
The name (optionally schema-qualified) of the table to be indexed.

btree | bitmap | gist

The name of the index method to be used. Choices are btree, bitmap, and gist.
The default method is btree.

column
The name of a column of the table on which to create the index. Only the B-tree,
bitmap, and GiST index methods support multicolumn indexes.

expression
An expression based on one or more columns of the table. The expression usually
must be written with surrounding parentheses, as shown in the syntax. However, the
parentheses may be omitted if the expression has the form of a function call.

opclass
The name of an operator class. The operator class identifies the operators to be used
by the index for that column. For example, a B-tree index on four-byte integers
would use the int4_ops class (this operator class includes comparison functions for
four-byte integers). In practice the default operator class for the column’s data type
is usually sufficient. The main point of having operator classes is that for some data
types, there could be more than one meaningful ordering. For example, a
complex-number data type could be sorted by either absolute value or by real part.
We could do this by defining two operator classes for the data type and then
selecting the proper class when making an index.

FILLFACTOR

The fillfactor for an index is a percentage that determines how full the index method
will try to pack index pages. For B-trees, leaf pages are filled to this percentage
during initial index build, and also when extending the index at the right (largest key
values). If pages subsequently become completely full, they will be split, leading to
gradual degradation in the index’s efficiency.
CREATE INDEX 134

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
B-trees use a default fillfactor of 90, but any value from 10 to 100 can be selected. If
the table is static then fillfactor 100 is best to minimize the index's physical size, but
for heavily updated tables a smaller fillfactor is better to minimize the need for page
splits. The other index methods use fillfactor in different but roughly analogous
ways; the default fillfactor varies between methods.

tablespace
The tablespace in which to create the index. If not specified, the default tablespace is
used.

predicate
The constraint expression for a partial index.

Notes

UNIQUE indexes are allowed only if the index columns are the same as (or a superset
of) the Greenplum distribution key columns. On partitioned tables, a unique index is
only supported within an individual partition - not across all partitions.

UNIQUE indexes are not allowed on append-only tables.

Indexes are not used for IS NULL clauses by default. The best way to use indexes in
such cases is to create a partial index using an IS NULL predicate.

Prior releases of Greenplum Database also had an R-tree index method. This method
has been removed because it had no significant advantages over the GiST method. If
USING rtree is specified, CREATE INDEX will interpret it as USING gist.

For more information on the GiST index type, refer to the PostgreSQL documentation.

The use of hash and GIN indexes has been disabled in Greenplum Database.

Examples

To create a B-tree index on the column title in the table films:

CREATE UNIQUE INDEX title_idx ON films (title);

To create a bitmap index on the column gender in the table employee:

CREATE INDEX gender_bmp_idx ON employee USING bitmap
(gender);

To create an index on the expression lower(title), allowing efficient case-insensitive
searches:

CREATE INDEX lower_title_idx ON films ((lower(title)));

To create an index with non-default fill factor:

CREATE UNIQUE INDEX title_idx ON films (title) WITH
(fillfactor = 70);

To create an index on the column code in the table films and have the index reside in
the tablespace indexspace:

CREATE INDEX code_idx ON films(code) TABLESPACE indexspace;
CREATE INDEX 135

http://www.postgresql.org/docs/8.2/static/indexes-types.html

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Compatibility

CREATE INDEX is a Greenplum Database language extension. There are no provisions
for indexes in the SQL standard.

Greenplum Database does not support the concurrent creation of indexes
(CONCURRENTLY keyword not supported).

See Also

ALTER INDEX, DROP INDEX, CREATE TABLE, CREATE OPERATOR CLASS
CREATE INDEX 136

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE LANGUAGE
Defines a new procedural language.

Synopsis
CREATE [PROCEDURAL] LANGUAGE name

CREATE [TRUSTED] [PROCEDURAL] LANGUAGE name
 HANDLER call_handler [VALIDATOR valfunction]

Description

CREATE LANGUAGE registers a new procedural language with a Greenplum database.
Subsequently, functions and trigger procedures can be defined in this new language.
You must be a superuser to register a new language. The PL/pgSQL language is
already registered in all databases by default.

CREATE LANGUAGE effectively associates the language name with a call handler that is
responsible for executing functions written in that language. For a function written in
a procedural language (a language other than C or SQL), the database server has no
built-in knowledge about how to interpret the function’s source code. The task is
passed to a special handler that knows the details of the language. The handler could
either do all the work of parsing, syntax analysis, execution, and so on or it could
serve as a bridge between Greenplum Database and an existing implementation of a
programming language. The handler itself is a C language function compiled into a
shared object and loaded on demand, just like any other C function. There are
currently four procedural language packages included in the standard Greenplum
Database distribution: PL/pgSQL, PL/Perl, PL/Python, and PL/Java. A language
handler has also been added for PL/R, but the PL/R language package is not
pre-installed with Greenplum Database. See the section on Procedural Languages in
the PostgreSQL documentation for more information on developing functions using
these procedural languages.

The PL/Perl, PL/Java, and PL/R libraries require the correct versions of Perl, Java, and
R to be installed, respectively.

On RHEL and SUSE platforms, download the appropriate extensions from the EMC
Download Center, then install the extensions using the Greenplum Package Manager
(gppkg) utility to ensure that all dependencies are installed as well as the extensions.
See the Greenplum Database Utility Guide for details about gppkg.

On Solaris platforms, installing dependencies is a manual process:

• For PL/Perl: ensure that the systems that run Greenplum Database (master and all
segments) have a shared version of Perl installed. 64-bit systems require a 64-bit
shared version of Perl. Solaris does not have a 64-bit shared version of Perl by
default. Greenplum provides a 64-bit shared version of Perl for Solaris, available
from the EMC Download Center.
CREATE LANGUAGE 137

http://www.postgresql.org/docs/8.2/static/xplang.html
https://emc.subscribenet.com
https://emc.subscribenet.com
https://emc.subscribenet.com

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
• For PL/Java, ensure that the systems that run Greenplum Database (master and all
segments) have a JDK version 1.6 or higher installed. Add any Java archive (jar)
files to $GPHOME/lib/postgresql/java and ensure they are listed in the
pljava_classpath server configuration parameter. See the PLJAVA_README file
(located in $GPHOME/share/postgresql/pljava) for more information on
using PL/Java in Greenplum Database.

• For PL/R, ensure that the systems that run Greenplum Database (master and all
segments) have the R language installed and the PL/R package library (plr.so)
added to their Greenplum installation on all hosts. Greenplum provides compiled
packages for R and PL/R that you can install.

There are two forms of the CREATE LANGUAGE command. In the first form, the user
specifies the name of the desired language and the Greenplum Database server uses
the pg_pltemplate system catalog to determine the correct parameters. In the second
form, the user specifies the language parameters as well as the language name. You
can use the second form to create a language that is not defined in pg_pltemplate.

When the server finds an entry in the pg_pltemplate catalog for the given language
name, it will use the catalog data even if the command includes language parameters.
This behavior simplifies loading of old dump files, which are likely to contain
out-of-date information about language support functions.

Parameters

TRUSTED

Ignored if the server has an entry for the specified language name in pg_pltemplate.
Specifies that the call handler for the language is safe and does not offer an
unprivileged user any functionality to bypass access restrictions. If this key word is
omitted when registering the language, only users with the superuser privilege can
use this language to create new functions.

PROCEDURAL

This is a noise word.

name
The name of the new procedural language. The language name is case insensitive.
The name must be unique among the languages in the database. Built-in support is
included for plpgsql, plperl, plpython, plpythonu, and plr. plpgsql is
already installed by default in Greenplum Database.

HANDLER call_handler
Ignored if the server has an entry for the specified language name in pg_pltemplate.
The name of a previously registered function that will be called to execute the
procedural language functions. The call handler for a procedural language must be
written in a compiled language such as C with version 1 call convention and
registered with Greenplum Database as a function taking no arguments and
returning the language_handler type, a placeholder type that is simply used to
identify the function as a call handler.
CREATE LANGUAGE 138

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
VALIDATOR valfunction
Ignored if the server has an entry for the specified language name in pg_pltemplate.
valfunction is the name of a previously registered function that will be called
when a new function in the language is created, to validate the new function. If no
validator function is specified, then a new function will not be checked when it is
created. The validator function must take one argument of type oid, which will be
the OID of the to-be-created function, and will typically return void.

A validator function would typically inspect the function body for syntactical
correctness, but it can also look at other properties of the function, for example if the
language cannot handle certain argument types. To signal an error, the validator
function should use the ereport() function. The return value of the function is
ignored.

Notes

The PL/pgSQL language is installed by default in Greenplum Database.

The system catalog pg_language records information about the currently installed
languages.

To create functions in a procedural language, a user must have the USAGE privilege for
the language. By default, USAGE is granted to PUBLIC (everyone) for trusted
languages. This may be revoked if desired.

Procedural languages are local to individual databases. However, a language can be
installed into the template1 database, which will cause it to be available automatically
in all subsequently-created databases.

The call handler function and the validator function (if any) must already exist if the
server does not have an entry for the language in pg_pltemplate. But when there is an
entry, the functions need not already exist; they will be automatically defined if not
present in the database.

Any shared library that implements a language must be located in the same
LD_LIBRARY_PATH location on all segment hosts in your Greenplum Database array.

Examples

The preferred way of creating any of the standard procedural languages:

CREATE LANGUAGE plpgsql;

CREATE LANGUAGE plr;

For a language not known in the pg_pltemplate catalog:

CREATE FUNCTION plsample_call_handler() RETURNS
language_handler

 AS '$libdir/plsample'

 LANGUAGE C;

CREATE LANGUAGE plsample

 HANDLER plsample_call_handler;
CREATE LANGUAGE 139

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Compatibility

CREATE LANGUAGE is a Greenplum Database extension.

See Also

ALTER LANGUAGE, CREATE FUNCTION, DROP LANGUAGE
CREATE LANGUAGE 140

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE OPERATOR
Defines a new operator.

Synopsis
CREATE OPERATOR name (
 PROCEDURE = funcname
 [, LEFTARG = lefttype] [, RIGHTARG = righttype]
 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, MERGES]
 [, SORT1 = left_sort_op] [, SORT2 = right_sort_op]
 [, LTCMP = less_than_op] [, GTCMP = greater_than_op])

Description

CREATE OPERATOR defines a new operator. The user who defines an operator becomes
its owner.

The operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters
from the following list: + - * / < > = ~ ! @ # % ^ & | ` ?

There are a few restrictions on your choice of name:

• -- and /* cannot appear anywhere in an operator name, since they will be taken
as the start of a comment.

• A multicharacter operator name cannot end in + or -, unless the name also
contains at least one of these characters: ~ ! @ # % ^ & | ` ?

For example, @- is an allowed operator name, but *- is not. This restriction allows
Greenplum Database to parse SQL-compliant commands without requiring spaces
between tokens.

The operator != is mapped to <> on input, so these two names are always equivalent.

At least one of LEFTARG and RIGHTARG must be defined. For binary operators, both
must be defined. For right unary operators, only LEFTARG should be defined, while for
left unary operators only RIGHTARG should be defined.

The funcname procedure must have been previously defined using CREATE
FUNCTION, must be IMMUTABLE, and must be defined to accept the correct number of
arguments (either one or two) of the indicated types.

The other clauses specify optional operator optimization clauses. These clauses should
be provided whenever appropriate to speed up queries that use the operator. But if you
provide them, you must be sure that they are correct. Incorrect use of an optimization
clause can result in server process crashes, subtly wrong output, or other unexpected
results. You can always leave out an optimization clause if you are not sure about it.
CREATE OPERATOR 141

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Parameters

name
The (optionally schema-qualified) name of the operator to be defined. Two
operators in the same schema can have the same name if they operate on different
data types.

funcname
The function used to implement this operator (must be an IMMUTABLE function).

lefttype
The data type of the operator’s left operand, if any. This option would be omitted for
a left-unary operator.

righttype
The data type of the operator’s right operand, if any. This option would be omitted
for a right-unary operator.

com_op
The optional COMMUTATOR clause names an operator that is the commutator of the
operator being defined. We say that operator A is the commutator of operator B if (x
A y) equals (y B x) for all possible input values x, y. Notice that B is also the
commutator of A. For example, operators < and > for a particular data type are
usually each others commutators, and operator + is usually commutative with itself.
But operator - is usually not commutative with anything. The left operand type of a
commutable operator is the same as the right operand type of its commutator, and
vice versa. So the name of the commutator operator is all that needs to be provided
in the COMMUTATOR clause.

neg_op
The optional NEGATOR clause names an operator that is the negator of the operator
being defined. We say that operator A is the negator of operator B if both return
Boolean results and (x A y) equals NOT (x B y) for all possible inputs x, y. Notice
that B is also the negator of A. For example, < and >= are a negator pair for most
data types. An operator’s negator must have the same left and/or right operand types
as the operator to be defined, so only the operator name need be given in the
NEGATOR clause.

res_proc
The optional RESTRICT names a restriction selectivity estimation function for the
operator. Note that this is a function name, not an operator name. RESTRICT clauses
only make sense for binary operators that return boolean. The idea behind a
restriction selectivity estimator is to guess what fraction of the rows in a table will
satisfy a WHERE-clause condition of the form:

column OP constant
CREATE OPERATOR 142

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
for the current operator and a particular constant value. This assists the optimizer by
giving it some idea of how many rows will be eliminated by WHERE clauses that have
this form.

You can usually just use one of the following system standard estimator functions
for many of your own operators:

eqsel for =

neqsel for <>

scalarltsel for < or <=

scalargtsel for > or >=

join_proc
The optional JOIN clause names a join selectivity estimation function for the
operator. Note that this is a function name, not an operator name. JOIN clauses only
make sense for binary operators that return boolean. The idea behind a join
selectivity estimator is to guess what fraction of the rows in a pair of tables will
satisfy a WHERE-clause condition of the form

table1.column1 OP table2.column2

for the current operator. This helps the optimizer by letting it figure out which of
several possible join sequences is likely to take the least work.

You can usually just use one of the following system standard join selectivity
estimator functions for many of your own operators:

eqjoinsel for =

neqjoinsel for <>

scalarltjoinsel for < or <=

scalargtjoinsel for > or >=

areajoinsel for 2D area-based comparisons

positionjoinsel for 2D position-based comparisons

contjoinsel for 2D containment-based comparisons

HASHES

The optional HASHES clause tells the system that it is permissible to use the hash join
method for a join based on this operator. HASHES only makes sense for a binary
operator that returns boolean. The hash join operator can only return true for pairs
of left and right values that hash to the same hash code. If two values get put in
different hash buckets, the join will never compare them at all, implicitly assuming
that the result of the join operator must be false. So it never makes sense to specify
HASHES for operators that do not represent equality.

To be marked HASHES, the join operator must appear in a hash index operator class.
Attempts to use the operator in hash joins will fail at run time if no such operator
class exists. The system needs the operator class to find the data-type-specific hash
function for the operator’s input data type. You must also supply a suitable hash
CREATE OPERATOR 143

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
function before you can create the operator class. Care should be exercised when
preparing a hash function, because there are machine-dependent ways in which it
might fail to do the right thing.

MERGES

The MERGES clause, if present, tells the system that it is permissible to use the
merge-join method for a join based on this operator. MERGES only makes sense for a
binary operator that returns boolean, and in practice the operator must represent
equality for some data type or pair of data types.

Merge join is based on the idea of sorting the left- and right-hand tables into order
and then scanning them in parallel. So, both data types must be capable of being
fully ordered, and the join operator must be one that can only succeed for pairs of
values that fall at the same place in the sort order. In practice this means that the join
operator must behave like equality. It is possible to merge-join two distinct data
types so long as they are logically compatible. For example, the
smallint-versus-integer equality operator is merge-joinable. We only need sorting
operators that will bring both data types into a logically compatible sequence.

Execution of a merge join requires that the system be able to identify four operators
related to the merge-join equality operator: less-than comparison for the left operand
data type, less-than comparison for the right operand data type, less-than
comparison between the two data types, and greater-than comparison between the
two data types. It is possible to specify these operators individually by name, as the
SORT1, SORT2, LTCMP, and GTCMP options respectively. The system will fill in the
default names if any of these are omitted when MERGES is specified.

left_sort_op
If this operator can support a merge join, the less-than operator that sorts the
left-hand data type of this operator. < is the default if not specified.

right_sort_op
If this operator can support a merge join, the less-than operator that sorts the
right-hand data type of this operator. < is the default if not specified.

less_than_op
If this operator can support a merge join, the less-than operator that compares the
input data types of this operator. < is the default if not specified.

greater_than_op
If this operator can support a merge join, the greater-than operator that compares the
input data types of this operator. > is the default if not specified.

To give a schema-qualified operator name in optional arguments, use the OPERATOR()
syntax, for example:

COMMUTATOR = OPERATOR(myschema.===) ,

Notes

Any functions used to implement the operator must be defined as IMMUTABLE.
CREATE OPERATOR 144

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Examples

Here is an example of creating an operator for adding two complex numbers,
assuming we have already created the definition of type complex. First define the
function that does the work, then define the operator:

CREATE FUNCTION complex_add(complex, complex)

 RETURNS complex

 AS 'filename', 'complex_add'

 LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR + (

 leftarg = complex,

 rightarg = complex,

 procedure = complex_add,

 commutator = +

);

To use this operator in a query:

SELECT (a + b) AS c FROM test_complex;

Compatibility

CREATE OPERATOR is a Greenplum Database language extension. The SQL standard
does not provide for user-defined operators.

See Also

CREATE FUNCTION, CREATE TYPE, ALTER OPERATOR, DROP OPERATOR
CREATE OPERATOR 145

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE OPERATOR CLASS
Defines a new operator class.

Synopsis
CREATE OPERATOR CLASS name [DEFAULT] FOR TYPE data_type
 USING index_method AS
 {
 OPERATOR strategy_number op_name [(op_type, op_type)] [RECHECK]
 | FUNCTION support_number funcname (argument_type [, ...])
 | STORAGE storage_type
 } [, ...]

Description

CREATE OPERATOR CLASS creates a new operator class. An operator class defines
how a particular data type can be used with an index. The operator class specifies that
certain operators will fill particular roles or strategies for this data type and this index
method. The operator class also specifies the support procedures to be used by the
index method when the operator class is selected for an index column. All the
operators and functions used by an operator class must be defined before the operator
class is created. Any functions used to implement the operator class must be defined
as IMMUTABLE.

CREATE OPERATOR CLASS does not presently check whether the operator class
definition includes all the operators and functions required by the index method, nor
whether the operators and functions form a self-consistent set. It is the user’s
responsibility to define a valid operator class.

You must be a superuser to create an operator class.

Parameters

name
The (optionally schema-qualified) name of the operator class to be defined. Two
operator classes in the same schema can have the same name only if they are for
different index methods.

DEFAULT

Makes the operator class the default operator class for its data type. At most one
operator class can be the default for a specific data type and index method.

data_type
The column data type that this operator class is for.

index_method
The name of the index method this operator class is for. Choices are btree, bitmap,
and gist.
CREATE OPERATOR CLASS 146

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
strategy_number
The operators associated with an operator class are identified by strategy numbers,
which serve to identify the semantics of each operator within the context of its
operator class. For example, B-trees impose a strict ordering on keys, lesser to
greater, and so operators like less than and greater than or equal to are interesting
with respect to a B-tree. These strategies can be thought of as generalized operators.
Each operator class specifies which actual operator corresponds to each strategy for
a particular data type and interpretation of the index semantics. The corresponding
strategy numbers for each index method are as follows:

Table 1.1 B-tree and Bitmap Strategies

Operation Strategy Number

less than 1

less than or equal 2

equal 3

greater than or equal 4

greater than 5

Table 1.2 GiST Two-Dimensional Strategies (R-Tree)

Operation Strategy Number

strictly left of 1

does not extend to right of 2

overlaps 3

does not extend to left of 4

strictly right of 5

same 6

contains 7

contained by 8

does not extend above 9

strictly below 10

strictly above 11

does not extend below 12

operator_name
The name (optionally schema-qualified) of an operator associated with the operator
class.

op_type
The operand data type(s) of an operator, or NONE to signify a left-unary or
right-unary operator. The operand data types may be omitted in the normal case
where they are the same as the operator class data type.
CREATE OPERATOR CLASS 147

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
RECHECK

If present, the index is “lossy” for this operator, and so the rows retrieved using the
index must be rechecked to verify that they actually satisfy the qualification clause
involving this operator.

support_number
Index methods require additional support routines in order to work. These
operations are administrative routines used internally by the index methods. As with
strategies, the operator class identifies which specific functions should play each of
these roles for a given data type and semantic interpretation. The index method
defines the set of functions it needs, and the operator class identifies the correct
functions to use by assigning them to the support function numbers as follows:

Table 1.3 B-tree and Bitmap Support Functions

Function Support Number

Compare two keys and return an integer less than zero, zero, or greater
than zero, indicating whether the first key is less than, equal to, or
greater than the second.

1

Table 1.4 GiST Support Functions

Function Support Number

consistent - determine whether key satisfies the query qualifier. 1

union - compute union of a set of keys. 2

compress - compute a compressed representation of a key or value to
be indexed.

3

decompress - compute a decompressed representation of a
compressed key.

4

penalty - compute penalty for inserting new key into subtree with given
subtree’s key.

5

picksplit - determine which entries of a page are to be moved to the new
page and compute the union keys for resulting pages.

6

equal - compare two keys and return true if they are equal. 7

funcname
The name (optionally schema-qualified) of a function that is an index method
support procedure for the operator class.

argument_types
The parameter data type(s) of the function.

storage_type
The data type actually stored in the index. Normally this is the same as the column
data type, but the GiST index method allows it to be different. The STORAGE clause
must be omitted unless the index method allows a different type to be used.
CREATE OPERATOR CLASS 148

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Notes

Because the index machinery does not check access permissions on functions before
using them, including a function or operator in an operator class is the same as
granting public execute permission on it. This is usually not an issue for the sorts of
functions that are useful in an operator class.

The operators should not be defined by SQL functions. A SQL function is likely to be
inlined into the calling query, which will prevent the optimizer from recognizing that
the query matches an index.

Any functions used to implement the operator class must be defined as IMMUTABLE.

Examples

The following example command defines a GiST index operator class for the data
type _int4 (array of int4):

CREATE OPERATOR CLASS gist__int_ops

 DEFAULT FOR TYPE _int4 USING gist AS

 OPERATOR 3 &&,

 OPERATOR 6 = RECHECK,

 OPERATOR 7 @>,

 OPERATOR 8 <@,

 OPERATOR 20 @@ (_int4, query_int),

 FUNCTION 1 g_int_consistent (internal, _int4, int4),

 FUNCTION 2 g_int_union (bytea, internal),

 FUNCTION 3 g_int_compress (internal),

 FUNCTION 4 g_int_decompress (internal),

 FUNCTION 5 g_int_penalty (internal, internal, internal),

 FUNCTION 6 g_int_picksplit (internal, internal),

 FUNCTION 7 g_int_same (_int4, _int4, internal);

Compatibility

CREATE OPERATOR CLASS is a Greenplum Database extension. There is no CREATE
OPERATOR CLASS statement in the SQL standard.

See Also

ALTER OPERATOR CLASS, DROP OPERATOR CLASS, CREATE FUNCTION
CREATE OPERATOR CLASS 149

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE RESOURCE QUEUE
Defines a new resource queue.

Synopsis
CREATE RESOURCE QUEUE name WITH (queue_attribute=value [, ...])

where queue_attribute is:
 ACTIVE_STATEMENTS=integer
 [MAX_COST=float [COST_OVERCOMMIT={TRUE|FALSE}]]
 [MIN_COST=float]
 [PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}]
 [MEMORY_LIMIT='memory_units']

| MAX_COST=float [COST_OVERCOMMIT={TRUE|FALSE}]
 [ACTIVE_STATEMENTS=integer]
 [MIN_COST=float]
 [PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}]
 [MEMORY_LIMIT='memory_units']

Description

Creates a new resource queue for Greenplum Database workload management. A
resource queue must have either an ACTIVE_STATEMENTS or a MAX_COST value (or it
can have both). Only a superuser can create a resource queue.

Resource queues with an ACTIVE_STATEMENTS threshold set a maximum limit on the
number of queries that can be executed by roles assigned to that queue. It controls the
number of active queries that are allowed to run at the same time. The value for
ACTIVE_STATEMENTS should be an integer greater than 0.

Resource queues with a MAX_COST threshold set a maximum limit on the total cost of
queries that can be executed by roles assigned to that queue. Cost is measured in the
estimated total cost for the query as determined by the Greenplum Database query
planner (as shown in the EXPLAIN output for a query). Therefore, an administrator
must be familiar with the queries typically executed on the system in order to set an
appropriate cost threshold for a queue. Cost is measured in units of disk page fetches;
1.0 equals one sequential disk page read. The value for MAX_COST is specified as a
floating point number (for example 100.0) or can also be specified as an exponent (for
example 1e+2). If a resource queue is limited based on a cost threshold, then the
administrator can allow COST_OVERCOMMIT=TRUE (the default). This means that a
query that exceeds the allowed cost threshold will be allowed to run but only when the
system is idle. If COST_OVERCOMMIT=FALSE is specified, queries that exceed the cost
limit will always be rejected and never allowed to run. Specifying a value for
MIN_COST allows the administrator to define a cost for small queries that will be
exempt from resource queueing.

If a value is not defined for ACTIVE_STATEMENTS or MAX_COST, it is set to -1 by
default (meaning no limit). After defining a resource queue, you must assign roles to
the queue using the ALTER ROLE or CREATE ROLE command.
CREATE RESOURCE QUEUE 150

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
You can optionally assign a PRIORITY to a resource queue to control the relative share
of available CPU resources used by queries associated with the queue in relation to
other resource queues. If a value is not defined for PRIORITY, queries associated with
the queue have a default priority of MEDIUM.

Resource queues with an optional MEMORY_LIMIT threshold set a maximum limit on
the amount of memory that all queries submitted through a resource queue can
consume on a segment host. This determines the total amount of memory that all
worker processes of a query can consume on a segment host during query execution.
Greenplum recommends that MEMORY_LIMIT be used in conjunction with
ACTIVE_STATEMENTS rather than with MAX_COST. The default amount of memory
allotted per query on statement-based queues is: MEMORY_LIMIT /
ACTIVE_STATEMENTS. The default amount of memory allotted per query on
cost-based queues is: MEMORY_LIMIT * (query_cost / MAX_COST).

The default memory allotment can be overridden on a per-query basis using the
statement_mem server configuration parameter, provided that MEMORY_LIMIT or
max_statement_mem is not exceeded. For example, to allocate more memory to a
particular query:

=> SET statement_mem='2GB';

=> SELECT * FROM my_big_table WHERE column='value' ORDER BY id;

=> RESET statement_mem;

The MEMORY_LIMIT value for all of your resource queues should not exceed the
amount of physical memory of a segment host. If workloads are staggered over
multiple queues, memory allocations can be oversubscribed. However, queries can be
cancelled during execution if the segment host memory limit specified in
gp_vmem_protect_limit is exceeded.

For information about statement_mem, max_statement, and
gp_vmem_protect_limit, see “Server Configuration Parameters” on page 466.

Parameters

name
The name of the resource queue.

ACTIVE_STATEMENTS integer
Resource queues with an ACTIVE_STATEMENTS threshold limit the number of
queries that can be executed by roles assigned to that queue. It controls the number
of active queries that are allowed to run at the same time. The value for
ACTIVE_STATEMENTS should be an integer greater than 0.

MEMORY_LIMIT 'memory_units'
Sets the total memory quota for all statements submitted from users in this resource
queue. Memory units can be specified in kB, MB or GB. The minimum memory
quota for a resource queue is 10MB. There is no maximum, however the upper
boundary at query execution time is limited by the physical memory of a segment
host. The default is no limit (-1).
CREATE RESOURCE QUEUE 151

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
MAX_COST float
Resource queues with a MAX_COST threshold set a maximum limit on the total cost
of queries that can be executed by roles assigned to that queue. Cost is measured in
the estimated total cost for the query as determined by the Greenplum Database
query planner (as shown in the EXPLAIN output for a query). Therefore, an
administrator must be familiar with the queries typically executed on the system in
order to set an appropriate cost threshold for a queue. Cost is measured in units of
disk page fetches; 1.0 equals one sequential disk page read. The value for MAX_COST
is specified as a floating point number (for example 100.0) or can also be specified
as an exponent (for example 1e+2).

COST_OVERCOMMIT boolean
If a resource queue is limited based on MAX_COST, then the administrator can allow
COST_OVERCOMMIT (the default). This means that a query that exceeds the allowed
cost threshold will be allowed to run but only when the system is idle. If
COST_OVERCOMMIT=FALSE is specified, queries that exceed the cost limit will
always be rejected and never allowed to run.

MIN_COST float
The minimum query cost limit of what is considered a small query. Queries with a
cost under this limit will not be queued and run immediately. Cost is measured in the
estimated total cost for the query as determined by the Greenplum Database query
planner (as shown in the EXPLAIN output for a query). Therefore, an administrator
must be familiar with the queries typically executed on the system in order to set an
appropriate cost for what is considered a small query. Cost is measured in units of
disk page fetches; 1.0 equals one sequential disk page read. The value for MIN_COST
is specified as a floating point number (for example 100.0) or can also be specified
as an exponent (for example 1e+2).

PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}

Sets the priority of queries associated with a resource queue. Queries or statements
in queues with higher priority levels will receive a larger share of available CPU
resources in case of contention. Queries in low-priority queues may be delayed
while higher priority queries are executed. If no priority is specified, queries
associated with the queue have a priority of MEDIUM.

Notes

Use the gp_toolkit.gp_resqueue_status system view to see the limit settings and
current status of a resource queue:

SELECT * from gp_toolkit.gp_resqueue_status WHERE
rsqname='queue_name';

There is also another system view named pg_stat_resqueues which shows statistical
metrics for a resource queue over time. To use this view, however, you must enable the
stats_queue_level server configuration parameter. See the Greenplum Database
Database Administrator Guide for more information about using resource queues.

CREATE RESOURCE QUEUE cannot be run within a transaction.
CREATE RESOURCE QUEUE 152

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Examples

Create a resource queue with an active query limit of 20:

CREATE RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=20);

Create a resource queue with an active query limit of 20 and a total memory limit of
2000MB (each query will be allocated 100MB of segment host memory at execution
time):

CREATE RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=20,
MEMORY_LIMIT='2000MB');

Create a resource queue with a query cost limit of 3000.0:

CREATE RESOURCE QUEUE myqueue WITH (MAX_COST=3000.0);

Create a resource queue with a query cost limit of 310 (or 30000000000.0) and do not
allow overcommit. Allow small queries with a cost under 500 to run immediately:

CREATE RESOURCE QUEUE myqueue WITH (MAX_COST=3e+10,
COST_OVERCOMMIT=FALSE, MIN_COST=500.0);

Create a resource queue with both an active query limit and a query cost limit:

CREATE RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=30,
MAX_COST=5000.00);

Create a resource queue with an active query limit of 5 and a maximum priority
setting:

CREATE RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=5,
PRIORITY=MAX);

Compatibility

CREATE RESOURCE QUEUE is a Greenplum Database extension. There is no provision
for resource queues or workload management in the SQL standard.

See Also

ALTER ROLE, CREATE ROLE, ALTER RESOURCE QUEUE, DROP RESOURCE QUEUE
CREATE RESOURCE QUEUE 153

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE ROLE
Defines a new database role (user or group).

Synopsis
CREATE ROLE name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEEXTTABLE | NOCREATEEXTTABLE
 [(attribute='value'[, ...])]
 where attributes and values are:
 type='readable'|'writable'
 protocol='gpfdist'|'http'
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE rolename [, ...]
 | ROLE rolename [, ...]
 | ADMIN rolename [, ...]
 | RESOURCE QUEUE queue_name
 | [DENY deny_point]
 | [DENY BETWEEN deny_point AND deny_point]

Description

CREATE ROLE adds a new role to a Greenplum Database system. A role is an entity
that can own database objects and have database privileges. A role can be considered a
user, a group, or both depending on how it is used. You must have CREATEROLE
privilege or be a database superuser to use this command.

Note that roles are defined at the system-level and are valid for all databases in your
Greenplum Database system.

Parameters

name
The name of the new role.
CREATE ROLE 154

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
SUPERUSER
NOSUPERUSER

If SUPERUSER is specified, the role being defined will be a superuser, who can
override all access restrictions within the database. Superuser status is dangerous
and should be used only when really needed. You must yourself be a superuser to
create a new superuser. NOSUPERUSER is the default.

CREATEDB
NOCREATEDB

If CREATEDB is specified, the role being defined will be allowed to create new
databases. NOCREATEDB (the default) will deny a role the ability to create databases.

CREATEROLE
NOCREATEROLE

If CREATEDB is specified, the role being defined will be allowed to create new roles,
alter other roles, and drop other roles. NOCREATEROLE (the default) will deny a role
the ability to create roles or modify roles other than their own.

CREATEEXTTABLE
NOCREATEEXTTABLE

If CREATEEXTTABLE is specified, the role being defined is allowed to create external
tables. The default type is readable and the default protocol is gpfdist if not
specified. NOCREATEEXTTABLE (the default) denies the role the ability to create
external tables. Note that external tables that use the file or execute protocols can
only be created by superusers.

INHERIT
NOINHERIT

If specified, INHERIT (the default) allows the role to use whatever database
privileges have been granted to all roles it is directly or indirectly a member of. With
NOINHERIT, membership in another role only grants the ability to SET ROLE to that
other role.

LOGIN
NOLOGIN

If specified, LOGIN allows a role to log in to a database. A role having the LOGIN
attribute can be thought of as a user. Roles with NOLOGIN (the default) are useful for
managing database privileges, and can be thought of as groups.

CONNECTION LIMIT connlimit
The number maximum of concurrent connections this role can make. The default of -1
means there is no limitation.

PASSWORD password
Sets the user password for roles with the LOGIN attribute. If you do not plan to use
password authentication you can omit this option. If no password is specified, the
password will be set to null and password authentication will always fail for that
user. A null password can optionally be written explicitly as PASSWORD NULL.
CREATE ROLE 155

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ENCRYPTED
UNENCRYPTED

These key words control whether the password is stored encrypted in the system
catalogs. (If neither is specified, the default behavior is determined by the
configuration parameter password_encryption.) If the presented password string is
already in MD5-encrypted format, then it is stored encrypted as-is, regardless of
whether ENCRYPTED or UNENCRYPTED is specified (since the system cannot decrypt
the specified encrypted password string). This allows reloading of encrypted
passwords during dump/restore.

Note that older clients may lack support for the MD5 authentication mechanism that
is needed to work with passwords that are stored encrypted.

VALID UNTIL 'timestamp'
The VALID UNTIL clause sets a date and time after which the role’s password is no
longer valid. If this clause is omitted the password will never expire.

IN ROLE rolename
Adds the new role as a member of the named roles. Note that there is no option to
add the new role as an administrator; use a separate GRANT command to do that.

ROLE rolename
Adds the named roles as members of this role, making this new role a group.

ADMIN rolename
The ADMIN clause is like ROLE, but the named roles are added to the new role WITH
ADMIN OPTION, giving them the right to grant membership in this role to others.

RESOURCE QUEUE queue_name
The name of the resource queue to which the new user-level role is to be assigned.
Only roles with LOGIN privilege can be assigned to a resource queue. The special
keyword NONE means that the role is assigned to the default resource queue. A role
can only belong to one resource queue.

DENY deny_point
DENY BETWEEN deny_point AND deny_point

The DENY and DENY BETWEEN keywords set time-based constraints that are enforced
at login. DENY sets a day or a day and time to deny access. DENY BETWEEN sets an
interval during which access is denied. Both use the parameter deny_point that has
the following format:

DAY day [TIME 'time']

The two parts of the deny_point parameter use the following formats:

For day:
{'Sunday' | 'Monday' | 'Tuesday' |'Wednesday' | 'Thursday' | 'Friday' |
'Saturday' | 0-6 }
CREATE ROLE 156

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
For time:
{ 00-23 : 00-59 | 01-12 : 00-59 { AM | PM }}

The DENY BETWEEN clause uses two deny_point parameters.

DENY BETWEEN deny_point AND deny_point

For more information and examples about time-based constraints, see the
Greenplum Database Database Administrator Guide.

Notes

The preferred way to add and remove role members (manage groups) is to use GRANT
and REVOKE.

The VALID UNTIL clause defines an expiration time for a password only, not for the
role. The expiration time is not enforced when logging in using a non-password-based
authentication method.

The INHERIT attribute governs inheritance of grantable privileges (access privileges
for database objects and role memberships). It does not apply to the special role
attributes set by CREATE ROLE and ALTER ROLE. For example, being a member of a
role with CREATEDB privilege does not immediately grant the ability to create
databases, even if INHERIT is set.

The INHERIT attribute is the default for reasons of backwards compatibility. In prior
releases of Greenplum Database, users always had access to all privileges of groups
they were members of. However, NOINHERIT provides a closer match to the semantics
specified in the SQL standard.

Be careful with the CREATEROLE privilege. There is no concept of inheritance for the
privileges of a CREATEROLE-role. That means that even if a role does not have a
certain privilege but is allowed to create other roles, it can easily create another role
with different privileges than its own (except for creating roles with superuser
privileges). For example, if a role has the CREATEROLE privilege but not the CREATEDB
privilege, it can create a new role with the CREATEDB privilege. Therefore, regard roles
that have the CREATEROLE privilege as almost-superuser-roles.

The CONNECTION LIMIT option is never enforced for superusers.

Caution must be exercised when specifying an unencrypted password with this
command. The password will be transmitted to the server in clear-text, and it might
also be logged in the client’s command history or the server log. The client program
createuser, however, transmits the password encrypted. Also, psql contains a
command \password that can be used to safely change the password later.

Examples

Create a role that can log in, but don't give it a password:

CREATE ROLE jonathan LOGIN;

Create a role that belongs to a resource queue:

CREATE ROLE jonathan LOGIN RESOURCE QUEUE poweruser;
CREATE ROLE 157

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Create a role with a password that is valid until the end of 2009 (CREATE USER is the
same as CREATE ROLE except that it implies LOGIN):

CREATE USER joelle WITH PASSWORD 'jw8s0F4' VALID UNTIL
'2010-01-01';

Create a role that can create databases and manage other roles:

CREATE ROLE admin WITH CREATEDB CREATEROLE;

Create a role that does not allow login access on Sundays:

CREATE ROLE user3 DENY DAY 'Sunday';

Compatibility

The SQL standard defines the concepts of users and roles, but it regards them as
distinct concepts and leaves all commands defining users to be specified by the
database implementation. In Greenplum Database users and roles are unified into a
single type of object. Roles therefore have many more optional attributes than they do
in the standard.

CREATE ROLE is in the SQL standard, but the standard only requires the syntax:

CREATE ROLE name [WITH ADMIN rolename]

Allowing multiple initial administrators, and all the other options of CREATE ROLE,
are Greenplum Database extensions.

The behavior specified by the SQL standard is most closely approximated by giving
users the NOINHERIT attribute, while roles are given the INHERIT attribute.

See Also

SET ROLE, ALTER ROLE, DROP ROLE, GRANT, REVOKE, CREATE RESOURCE QUEUE
CREATE ROLE 158

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE RULE
Defines a new rewrite rule.

Synopsis
CREATE [OR REPLACE] RULE name AS ON event
 TO table [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING | command | (command; command
...) }

Description

CREATE RULE defines a new rule applying to a specified table or view. CREATE OR
REPLACE RULE will either create a new rule, or replace an existing rule of the same
name for the same table.

The Greenplum Database rule system allows one to define an alternate action to be
performed on insertions, updates, or deletions in database tables. A rule causes
additional or alternate commands to be executed when a given command on a given
table is executed. Rules can be used on views as well. It is important to realize that a
rule is really a command transformation mechanism, or command macro. The
transformation happens before the execution of the commands starts. It does not
operate independently for each physical row as does a trigger.

ON SELECT rules must be unconditional INSTEAD rules and must have actions that
consist of a single SELECT command. Thus, an ON SELECT rule effectively turns the
table into a view, whose visible contents are the rows returned by the rule’s SELECT
command rather than whatever had been stored in the table (if anything). It is
considered better style to write a CREATE VIEW command than to create a real table
and define an ON SELECT rule for it.

You can create the illusion of an updatable view by defining ON INSERT, ON UPDATE,
and ON DELETE rules to replace update actions on the view with appropriate updates
on other tables. If you want to support INSERT RETURNING and so on, then be sure to
put a suitable RETURNING clause into each of these rules.

Rules are also helpful for managing partitioned tables. You can define ON INSERT
rules on the parent table to route inserted rows to the correct partitioned child table.
Note that rules do not work for COPY commands.

There is a catch if you try to use conditional rules for view updates: there must be an
unconditional INSTEAD rule for each action you wish to allow on the view. If the rule
is conditional, or is not INSTEAD, then the system will still reject attempts to perform
the update action, because it thinks it might end up trying to perform the action on the
dummy table of the view in some cases. If you want to handle all the useful cases in
conditional rules, add an unconditional DO INSTEAD NOTHING rule to ensure that the
system understands it will never be called on to update the dummy table. Then make
the conditional rules non-INSTEAD; in the cases where they are applied, they add to the
default INSTEAD NOTHING action. (This method does not currently work to support
RETURNING queries, however.)
CREATE RULE 159

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Parameters

name
The name of a rule to create. This must be distinct from the name of any other rule
for the same table. Multiple rules on the same table and same event type are applied
in alphabetical name order.

event
The event is one of SELECT, INSERT, UPDATE, or DELETE.

table
The name (optionally schema-qualified) of the table or view the rule applies to.

condition
Any SQL conditional expression (returning boolean). The condition expression may
not refer to any tables except NEW and OLD, and may not contain aggregate functions.
NEW and OLD refer to values in the referenced table. NEW is valid in ON INSERT and
ON UPDATE rules to refer to the new row being inserted or updated. OLD is valid in
ON UPDATE and ON DELETE rules to refer to the existing row being updated or
deleted.

INSTEAD

INSTEAD indicates that the commands should be executed instead of the original
command.

ALSO

ALSO indicates that the commands should be executed in addition to the original
command. If neither ALSO nor INSTEAD is specified, ALSO is the default.

command
The command or commands that make up the rule action. Valid commands are
SELECT, INSERT, UPDATE, or DELETE. The special table names NEW and OLD may be
used to refer to values in the referenced table. NEW is valid in ON INSERT and ON
UPDATE rules to refer to the new row being inserted or updated. OLD is valid in ON
UPDATE and ON DELETE rules to refer to the existing row being updated or deleted.

Notes

You must be the owner of a table to create or change rules for it.

In a rule for INSERT, UPDATE, or DELETE on a view, you can add a RETURNING clause
that emits the view’s columns. This clause will be used to compute the outputs if the
rule is triggered by an INSERT RETURNING, UPDATE RETURNING, or DELETE
RETURNING command respectively. When the rule is triggered by a command without
RETURNING, the rule’s RETURNING clause will be ignored. The current implementation
allows only unconditional INSTEAD rules to contain RETURNING; furthermore there
can be at most one RETURNING clause among all the rules for the same event. (This
CREATE RULE 160

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ensures that there is only one candidate RETURNING clause to be used to compute the
results.) RETURNING queries on the view will be rejected if there is no RETURNING
clause in any available rule.

It is very important to take care to avoid circular rules. Recursive rules are not
validated at rule create time, but will report an error at execution time.

Examples

Create a rule that inserts rows into the child table b2001 when a user tries to insert into
the partitioned parent table rank:

CREATE RULE b2001 AS ON INSERT TO rank WHERE gender='M' and
year='2001' DO INSTEAD INSERT INTO b2001 VALUES (NEW.id,
NEW.rank, NEW.year, NEW.gender, NEW.count);

Compatibility

CREATE RULE is a Greenplum Database language extension, as is the entire query
rewrite system.

See Also

DROP RULE, CREATE TABLE, CREATE VIEW
CREATE RULE 161

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE SCHEMA
Defines a new schema.

Synopsis
CREATE SCHEMA schema_name [AUTHORIZATION username]
[schema_element [...]]

CREATE SCHEMA AUTHORIZATION rolename [schema_element [...]]

Description

CREATE SCHEMA enters a new schema into the current database. The schema name
must be distinct from the name of any existing schema in the current database.

A schema is essentially a namespace: it contains named objects (tables, data types,
functions, and operators) whose names may duplicate those of other objects existing
in other schemas. Named objects are accessed either by qualifying their names with
the schema name as a prefix, or by setting a search path that includes the desired
schema(s). A CREATE command specifying an unqualified object name creates the
object in the current schema (the one at the front of the search path, which can be
determined with the function current_schema).

Optionally, CREATE SCHEMA can include subcommands to create objects within the
new schema. The subcommands are treated essentially the same as separate
commands issued after creating the schema, except that if the AUTHORIZATION clause
is used, all the created objects will be owned by that role.

Parameters

schema_name
The name of a schema to be created. If this is omitted, the user name is used as the
schema name. The name cannot begin with pg_, as such names are reserved for
system catalog schemas.

rolename
The name of the role who will own the schema. If omitted, defaults to the role
executing the command. Only superusers may create schemas owned by roles other
than themselves.

schema_element
An SQL statement defining an object to be created within the schema. Currently,
only CREATE TABLE, CREATE VIEW, CREATE INDEX, CREATE SEQUENCE, CREATE
TRIGGER and GRANT are accepted as clauses within CREATE SCHEMA. Other kinds of
objects may be created in separate commands after the schema is created.
CREATE SCHEMA 162

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Notes

To create a schema, the invoking user must have the CREATE privilege for the current
database or be a superuser.

Examples

Create a schema:

CREATE SCHEMA myschema;

Create a schema for role joe (the schema will also be named joe):

CREATE SCHEMA AUTHORIZATION joe;

Compatibility

The SQL standard allows a DEFAULT CHARACTER SET clause in CREATE SCHEMA, as
well as more subcommand types than are presently accepted by Greenplum Database.

The SQL standard specifies that the subcommands in CREATE SCHEMA may appear in
any order. The present Greenplum Database implementation does not handle all cases
of forward references in subcommands; it may sometimes be necessary to reorder the
subcommands in order to avoid forward references.

According to the SQL standard, the owner of a schema always owns all objects within
it. Greenplum Database allows schemas to contain objects owned by users other than
the schema owner. This can happen only if the schema owner grants the CREATE
privilege on the schema to someone else.

See Also

ALTER SCHEMA, DROP SCHEMA
CREATE SCHEMA 163

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE SEQUENCE
Defines a new sequence generator.

Synopsis
CREATE [TEMPORARY | TEMP] SEQUENCE name
 [INCREMENT [BY] value]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [START [WITH] start]
 [CACHE cache]
 [[NO] CYCLE]
 [OWNED BY { table.column | NONE }]

Description

CREATE SEQUENCE creates a new sequence number generator. This involves creating
and initializing a new special single-row table. The generator will be owned by the
user issuing the command.

If a schema name is given, then the sequence is created in the specified schema.
Otherwise it is created in the current schema. Temporary sequences exist in a special
schema, so a schema name may not be given when creating a temporary sequence.
The sequence name must be distinct from the name of any other sequence, table,
index, or view in the same schema.

After a sequence is created, you use the nextval function to operate on the sequence.
For example, to insert a row into a table that gets the next value of a sequence:

INSERT INTO distributors VALUES (nextval('myserial'),
'acme');

You can also use the function setval to operate on a sequence, but only for queries
that do not operate on distributed data. For example, the following query is allowed
because it resets the sequence counter value for the sequence generator process on the
master:

SELECT setval('myserial', 201);

But the following query will be rejected in Greenplum Database because it operates on
distributed data:

INSERT INTO product VALUES (setval('myserial', 201),
'gizmo');

In a regular (non-distributed) database, functions that operate on the sequence go to
the local sequence table to get values as they are needed. In Greenplum Database,
however, keep in mind that each segment is its own distinct database process.
Therefore the segments need a single point of truth to go for sequence values so that
all segments get incremented correctly and the sequence moves forward in the right
order. A sequence server process runs on the master and is the point-of-truth for a
sequence in a Greenplum distributed database. Segments get sequence values at
runtime from the master.
CREATE SEQUENCE 164

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Because of this distributed sequence design, there are some limitations on the
functions that operate on a sequence in Greenplum Database:

• lastval and currval functions are not supported.
• setval can only be used to set the value of the sequence generator on the master,

it cannot be used in subqueries to update records on distributed table data.
• nextval sometimes grabs a block of values from the master for a segment to use,

depending on the query. So values may sometimes be skipped in the sequence if
all of the block turns out not to be needed at the segment level. Note that a regular
PostgreSQL database does this too, so this is not something unique to Greenplum
Database.

Although you cannot update a sequence directly, you can use a query like:

SELECT * FROM sequence_name;

to examine the parameters and current state of a sequence. In particular, the last_value
field of the sequence shows the last value allocated by any session.

Parameters

TEMPORARY | TEMP

If specified, the sequence object is created only for this session, and is automatically
dropped on session exit. Existing permanent sequences with the same name are not
visible (in this session) while the temporary sequence exists, unless they are
referenced with schema-qualified names.

name
The name (optionally schema-qualified) of the sequence to be created.

increment
Specifies which value is added to the current sequence value to create a new value.
A positive value will make an ascending sequence, a negative one a descending
sequence. The default value is 1.

minvalue
NO MINVALUE

Determines the minimum value a sequence can generate. If this clause is not
supplied or NO MINVALUE is specified, then defaults will be used. The defaults are 1
and -263-1 for ascending and descending sequences, respectively.

maxvalue
NO MAXVALUE

Determines the maximum value for the sequence. If this clause is not supplied or NO
MAXVALUE is specified, then default values will be used. The defaults are 263-1 and
-1 for ascending and descending sequences, respectively.

start
Allows the sequence to begin anywhere. The default starting value is minvalue for
ascending sequences and maxvalue for descending ones.
CREATE SEQUENCE 165

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
cache
Specifies how many sequence numbers are to be preallocated and stored in memory
for faster access. The minimum (and default) value is 1 (no cache).

CYCLE
NO CYCLE

Allows the sequence to wrap around when the maxvalue (for ascending) or
minvalue (for descending) has been reached. If the limit is reached, the next
number generated will be the minvalue (for ascending) or maxvalue (for
descending). If NO CYCLE is specified, any calls to nextval after the sequence has
reached its maximum value will return an error. If not specified, NO CYCLE is the
default.

OWNED BY table.column
OWNED BY NONE

Causes the sequence to be associated with a specific table column, such that if that
column (or its whole table) is dropped, the sequence will be automatically dropped
as well. The specified table must have the same owner and be in the same schema as
the sequence. OWNED BY NONE, the default, specifies that there is no such
association.

Notes

Sequences are based on bigint arithmetic, so the range cannot exceed the range of an
eight-byte integer (-9223372036854775808 to 9223372036854775807).

Although multiple sessions are guaranteed to allocate distinct sequence values, the
values may be generated out of sequence when all the sessions are considered. For
example, session A might reserve values 1..10 and return nextval=1, then session B
might reserve values 11..20 and return nextval=11 before session A has generated
nextval=2. Thus, you should only assume that the nextval values are all distinct, not
that they are generated purely sequentially. Also, last_value will reflect the latest
value reserved by any session, whether or not it has yet been returned by nextval.

Examples

Create a sequence named myseq:

CREATE SEQUENCE myseq START 101;

Insert a row into a table that gets the next value:

INSERT INTO distributors VALUES (nextval('myseq'), 'acme');

Reset the sequence counter value on the master:

SELECT setval('myseq', 201);

Illegal use of setval in Greenplum Database (setting sequence values on distributed
data):

INSERT INTO product VALUES (setval('myseq', 201), 'gizmo');
CREATE SEQUENCE 166

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Compatibility

CREATE SEQUENCE conforms to the SQL standard, with the following exceptions:

• The AS data_type expression specified in the SQL standard is not supported.
• Obtaining the next value is done using the nextval() function instead of the

NEXT VALUE FOR expression specified in the SQL standard.
• The OWNED BY clause is a Greenplum Database extension.

See Also

ALTER SEQUENCE, DROP SEQUENCE
CREATE SEQUENCE 167

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE TABLE
Defines a new table.

Note: Referential integrity syntax (foreign key constraints) is accepted but not enforced.

Synopsis
CREATE [[GLOBAL | LOCAL] {TEMPORARY | TEMP}] TABLE table_name (
[{ column_name data_type [DEFAULT default_expr]
 [column_constraint [...]
[ENCODING (storage_directive [,...])]
]
 | table_constraint
 | LIKE other_table [{INCLUDING | EXCLUDING}
 {DEFAULTS | CONSTRAINTS}] ...}
 [, ...]]
)
 [INHERITS (parent_table [, ...])]
 [WITH (storage_parameter=value [, ...])
 [ON COMMIT {PRESERVE ROWS | DELETE ROWS | DROP}]
 [TABLESPACE tablespace]
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]
 [PARTITION BY partition_type (column)
 [SUBPARTITION BY partition_type (column)]
 [SUBPARTITION TEMPLATE (template_spec)]
 [...]
 (partition_spec)
 | [SUBPARTITION BY partition_type (column)]
 [...]
 (partition_spec
 [(subpartition_spec
 [(...)]
)]
)

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 ORIENTATION={COLUMN|ROW}
 COMPRESSTYPE={ZLIB|QUICKLZ|NONE}
 COMPRESSLEVEL={0-9}
 FILLFACTOR={10-100}
 OIDS[=TRUE|FALSE]

where column_constraint is:
 [CONSTRAINT constraint_name]
 NOT NULL | NULL
 | UNIQUE [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR = value)]
 | PRIMARY KEY [USING INDEX TABLESPACE tablespace]
CREATE TABLE 168

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
 [WITH (FILLFACTOR = value)]
 | CHECK (expression)
 | REFERENCES table_name [(column_name [, ...])]
 [key_match_type]
 [key_action]

and table_constraint is:
 [CONSTRAINT constraint_name]
 UNIQUE (column_name [, ...])
 [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR=value)]
 | PRIMARY KEY (column_name [, ...])
 [USING INDEX TABLESPACE tablespace]
 [WITH (FILLFACTOR=value)]
 | CHECK (expression)
 | FOREIGN KEY (column_name [, ...])
 REFERENCES table_name [(column_name [, ...])]
 [key_match_type]
 [key_action]
 [key_checking_mode]
where key_match_type is:
 MATCH FULL
 | SIMPLE
where key_action is:
 ON DELETE
 | ON UPDATE
 | NO ACTION
 | RESTRICT
 | CASCADE
 | SET NULL
 | SET DEFAULT
where key_checking_mode is:
 DEFERRABLE
 | NOT DEFERRABLE
 | INITIALLY DEFERRED
 | INITIALLY IMMEDIATE

where partition_type is:
 LIST
 | RANGE

where partition_specification is:
partition_element [, ...]

and partition_element is:
 DEFAULT PARTITION name

 | [PARTITION name] VALUES (list_value [,...])

 | [PARTITION name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
CREATE TABLE 169

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

 | [PARTITION name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

[WITH (partition_storage_parameter=value [, ...])]
[TABLESPACE tablespace]

where subpartition_spec or template_spec is:
subpartition_element [, ...]

and subpartition_element is:
 DEFAULT SUBPARTITION name

 | [SUBPARTITION name] VALUES (list_value [,...])

 | [SUBPARTITION name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

 | [SUBPARTITION name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]

[WITH (partition_storage_parameter=value [, ...])]

[TABLESPACE tablespace]

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 ORIENTATION={COLUMN|ROW}
 COMPRESSTYPE={ZLIB|QUICKLZ|NONE}
 COMPRESSLEVEL={0-9}
 FILLFACTOR={10-100}
 OIDS[=TRUE|FALSE]
{0-9}......

Description

CREATE TABLE creates an initially empty table in the current database. The user who
issues the command owns the table.

If you specify a schema name, Greenplum creates the tablein the specified schema.
Otherwise Greenplum creates the table in the current schema. Temporary tables exist
in a special schema, so you cannot specify a schema name when creating a temporary
table. Table names must be distinct from the name of any other table, external table,
sequence, index, or view in the same schema.

The optional constraint clauses specify conditions that new or updated rows must
satisfy for an insert or update operation to succeed. A constraint is an SQL object that
helps define the set of valid values in the table in various ways. Constraints apply to
tables, not to partitions. You cannot add a constraint to a partition or subpartition.
CREATE TABLE 170

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Referential integrity constraints (foreign keys) are accepted but not enforced. The
information is kept in the system catalogs but is otherwise ignored.

There are two ways to define constraints: table constraints and column constraints. A
column constraint is defined as part of a column definition. A table constraint
definition is not tied to a particular column, and it can encompass more than one
column. Every column constraint can also be written as a table constraint; a column
constraint is only a notational convenience for use when the constraint only affects
one column.

When creating a table, there is an additional clause to declare the Greenplum Database
distribution policy. If a DISTRIBUTED BY or DISTRIBUTED RANDOMLY clause is not
supplied, then Greenplum assigns a hash distribution policy to the table using either
the PRIMARY KEY (if the table has one) or the first column of the table as the
distribution key. Columns of geometric or user-defined data types are not eligible as
Greenplum distribution key columns. If a table does not have a column of an eligible
data type, the rows are distributed based on a round-robin or random distribution. To
ensure an even distribution of data in your Greenplum Database system, you want to
choose a distribution key that is unique for each record, or if that is not possible, then
choose DISTRIBUTED RANDOMLY.

The PARTITION BY clause allows you to divide the table into multiple sub-tables (or
parts) that, taken together, make up the parent table and share its schema. Though the
sub-tables exist as independent tables, the Greenplum Database restricts their use in
important ways. Internally, partitioning is implemented as a special form of
inheritance. Each child table partition is created with a distinct CHECK constraint
which limits the data the table can contain, based on some defining criteria. The
CHECK constraints are also used by the query planner to determine which table
partitions to scan in order to satisfy a given query predicate. These partition
constraints are managed automatically by the Greenplum Database.

Parameters

GLOBAL | LOCAL

These keywords are present for SQL standard compatibility, but have no effect in
Greenplum Database.

TEMPORARY | TEMP

If specified, the table is created as a temporary table. Temporary tables are
automatically dropped at the end of a session, or optionally at the end of the current
transaction (see ON COMMIT). Existing permanent tables with the same name are not
visible to the current session while the temporary table exists, unless they are
referenced with schema-qualified names. Any indexes created on a temporary table
are automatically temporary as well.

table_name
The name (optionally schema-qualified) of the table to be created.

column_name
The name of a column to be created in the new table.
CREATE TABLE 171

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
data_type
The data type of the column. This may include array specifiers.

DEFAULT default_expr
The DEFAULT clause assigns a default data value for the column whose column
definition it appears within. The value is any variable-free expression (subqueries
and cross-references to other columns in the current table are not allowed). The data
type of the default expression must match the data type of the column. The default
expression will be used in any insert operation that does not specify a value for the
column. If there is no default for a column, then the default is null.

INHERITS

The optional INHERITS clause specifies a list of tables from which the new table
automatically inherits all columns. Use of INHERITS creates a persistent
relationship between the new child table and its parent table(s). Schema
modifications to the parent(s) normally propagate to children as well, and by default
the data of the child table is included in scans of the parent(s).

In Greenplum Database, the INHERITS clause is not used when creating partitioned
tables. Although the concept of inheritance is used in partition hierarchies, the
inheritance structure of a partitioned table is created using the PARTITION BY clause.

If the same column name exists in more than one parent table, an error is reported
unless the data types of the columns match in each of the parent tables. If there is no
conflict, then the duplicate columns are merged to form a single column in the new
table. If the column name list of the new table contains a column name that is also
inherited, the data type must likewise match the inherited column(s), and the column
definitions are merged into one. However, inherited and new column declarations of
the same name need not specify identical constraints: all constraints provided from
any declaration are merged together and all are applied to the new table. If the new
table explicitly specifies a default value for the column, this default overrides any
defaults from inherited declarations of the column. Otherwise, any parents that
specify default values for the column must all specify the same default, or an error
will be reported.

LIKE other_table [{INCLUDING | EXCLUDING} {DEFAULTS |
CONSTRAINTS}]

The LIKE clause specifies a table from which the new table automatically copies all
column names, data types, not-null constraints, and distribution policy. Storage
properties like append-only or partition structure are not copied. Unlike INHERITS,
the new table and original table are completely decoupled after creation is complete.

Default expressions for the copied column definitions will only be copied if
INCLUDING DEFAULTS is specified. The default behavior is to exclude default
expressions, resulting in the copied columns in the new table having null defaults.

Not-null constraints are always copied to the new table. CHECK constraints will only
be copied if INCLUDING CONSTRAINTS is specified; other types of constraints will
never be copied. Also, no distinction is made between column constraints and table
constraints — when constraints are requested, all check constraints are copied.
CREATE TABLE 172

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Note also that unlike INHERITS, copied columns and constraints are not merged
with similarly named columns and constraints. If the same name is specified
explicitly or in another LIKE clause an error is signalled.

CONSTRAINT constraint_name
An optional name for a column or table constraint. If the constraint is violated, the
constraint name is present in error messages, so constraint names like column must
be positive can be used to communicate helpful constraint information to client
applications. (Double-quotes are needed to specify constraint names that contain
spaces.) If a constraint name is not specified, the system generates a name.

Note: The specified constraint_name is used for the constraint, but a
system-generated unique name is used for the index name. In some prior
releases, the provided name was used for both the constraint name and the
index name.

NULL | NOT NULL

Specifies if the column is or is not allowed to contain null values. NULL is the
default.

UNIQUE (column constraint)
UNIQUE (column_name [, ...]) (table constraint)

The UNIQUE constraint specifies that a group of one or more columns of a table may
contain only unique values. The behavior of the unique table constraint is the same
as that for column constraints, with the additional capability to span multiple
columns. For the purpose of a unique constraint, null values are not considered
equal. The column(s) that are unique must contain all the columns of the Greenplum
distribution key. In addition, the <key> must contain all the columns in the partition
key if the table is partitioned. Note that a <key> constraint in a partitioned table is
not the same as a simple UNIQUE INDEX.

PRIMARY KEY (column constraint)
PRIMARY KEY (column_name [, ...]) (table constraint)

The primary key constraint specifies that a column or columns of a table may
contain only unique (non-duplicate), non-null values. Technically, PRIMARY KEY is
merely a combination of UNIQUE and NOT NULL, but identifying a set of columns as
primary key also provides metadata about the design of the schema, as a primary
key implies that other tables may rely on this set of columns as a unique identifier
for rows. For a table to have a primary key, it must be hash distributed (not
randomly distributed), and the primary key The column(s) that are unique must
contain all the columns of the Greenplum distribution key. In addition, the <key>
must contain all the columns in the partition key if the table is partitioned. Note that
a <key> constraint in a partitioned table is not the same as a simple UNIQUE INDEX.

CHECK (expression)
The CHECK clause specifies an expression producing a Boolean result which new or
updated rows must satisfy for an insert or update operation to succeed. Expressions
evaluating to TRUE or UNKNOWN succeed. Should any row of an insert or update
operation produce a FALSE result an error exception is raised and the insert or update
does not alter the database. A check constraint specified as a column constraint
CREATE TABLE 173

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
should reference that column’s value only, while an expression appearing in a table
constraint may reference multiple columns. CHECK expressions cannot contain
subqueries nor refer to variables other than columns of the current row.

REFERENCES table_name [(column_name [, ...])]
[key_match_type][key_action]

FOREIGN KEY (column_name [, ...])
 REFERENCES table_name [(column_name [, ...])
 [key_match_type][key_action [key_checking_mode]

The REFERENCES and FOREIGN KEY clauses specify referential integrity constraints
(foreign key constraints). Greenplum accepts referential integrity constraints as
specified in PostgreSQL syntax but does not enforce them. See the PostgreSQL
documentation for information about referential integrity constraints.

WITH (storage_option=value)
The WITH clause can be used to set storage options for the table or its indexes. Note
that you can also set storage parameters on a particular partition or subpartition by
declaring the WITH clause in the partition specification.

The following storage options are available:

APPENDONLY - Set to TRUE to create the table as an append-only table. If FALSE
or not declared, the table will be created as a regular heap-storage table.

BLOCKSIZE - Set to the size, in bytes for each block in a table. The BLOCKSIZE
must be between 8192 and 2097152 bytes, and be a multiple of 8192. The default
is 32768.

ORIENTATION - Set to column for column-oriented storage, or row (the default)
for row-oriented storage. This option is only valid if APPENDONLY=TRUE.
Heap-storage tables can only be row-oriented.

COMPRESSTYPE - Set to ZLIB (the default) or QUICKLZ to specify the type of
compression used. QuickLZ uses less CPU power and compresses data faster at a
lower compression ratio than zlib. Conversely, zlib provides more compact
compression ratios at lower speeds. This option is only valid if
APPENDONLY=TRUE.

COMPRESSLEVEL - For zlib compression of append-only tables, set to a value
between 1 (fastest compression) to 9 (highest compression ratio). QuickLZ
compression level can only be set to 1. If not declared, the default is 1. This option
is only valid if APPENDONLY=TRUE.

FILLFACTOR - See CREATE INDEX for more information about this index storage
parameter.

OIDS - Set to OIDS=FALSE (the default) so that rows do not have object
identifiers assigned to them. Greenplum strongly recommends that you do not
enable OIDS when creating a table. On large tables, such as those in a typical
Greenplum Database system, using OIDs for table rows can cause wrap-around of
the 32-bit OID counter. Once the counter wraps around, OIDs can no longer be
assumed to be unique, which not only makes them useless to user applications, but
can also cause problems in the Greenplum Database system catalog tables. In
CREATE TABLE 174

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
addition, excluding OIDs from a table reduces the space required to store the table
on disk by 4 bytes per row, slightly improving performance. OIDS are not allowed
on partitioned tables or append-only column-oriented tables.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled
using ON COMMIT. The three options are:

PRESERVE ROWS

No special action is taken at the ends of transactions for temporary tables. This is the
default behavior.

DELETE ROWS

All rows in the temporary table will be deleted at the end of each transaction block.
Essentially, an automatic TRUNCATE is done at each commit.

DROP

The temporary table will be dropped at the end of the current transaction block.

TABLESPACE tablespace
The name of the tablespace in which the new table is to be created. If not specified,
the database’s default tablespace is used.

USING INDEX TABLESPACE tablespace
This clause allows selection of the tablespace in which the index associated with a
UNIQUE or PRIMARY KEY constraint will be created. If not specified, the database’s
default tablespace is used.

DISTRIBUTED BY (column, [...])
DISTRIBUTED RANDOMLY

Used to declare the Greenplum Database distribution policy for the table.
DISTIBUTED BY uses hash distribution with one or more columns declared as the
distribution key. For the most even data distribution, the distribution key should be
the primary key of the table or a unique column (or set of columns). If that is not
possible, then you may choose DISTRIBUTED RANDOMLY, which will send the data
round-robin to the segment instances. If not supplied, then hash distribution is
chosen using the PRIMARY KEY (if the table has one) or the first eligible column of
the table as the distribution key.

PARTITION BY

Declares one or more columns by which to partition the table.

partition_type
Declares partition type: LIST (list of values) or RANGE (a numeric or date range).

partition_specification
CREATE TABLE 175

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Declares the individual partitions to create. Each partition can be defined
individually or, for range partitions, you can use the EVERY clause (with a START
and optional END clause) to define an increment pattern to use to create the
individual partitions.

DEFAULT PARTITION name - Declares a default partition. When data does
not match to an existing partition, it is inserted into the default partition. Partition
designs that do not have a default partition will reject incoming rows that do not
match to an existing partition.

PARTITION name - Declares a name to use for the partition. Partitions are
created using the following naming convention:
parentname_level#_prt_givenname.

VALUES - For list partitions, defines the value(s) that the partition will contain.

START - For range partitions, defines the starting range value for the partition. By
default, start values are INCLUSIVE. For example, if you declared a start date of
‘2008-01-01’, then the partition would contain all dates greater than or equal to
‘2008-01-01’. Typically the data type of the START expression is the same type
as the partition key column. If that is not the case, then you must explicitly cast to
the intended data type.

END - For range partitions, defines the ending range value for the partition. By
default, end values are EXCLUSIVE. For example, if you declared an end date of
‘2008-02-01’, then the partition would contain all dates less than but not equal to
‘2008-02-01’. Typically the data type of the END expression is the same type as
the partition key column. If that is not the case, then you must explicitly cast to the
intended data type.

EVERY - For range partitions, defines how to increment the values from START to
END to create individual partitions. Typically the data type of the EVERY
expression is the same type as the partition key column. If that is not the case, then
you must explicitly cast to the intended data type.

WITH - Sets the table storage options for a partition. For example, you may want
older partitions to be append-only tables and newer partitions to be regular heap
tables.

TABLESPACE - The name of the tablespace in which the partition is to be created.

SUBPARTITION BY

Declares one or more columns by which to subpartition the first-level partitions of
the table. The format of the subpartition specification is similar to that of a partition
specification described above.

SUBPARTITION TEMPLATE

Instead of declaring each subpartition definition individually for each partition, you
can optionally declare a subpartition template to be used to create the subpartitions.
This subpartition specification would then apply to all parent partitions.
CREATE TABLE 176

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Notes

Using OIDs in new applications is not recommended: where possible, using a SERIAL
or other sequence generator as the table’s primary key is preferred. However, if your
application does make use of OIDs to identify specific rows of a table, it is
recommended to create a unique constraint on the OID column of that table, to ensure
that OIDs in the table will indeed uniquely identify rows even after counter
wrap-around. Avoid assuming that OIDs are unique across tables; if you need a
database-wide unique identifier, use the combination of table OID and row OID for
the purpose.

Greenplum Database has some special conditions for primary key and unique
constraints with regards to columns that are the distribution key in a Greenplum table.
For a unique constraint to be enforced in Greenplum Database, the table must be
hash-distributed (not DISTRIBUTED RANDOMLY), and the constraint columns must be
the same as (or a superset of) the table’s distribution key columns.

A primary key constraint is simply a combination of a unique constraint and a not-null
constraint.

Greenplum Database automatically creates an index for each unique constraint or
primary key constraint to enforce uniqueness. Thus, it is not necessary to create an
index explicitly for primary key columns.

Foreign key constraints are not supported in Greenplum Database.

For inherited tables, unique constraints, primary key constraints, indexes and table
privileges are not inherited in the current implementation.

Examples

Create a table named rank in the schema named baby and distribute the data using the
columns rank, gender, and year:

CREATE TABLE baby.rank (id int, rank int, year smallint,
gender char(1), count int) DISTRIBUTED BY (rank, gender,
year);

Create table films and table distributors (the primary key will be used as the
Greenplum distribution key by default):

CREATE TABLE films (
code char(5) CONSTRAINT firstkey PRIMARY KEY,
title varchar(40) NOT NULL,
did integer NOT NULL,
date_prod date,
kind varchar(10),
len interval hour to minute
);

CREATE TABLE distributors (
did integer PRIMARY KEY DEFAULT nextval('serial'),
name varchar(40) NOT NULL CHECK (name <> '')
);
CREATE TABLE 177

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Create a gzip-compressed, append-only table:

CREATE TABLE sales (txn_id int, qty int, date date)
WITH (appendonly=true, compresslevel=5)
DISTRIBUTED BY (txn_id);

Create a three level partitioned table using subpartition templates and default
partitions at each level:

CREATE TABLE sales (id int, year int, month int, day int,
region text)
DISTRIBUTED BY (id)
PARTITION BY RANGE (year)

 SUBPARTITION BY RANGE (month)
 SUBPARTITION TEMPLATE (
 START (1) END (13) EVERY (1),
 DEFAULT SUBPARTITION other_months)

 SUBPARTITION BY LIST (region)
 SUBPARTITION TEMPLATE (
 SUBPARTITION usa VALUES ('usa'),
 SUBPARTITION europe VALUES ('europe'),
 SUBPARTITION asia VALUES ('asia'),
 DEFAULT SUBPARTITION other_regions)

(START (2002) END (2010) EVERY (1),
 DEFAULT PARTITION outlying_years);

Compatibility

CREATE TABLE command conforms to the SQL standard, with the following
exceptions:

• Temporary Tables — In the SQL standard, temporary tables are defined just
once and automatically exist (starting with empty contents) in every session that
needs them. Greenplum Database instead requires each session to issue its own
CREATE TEMPORARY TABLE command for each temporary table to be used. This
allows different sessions to use the same temporary table name for different
purposes, whereas the standard’s approach constrains all instances of a given
temporary table name to have the same table structure.
The standard’s distinction between global and local temporary tables is not in
Greenplum Database. Greenplum Database will accept the GLOBAL and LOCAL
keywords in a temporary table declaration, but they have no effect.
If the ON COMMIT clause is omitted, the SQL standard specifies that the default
behavior as ON COMMIT DELETE ROWS. However, the default behavior in
Greenplum Database is ON COMMIT PRESERVE ROWS. The ON COMMIT DROP
option does not exist in the SQL standard.

• Column Check Constraints — The SQL standard says that CHECK column
constraints may only refer to the column they apply to; only CHECK table
constraints may refer to multiple columns. Greenplum Database does not enforce
this restriction; it treats column and table check constraints alike.
CREATE TABLE 178

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
• NULL Constraint — The NULL constraint is a Greenplum Database extension to
the SQL standard that is included for compatibility with some other database
systems (and for symmetry with the NOT NULL constraint). Since it is the default
for any column, its presence is not required.

• Inheritance — Multiple inheritance via the INHERITS clause is a Greenplum
Database language extension. SQL:1999 and later define single inheritance using
a different syntax and different semantics. SQL:1999-style inheritance is not yet
supported by Greenplum Database.

• Partitioning — Table partitioning via the PARTITION BY clause is a Greenplum
Database language extension.

• Zero-column tables — Greenplum Database allows a table of no columns to be
created (for example, CREATE TABLE foo();). This is an extension from the
SQL standard, which does not allow zero-column tables. Zero-column tables are
not in themselves very useful, but disallowing them creates odd special cases for
ALTER TABLE DROP COLUMN, so Greenplum decided to ignore this spec
restriction.

• WITH clause — The WITH clause is a Greenplum Database extension; neither
storage parameters nor OIDs are in the standard.

• Tablespaces — The Greenplum Database concept of tablespaces is not part of the
SQL standard. The clauses TABLESPACE and USING INDEX TABLESPACE are
extensions.

• Data Distribution — The Greenplum Database concept of a parallel or
distributed database is not part of the SQL standard. The DISTRIBUTED clauses
are extensions.

See Also

ALTER TABLE, DROP TABLE, CREATE EXTERNAL TABLE, CREATE TABLE AS
CREATE TABLE 179

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE TABLE AS
Defines a new table from the results of a query.

Synopsis
CREATE [[GLOBAL | LOCAL] {TEMPORARY | TEMP}] TABLE table_name
 [(column_name [, ...])]
 [WITH (storage_parameter=value [, ...])]
 [ON COMMIT {PRESERVE ROWS | DELETE ROWS | DROP}]
 [TABLESPACE tablespace]
 AS query
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

where storage_parameter is:
 APPENDONLY={TRUE|FALSE}
 BLOCKSIZE={8192-2097152}
 ORIENTATION={COLUMN|ROW}
 COMPRESSTYPE={ZLIB|QUICKLZ}
 COMPRESSLEVEL={1-9 | 1}
 FILLFACTOR={10-100}
 OIDS[=TRUE|FALSE]

Description

CREATE TABLE AS creates a table and fills it with data computed by a SELECT
command. The table columns have the names and data types associated with the
output columns of the SELECT, however you can override the column names by giving
an explicit list of new column names.

CREATE TABLE AS creates a new table and evaluates the query just once to fill the
new table initially. The new table will not track subsequent changes to the source
tables of the query.

Parameters

GLOBAL | LOCAL

These keywords are present for SQL standard compatibility, but have no effect in
Greenplum Database.

TEMPORARY | TEMP

If specified, the new table is created as a temporary table. Temporary tables are
automatically dropped at the end of a session, or optionally at the end of the current
transaction (see ON COMMIT). Existing permanent tables with the same name are not
visible to the current session while the temporary table exists, unless they are
referenced with schema-qualified names. Any indexes created on a temporary table
are automatically temporary as well.
CREATE TABLE AS 180

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
table_name
The name (optionally schema-qualified) of the new table to be created.

column_name
The name of a column in the new table. If column names are not provided, they are
taken from the output column names of the query. If the table is created from an
EXECUTE command, a column name list cannot be specified.

WITH (storage_parameter=value)
The WITH clause can be used to set storage options for the table or its indexes. Note
that you can also set different storage parameters on a particular partition or
subpartition by declaring the WITH clause in the partition specification. The
following storage options are available:

APPENDONLY - Set to TRUE to create the table as an append-only table. If FALSE
or not declared, the table will be created as a regular heap-storage table.

BLOCKSIZE - Set to the size, in bytes for each block in a table. The BLOCKSIZE
must be between 8192 and 2097152 bytes, and be a multiple of 8192. The default
is 32768.

ORIENTATION - Set to column for column-oriented storage, or row (the default)
for row-oriented storage. This option is only valid if APPENDONLY=TRUE.
Heap-storage tables can only be row-oriented.

COMPRESSTYPE - Set to ZLIB (the default) or QUICKLZ to specify the type of
compression used. QuickLZ uses less CPU power and compresses data faster at a
lower compression ratio than zlib. Conversely, zlib provides more compact
compression ratios at lower speeds. This option is only valid if
APPENDONLY=TRUE.

COMPRESSLEVEL - For zlib compression of append-only tables, set to a value
between 1 (fastest compression) to 9 (highest compression ratio). QuickLZ
compression level can only be set to 1. If not declared, the default is 1. This option
is only valid if APPENDONLY=TRUE.

FILLFACTOR - See CREATE INDEX for more information about this index storage
parameter.

OIDS - Set to OIDS=FALSE (the default) so that rows do not have object
identifiers assigned to them. Greenplum strongly recommends that you do not
enable OIDS when creating a table. On large tables, such as those in a typical
Greenplum Database system, using OIDs for table rows can cause wrap-around of
the 32-bit OID counter. Once the counter wraps around, OIDs can no longer be
assumed to be unique, which not only makes them useless to user applications, but
can also cause problems in the Greenplum Database system catalog tables. In
addition, excluding OIDs from a table reduces the space required to store the table
on disk by 4 bytes per row, slightly improving performance. OIDS are not allowed
on column-oriented tables.
CREATE TABLE AS 181

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled
using ON COMMIT. The three options are:

PRESERVE ROWS

No special action is taken at the ends of transactions for temporary tables. This is the
default behavior.

DELETE ROWS

All rows in the temporary table will be deleted at the end of each transaction block.
Essentially, an automatic TRUNCATE is done at each commit.

DROP

The temporary table will be dropped at the end of the current transaction block.

TABLESPACE tablespace
The tablespace is the name of the tablespace in which the new table is to be created.
If not specified, the database’s default tablespace is used.

AS query
A SELECT or VALUES command, or an EXECUTE command that runs a prepared
SELECT or VALUES query.

DISTRIBUTED BY (column, [...])
DISTRIBUTED RANDOMLY

Used to declare the Greenplum Database distribution policy for the table. One or
more columns can be used as the distribution key, meaning those columns are used
by the hashing algorithm to divide the data evenly across all of the segments. The
distribution key should be the primary key of the table or a unique column (or set of
columns). If that is not possible, then you may choose to distribute randomly, which
will send the data round-robin to the segment instances. If not supplied, then either
the PRIMARY KEY (if the table has one) or the first eligible column of the table will
be used.

Notes

This command is functionally similar to SELECT INTO, but it is preferred since it is
less likely to be confused with other uses of the SELECT INTO syntax. Furthermore,
CREATE TABLE AS offers a superset of the functionality offered by SELECT INTO.

CREATE TABLE AS can be used for fast data loading from external table data sources.
See CREATE EXTERNAL TABLE.

Examples

Create a new table films_recent consisting of only recent entries from the table films:

CREATE TABLE films_recent AS SELECT * FROM films WHERE
date_prod >= '2007-01-01';
CREATE TABLE AS 182

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Create a new temporary table films_recent, consisting of only recent entries from the
table films, using a prepared statement. The new table has OIDs and will be dropped
at commit:

PREPARE recentfilms(date) AS SELECT * FROM films WHERE
date_prod > $1;

CREATE TEMP TABLE films_recent WITH (OIDS) ON COMMIT DROP AS
EXECUTE recentfilms('2007-01-01');

Compatibility

CREATE TABLE AS conforms to the SQL standard, with the following exceptions:

• The standard requires parentheses around the subquery clause; in Greenplum
Database, these parentheses are optional.

• The standard defines a WITH [NO] DATA clause; this is not currently implemented
by Greenplum Database. The behavior provided by Greenplum Database is
equivalent to the standard’s WITH DATA case. WITH NO DATA can be simulated by
appending LIMIT 0 to the query.

• Greenplum Database handles temporary tables differently from the standard; see
CREATE TABLE for details.

• The WITH clause is a Greenplum Database extension; neither storage parameters
nor OIDs are in the standard.

• The Greenplum Database concept of tablespaces is not part of the standard. The
TABLESPACE clause is an extension.

See Also

CREATE EXTERNAL TABLE, CREATE EXTERNAL TABLE, EXECUTE, SELECT, SELECT INTO,
VALUES
CREATE TABLE AS 183

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE TABLESPACE
Defines a new tablespace.

Synopsis
CREATE TABLESPACE tablespace_name [OWNER username]
 FILESPACE filespace_name

Description

CREATE TABLESPACE registers a new tablespace for your Greenplum Database
system. The tablespace name must be distinct from the name of any existing
tablespace in the system.

A tablespace allows superusers to define an alternative location on the file system
where the data files containing database objects (such as tables and indexes) may
reside.

A user with appropriate privileges can pass a tablespace name to CREATE DATABASE,
CREATE TABLE, or CREATE INDEX to have the data files for these objects stored within
the specified tablespace.

In Greenplum Database, there must be a file system location defined for the master,
each primary segment, and each mirror segment in order for the tablespace to have a
location to store its objects across an entire Greenplum system. This collection of file
system locations is defined in a filespace object. A filespace must be defined before
you can create a tablespace. See gpfilespace in the Greenplum Database Utility
Guide for more information.

Parameters

tablespacename
The name of a tablespace to be created. The name cannot begin with pg_ or gp_, as
such names are reserved for system tablespaces.

OWNER username
The name of the user who will own the tablespace. If omitted, defaults to the user
executing the command. Only superusers may create tablespaces, but they can
assign ownership of tablespaces to non-superusers.

FILESPACE

The name of a Greenplum Database filespace that was defined using the CREATE
FILESPACE command or the gpfilespace management utility.

Notes

You must first create a filespace to be used by the tablespace. See gpfilespace in the
Greenplum Database Utility Guide for more information.
CREATE TABLESPACE 184

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Tablespaces are only supported on systems that support symbolic links.

CREATE TABLESPACE cannot be executed inside a transaction block.

Examples

Create a new tablespace by specifying the corresponding filespace to use:

CREATE TABLESPACE mytblspace FILESPACE myfilespace;

Compatibility

CREATE TABLESPACE is a Greenplum Database extension.

See Also

Greenplum Database Utility Guide entry for gpfilespace, CREATE DATABASE,
CREATE TABLE, CREATE INDEX, DROP TABLESPACE, ALTER TABLESPACE
CREATE TABLESPACE 185

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE TRIGGER
Defines a new trigger. User-defined triggers are not supported in Greenplum
Database.

Synopsis
CREATE TRIGGER name {BEFORE | AFTER} {event [OR ...]}
 ON table [FOR [EACH] {ROW | STATEMENT}]
 EXECUTE PROCEDURE funcname (arguments)

Description

CREATE TRIGGER creates a new trigger. The trigger will be associated with the
specified table and will execute the specified function when certain events occur.

Due to the distributed nature of a Greenplum Database system, the use of triggers is
very limited in Greenplum Database. The function used in the trigger must be
IMMUTABLE, meaning it cannot use information not directly present in its argument
list. The function specified in the trigger also cannot execute any SQL or modify
distributed database objects in any way. Given that triggers are most often used to alter
tables (for example, update these other rows when this row is updated), these
limitations offer very little practical use of triggers in Greenplum Database. For that
reason, Greenplum does not support the use of user-defined triggers in Greenplum
Database. Triggers cannot be used on append-only tables.

If multiple triggers of the same kind are defined for the same event, they will be fired
in alphabetical order by name.

SELECT does not modify any rows so you can not create SELECT triggers. Rules and
views are more appropriate in such cases.

Parameters

name
The name to give the new trigger. This must be distinct from the name of any other
trigger for the same table.

BEFORE
AFTER

Determines whether the function is called before or after the event. If the trigger
fires before the event, the trigger may skip the operation for the current row, or
change the row being inserted (for INSERT and UPDATE operations only). If the
trigger fires after the event, all changes, including the last insertion, update, or
deletion, are visible to the trigger.

event
Specifies the event that will fire the trigger (INSERT, UPDATE, or DELETE).
Multiple events can be specified using OR.
CREATE TRIGGER 186

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
table
The name (optionally schema-qualified) of the table the trigger is for.

FOR EACH ROW
FOR EACH STATEMENT

This specifies whether the trigger procedure should be fired once for every row
affected by the trigger event, or just once per SQL statement. If neither is specified,
FOR EACH STATEMENT is the default. A trigger that is marked FOR EACH ROW is
called once for every row that the operation modifies. In contrast, a trigger that is
marked FOR EACH STATEMENT only executes once for any given operation,
regardless of how many rows it modifies.

funcname
A user-supplied function that is declared as IMMUTABLE, taking no arguments, and
returning type trigger, which is executed when the trigger fires. This function
must not execute SQL or modify the database in any way.

arguments
An optional comma-separated list of arguments to be provided to the function when
the trigger is executed. The arguments are literal string constants. Simple names and
numeric constants may be written here, too, but they will all be converted to strings.
Please check the description of the implementation language of the trigger function
about how the trigger arguments are accessible within the function; it may be
different from normal function arguments.

Notes

To create a trigger on a table, the user must have the TRIGGER privilege on the table.

Examples

Declare the trigger function and then a trigger:

CREATE FUNCTION sendmail() RETURNS trigger AS
'$GPHOME/lib/emailtrig.so' LANGUAGE C IMMUTABLE;

CREATE TRIGGER t_sendmail AFTER INSERT OR UPDATE OR DELETE
ON mytable FOR EACH STATEMENT EXECUTE PROCEDURE sendmail();

Compatibility

The CREATE TRIGGER statement in Greenplum Database implements a subset of the
SQL standard. The following functionality is currently missing:

• Greenplum Database has strict limitations on the function that is called by a
trigger, which makes the use of triggers very limited in Greenplum Database. For
this reason, triggers are not officially supported in Greenplum Database.

• SQL allows triggers to fire on updates to specific columns (e.g., AFTER UPDATE
OF col1, col2).
CREATE TRIGGER 187

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
• SQL allows you to define aliases for the ‘old’ and ‘new’ rows or tables for use in
the definition of the triggered action (e.g., CREATE TRIGGER ... ON tablename
REFERENCING OLD ROW AS somename NEW ROW AS othername ...). Since
Greenplum Database allows trigger procedures to be written in any number of
user-defined languages, access to the data is handled in a language-specific way.

• Greenplum Database only allows the execution of a user-defined function for the
triggered action. The standard allows the execution of a number of other SQL
commands, such as CREATE TABLE as the triggered action. This limitation is not
hard to work around by creating a user-defined function that executes the desired
commands.

• SQL specifies that multiple triggers should be fired in time-of-creation order.
Greenplum Database uses name order, which was judged to be more convenient.

• SQL specifies that BEFORE DELETE triggers on cascaded deletes fire after the
cascaded DELETE completes. The Greenplum Database behavior is for BEFORE
DELETE to always fire before the delete action, even a cascading one. This is
considered more consistent.

• The ability to specify multiple actions for a single trigger using OR is a Greenplum
Database extension of the SQL standard.

See Also

CREATE FUNCTION, ALTER TRIGGER, DROP TRIGGER, CREATE RULE
CREATE TRIGGER 188

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE TYPE
Defines a new data type.

Synopsis
CREATE TYPE name AS (attribute_name data_type [, ...])

CREATE TYPE name (
 INPUT = input_function,
 OUTPUT = output_function
 [, RECEIVE = receive_function]
 [, SEND = send_function]
 [, INTERNALLENGTH = {internallength | VARIABLE}]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage]
 [, DEFAULT = default]
 [, ELEMENT = element]
 [, DELIMITER = delimiter]
)

CREATE TYPE name

Description

CREATE TYPE registers a new data type for use in the current database. The user who
defines a type becomes its owner.

If a schema name is given then the type is created in the specified schema. Otherwise
it is created in the current schema. The type name must be distinct from the name of
any existing type or domain in the same schema. The type name must also be distinct
from the name of any existing table in the same schema.

Composite Types

The first form of CREATE TYPE creates a composite type. The composite type is
specified by a list of attribute names and data types. This is essentially the same as the
row type of a table, but using CREATE TYPE avoids the need to create an actual table
when all that is wanted is to define a type. A stand-alone composite type is useful as
the argument or return type of a function.

Base Types

The second form of CREATE TYPE creates a new base type (scalar type). The
parameters may appear in any order, not only that shown in the syntax, and most are
optional. You must register two or more functions (using CREATE FUNCTION) before
defining the type. The support functions input_function and output_function
are required, while the functions receive_function, send_function and
analyze_function are optional. Generally these functions have to be coded in C or
another low-level language. In Greenplum Database, any function used to implement
a data type must be defined as IMMUTABLE.
CREATE TYPE 189

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
The input_function converts the type’s external textual representation to the
internal representation used by the operators and functions defined for the type.
output_function performs the reverse transformation. The input function may be
declared as taking one argument of type cstring, or as taking three arguments of
types cstring, oid, integer. The first argument is the input text as a C string, the
second argument is the type’s own OID (except for array types, which instead receive
their element type’s OID), and the third is the typmod of the destination column, if
known (-1 will be passed if not). The input function must return a value of the data
type itself. Usually, an input function should be declared STRICT; if it is not, it will be
called with a NULL first parameter when reading a NULL input value. The function
must still return NULL in this case, unless it raises an error. (This case is mainly meant
to support domain input functions, which may need to reject NULL inputs.) The output
function must be declared as taking one argument of the new data type. The output
function must return type cstring. Output functions are not invoked for NULL values.

The optional receive_function converts the type’s external binary representation
to the internal representation. If this function is not supplied, the type cannot
participate in binary input. The binary representation should be chosen to be cheap to
convert to internal form, while being reasonably portable. (For example, the standard
integer data types use network byte order as the external binary representation, while
the internal representation is in the machine’s native byte order.) The receive function
should perform adequate checking to ensure that the value is valid. The receive
function may be declared as taking one argument of type internal, or as taking three
arguments of types internal, oid, integer. The first argument is a pointer to a
StringInfo buffer holding the received byte string; the optional arguments are the
same as for the text input function. The receive function must return a value of the
data type itself. Usually, a receive function should be declared STRICT; if it is not, it
will be called with a NULL first parameter when reading a NULL input value. The
function must still return NULL in this case, unless it raises an error. (This case is
mainly meant to support domain receive functions, which may need to reject NULL
inputs.) Similarly, the optional send_function converts from the internal
representation to the external binary representation. If this function is not supplied, the
type cannot participate in binary output. The send function must be declared as taking
one argument of the new data type. The send function must return type bytea. Send
functions are not invoked for NULL values.

You should at this point be wondering how the input and output functions can be
declared to have results or arguments of the new type, when they have to be created
before the new type can be created. The answer is that the type should first be defined
as a shell type, which is a placeholder type that has no properties except a name and an
owner. This is done by issuing the command CREATE TYPE name, with no additional
parameters. Then the I/O functions can be defined referencing the shell type. Finally,
CREATE TYPE with a full definition replaces the shell entry with a complete, valid type
definition, after which the new type can be used normally.

While the details of the new type’s internal representation are only known to the I/O
functions and other functions you create to work with the type, there are several
properties of the internal representation that must be declared to Greenplum Database.
Foremost of these is internallength. Base data types can be fixed-length, in which
case internallength is a positive integer, or variable length, indicated by setting
CREATE TYPE 190

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
internallength to VARIABLE. (Internally, this is represented by setting typlen to
-1.) The internal representation of all variable-length types must start with a 4-byte
integer giving the total length of this value of the type.

The optional flag PASSEDBYVALUE indicates that values of this data type are passed by
value, rather than by reference. You may not pass by value types whose internal
representation is larger than the size of the Datum type (4 bytes on most machines, 8
bytes on a few).

The alignment parameter specifies the storage alignment required for the data type.
The allowed values equate to alignment on 1, 2, 4, or 8 byte boundaries. Note that
variable-length types must have an alignment of at least 4, since they necessarily
contain an int4 as their first component.

The storage parameter allows selection of storage strategies for variable-length data
types. (Only plain is allowed for fixed-length types.) plain specifies that data of the
type will always be stored in-line and not compressed. extended specifies that the
system will first try to compress a long data value, and will move the value out of the
main table row if it’s still too long. external allows the value to be moved out of the
main table, but the system will not try to compress it. main allows compression, but
discourages moving the value out of the main table. (Data items with this storage
strategy may still be moved out of the main table if there is no other way to make a
row fit, but they will be kept in the main table preferentially over extended and
external items.)

A default value may be specified, in case a user wants columns of the data type to
default to something other than the null value. Specify the default with the DEFAULT
key word. (Such a default may be overridden by an explicit DEFAULT clause attached
to a particular column.)

To indicate that a type is an array, specify the type of the array elements using the
ELEMENT key word. For example, to define an array of 4-byte integers (int4), specify
ELEMENT = int4. More details about array types appear below.

To indicate the delimiter to be used between values in the external representation of
arrays of this type, delimiter can be set to a specific character. The default delimiter
is the comma (,). Note that the delimiter is associated with the array element type, not
the array type itself.

Array Types

Whenever a user-defined base data type is created, Greenplum Database automatically
creates an associated array type, whose name consists of the base type’s name
prepended with an underscore. The parser understands this naming convention, and
translates requests for columns of type foo[] into requests for type _foo. The
implicitly-created array type is variable length and uses the built-in input and output
functions array_in and array_out.

You might reasonably ask why there is an ELEMENT option, if the system makes the
correct array type automatically. The only case where it’s useful to use ELEMENT is
when you are making a fixed-length type that happens to be internally an array of a
number of identical things, and you want to allow these things to be accessed directly
by subscripting, in addition to whatever operations you plan to provide for the type as
a whole. For example, type name allows its constituent char elements to be accessed
CREATE TYPE 191

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
this way. A 2-D point type could allow its two component numbers to be accessed like
point[0] and point[1]. Note that this facility only works for fixed-length types whose
internal form is exactly a sequence of identical fixed-length fields. A subscriptable
variable-length type must have the generalized internal representation used by
array_in and array_out. For historical reasons, subscripting of fixed-length array
types starts from zero, rather than from one as for variable-length arrays.

Parameters

name
The name (optionally schema-qualified) of a type to be created.

attribute_name
The name of an attribute (column) for the composite type.

data_type
The name of an existing data type to become a column of the composite type.

input_function
The name of a function that converts data from the type’s external textual form to its
internal form.

output_function
The name of a function that converts data from the type’s internal form to its
external textual form.

receive_function
The name of a function that converts data from the type’s external binary form to its
internal form.

send_function
The name of a function that converts data from the type’s internal form to its
external binary form.

internallength
A numeric constant that specifies the length in bytes of the new type’s internal
representation. The default assumption is that it is variable-length.

alignment
The storage alignment requirement of the data type. Must be one of char, int2,
int4, or double. The default is int4.

storage
The storage strategy for the data type. Must be one of plain, external, extended,
or main. The default is plain.
CREATE TYPE 192

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
default
The default value for the data type. If this is omitted, the default is null.

element
The type being created is an array; this specifies the type of the array elements.

delimiter
The delimiter character to be used between values in arrays made of this type.

Notes

User-defined type names cannot begin with the underscore character (_) and can only
be 62 characters long (or in general NAMEDATALEN - 2, rather than the NAMEDATALEN
- 1 characters allowed for other names). Type names beginning with underscore are
reserved for internally-created array type names.

Because there are no restrictions on use of a data type once it’s been created, creating
a base type is tantamount to granting public execute permission on the functions
mentioned in the type definition. (The creator of the type is therefore required to own
these functions.) This is usually not an issue for the sorts of functions that are useful in
a type definition. But you might want to think twice before designing a type in a way
that would require ‘secret’ information to be used while converting it to or from
external form.

Before Greenplum Database version 2.4, the syntax CREATE TYPE name did not exist.
The way to create a new base type was to create its input function first. In this
approach, Greenplum Database will first see the name of the new data type as the
return type of the input function. The shell type is implicitly created in this situation,
and then it can be referenced in the definitions of the remaining I/O functions. This
approach still works, but is deprecated and may be disallowed in some future release.
Also, to avoid accidentally cluttering the catalogs with shell types as a result of simple
typos in function definitions, a shell type will only be made this way when the input
function is written in C.

Examples

This example creates a composite type and uses it in a function definition:

CREATE TYPE compfoo AS (f1 int, f2 text);

CREATE FUNCTION getfoo() RETURNS SETOF compfoo AS $$

 SELECT fooid, fooname FROM foo

$$ LANGUAGE SQL;

This example creates the base data type box and then uses the type in a table
definition:

CREATE TYPE box;

CREATE FUNCTION my_box_in_function(cstring) RETURNS box AS
... ;
CREATE TYPE 193

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE FUNCTION my_box_out_function(box) RETURNS cstring AS
... ;

CREATE TYPE box (

 INTERNALLENGTH = 16,

 INPUT = my_box_in_function,

 OUTPUT = my_box_out_function

);

CREATE TABLE myboxes (

 id integer,

 description box

);

If the internal structure of box were an array of four float4 elements, we might
instead use:

CREATE TYPE box (

 INTERNALLENGTH = 16,

 INPUT = my_box_in_function,

 OUTPUT = my_box_out_function,

 ELEMENT = float4

);

which would allow a box value’s component numbers to be accessed by subscripting.
Otherwise the type behaves the same as before.

This example creates a large object type and uses it in a table definition:

CREATE TYPE bigobj (

 INPUT = lo_filein, OUTPUT = lo_fileout,

 INTERNALLENGTH = VARIABLE

);

CREATE TABLE big_objs (

 id integer,

 obj bigobj

);

Compatibility

This CREATE TYPE command is a Greenplum Database extension. There is a CREATE
TYPE statement in the SQL standard that is rather different in detail.

See Also

CREATE FUNCTION, ALTER TYPE, DROP TYPE, CREATE DOMAIN
CREATE TYPE 194

CREATE USER 195

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

CREATE USER
Defines a new database role with the LOGIN privilege by default.

Synopsis
CREATE USER name [[WITH] option [...]]

where option can be:
 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE rolename [, ...]
 | IN GROUP rolename [, ...]
 | ROLE rolename [, ...]
 | ADMIN rolename [, ...]
 | USER rolename [, ...]
 | SYSID uid
 | RESOURCE QUEUE queue_name

Description

As of Greenplum Database release 2.2, CREATE USER has been replaced by CREATE
ROLE, although it is still accepted for backwards compatibility.

The only difference between CREATE ROLE and CREATE USER is that LOGIN is
assumed by default with CREATE USER, whereas NOLOGIN is assumed by default with
CREATE ROLE.

Compatibility

There is no CREATE USER statement in the SQL standard.

See Also

CREATE ROLE

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
CREATE VIEW
Defines a new view.

Synopsis
CREATE [OR REPLACE] [TEMP | TEMPORARY] VIEW name
 [(column_name [, ...])]
 AS query

Description

CREATE VIEW defines a view of a query. The view is not physically materialized.
Instead, the query is run every time the view is referenced in a query.

CREATE OR REPLACE VIEW is similar, but if a view of the same name already exists,
it is replaced. You can only replace a view with a new query that generates the
identical set of columns (same column names and data types).

If a schema name is given then the view is created in the specified schema. Otherwise
it is created in the current schema. Temporary views exist in a special schema, so a
schema name may not be given when creating a temporary view. The name of the
view must be distinct from the name of any other view, table, sequence, or index in the
same schema.

Parameters

TEMPORARY | TEMP

If specified, the view is created as a temporary view. Temporary views are
automatically dropped at the end of the current session. Existing permanent relations
with the same name are not visible to the current session while the temporary view
exists, unless they are referenced with schema-qualified names. If any of the tables
referenced by the view are temporary, the view is created as a temporary view
(whether TEMPORARY is specified or not).

name
The name (optionally schema-qualified) of a view to be created.

column_name
An optional list of names to be used for columns of the view. If not given, the
column names are deduced from the query.

query
A SELECT or VALUES command which will provide the columns and rows of the
view.
CREATE VIEW 196

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Notes

Views in Greenplum Database are read only. The system will not allow an insert,
update, or delete on a view. You can get the effect of an updatable view by creating
rewrite rules on the view into appropriate actions on other tables. For more
information see CREATE RULE.

Be careful that the names and data types of the view’s columns will be assigned the
way you want. For example:

CREATE VIEW vista AS SELECT 'Hello World';

is bad form in two ways: the column name defaults to ?column?, and the column data
type defaults to unknown. If you want a string literal in a view’s result, use something
like:

CREATE VIEW vista AS SELECT text 'Hello World' AS hello;

Access to tables referenced in the view is determined by permissions of the view
owner not the current user (even if the current user is a superuser). This can be
confusing in the case of superusers, since superusers typically have access to all
objects. In the case of a view, even superusers must be explicitly granted access to
tables referenced in the view if they are not the owner of the view.

However, functions called in the view are treated the same as if they had been called
directly from the query using the view. Therefore the user of a view must have
permissions to call any functions used by the view.

If you create a view with an ORDER BY clause, the ORDER BY clause is ignored when
you do a SELECT from the view.

Examples

Create a view consisting of all comedy films:

CREATE VIEW comedies AS SELECT * FROM films WHERE kind =
'comedy';

Create a view that gets the top ten ranked baby names:

CREATE VIEW topten AS SELECT name, rank, gender, year FROM
names, rank WHERE rank < '11' AND names.id=rank.id;

Compatibility

The SQL standard specifies some additional capabilities for the CREATE VIEW
statement that are not in Greenplum Database. The optional clauses for the full SQL
command in the standard are:

• CHECK OPTION — This option has to do with updatable views. All INSERT and
UPDATE commands on the view will be checked to ensure data satisfy the
view-defining condition (that is, the new data would be visible through the view).
If they do not, the update will be rejected.

• LOCAL — Check for integrity on this view.
CREATE VIEW 197

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
• CASCADED — Check for integrity on this view and on any dependent view.
CASCADED is assumed if neither CASCADED nor LOCAL is specified.

CREATE OR REPLACE VIEW is a Greenplum Database language extension. So is the
concept of a temporary view.

See Also

SELECT, DROP VIEW
CREATE VIEW 198

DEALLOCATE 199

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DEALLOCATE
Deallocates a prepared statement.

Synopsis
DEALLOCATE [PREPARE] name

Description

DEALLOCATE is used to deallocate a previously prepared SQL statement. If you do not
explicitly deallocate a prepared statement, it is deallocated when the session ends.

For more information on prepared statements, see PREPARE.

Parameters

PREPARE

Optional key word which is ignored.

name
The name of the prepared statement to deallocate.

Examples

Deallocated the previously prepared statement named insert_names:

DEALLOCATE insert_names;

Compatibility

The SQL standard includes a DEALLOCATE statement, but it is only for use in
embedded SQL.

See Also

EXECUTE, PREPARE

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
DECLARE
Defines a cursor.

Synopsis
DECLARE name [BINARY] [INSENSITIVE] [NO SCROLL] CURSOR
 [{WITH | WITHOUT} HOLD]
 FOR query [FOR READ ONLY]

Description

DECLARE allows a user to create cursors, which can be used to retrieve a small number
of rows at a time out of a larger query. Cursors can return data either in text or in
binary format using FETCH.

Normal cursors return data in text format, the same as a SELECT would produce. Since
data is stored natively in binary format, the system must do a conversion to produce
the text format. Once the information comes back in text form, the client application
may need to convert it to a binary format to manipulate it. In addition, data in the text
format is often larger in size than in the binary format. Binary cursors return the data
in a binary representation that may be more easily manipulated. Nevertheless, if you
intend to display the data as text anyway, retrieving it in text form will save you some
effort on the client side.

As an example, if a query returns a value of one from an integer column, you would
get a string of 1 with a default cursor whereas with a binary cursor you would get a
4-byte field containing the internal representation of the value (in big-endian byte
order).

Binary cursors should be used carefully. Many applications, including psql, are not
prepared to handle binary cursors and expect data to come back in the text format.

Note: When the client application uses the ‘extended query’ protocol to issue a FETCH
command, the Bind protocol message specifies whether data is to be retrieved in text or
binary format. This choice overrides the way that the cursor is defined. The concept of
a binary cursor as such is thus obsolete when using extended query protocol — any
cursor can be treated as either text or binary.

Parameters

name
The name of the cursor to be created.

BINARY

Causes the cursor to return data in binary rather than in text format.
DECLARE 200

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
INSENSITIVE

Indicates that data retrieved from the cursor should be unaffected by updates to the
tables underlying the cursor while the cursor exists. In Greenplum Database, all
cursors are insensitive. This key word currently has no effect and is present for
compatibility with the SQL standard.

NO SCROLL

A cursor cannot be used to retrieve rows in a nonsequential fashion. This is the
default behavior in Greenplum Database, since scrollable cursors (SCROLL) are not
supported.

WITH HOLD
WITHOUT HOLD

WITH HOLD specifies that the cursor may continue to be used after the transaction
that created it successfully commits. WITHOUT HOLD specifies that the cursor cannot
be used outside of the transaction that created it. WITHOUT HOLD is the default.

query
A SELECT or VALUES command which will provide the rows to be returned by the
cursor.

FOR READ ONLY

Cursors can only be used in a read-only mode in Greenplum Database. Greenplum
Database does not support updatable cursors (FOR UPDATE), so this is the default
behavior.

Notes

Unless WITH HOLD is specified, the cursor created by this command can only be used
within the current transaction. Thus, DECLARE without WITH HOLD is useless outside a
transaction block: the cursor would survive only to the completion of the statement.
Therefore Greenplum Database reports an error if this command is used outside a
transaction block. Use BEGIN, COMMIT and ROLLBACK to define a transaction block.

If WITH HOLD is specified and the transaction that created the cursor successfully
commits, the cursor can continue to be accessed by subsequent transactions in the
same session. (But if the creating transaction is aborted, the cursor is removed.) A
cursor created with WITH HOLD is closed when an explicit CLOSE command is issued
on it, or the session ends. In the current implementation, the rows represented by a
held cursor are copied into a temporary file or memory area so that they remain
available for subsequent transactions.

Scrollable cursors are not currently supported in Greenplum Database. You can only
use FETCH to move the cursor position forward, not backwards.

You can see all available cursors by querying the pg_cursors system view.

Examples

Declare a cursor:
DECLARE 201

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
DECLARE mycursor CURSOR FOR SELECT * FROM mytable;

Compatibility

SQL standard allows cursors only in embedded SQL and in modules. Greenplum
Database permits cursors to be used interactively.

Greenplum Database does not implement an OPEN statement for cursors. A cursor is
considered to be open when it is declared.

The SQL standard allows cursors to update table data. All Greenplum Database
cursors are read only.

The SQL standard allows cursors to move both forward and backward. All Greenplum
Database cursors are forward moving only (not scrollable).

Binary cursors are a Greenplum Database extension.

See Also

CLOSE, FETCH, MOVE, SELECT
DECLARE 202

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
DELETE
Deletes rows from a table.

Synopsis
DELETE FROM [ONLY] table [[AS] alias]
 [USING usinglist]
 [WHERE condition]

Description

DELETE deletes rows that satisfy the WHERE clause from the specified table. If the
WHERE clause is absent, the effect is to delete all rows in the table. The result is a valid,
but empty table.

By default, DELETE will delete rows in the specified table and all its child tables. If
you wish to delete only from the specific table mentioned, you must use the ONLY
clause.

There are two ways to delete rows in a table using information contained in other
tables in the database: using sub-selects, or specifying additional tables in the USING
clause. Which technique is more appropriate depends on the specific circumstances.

You must have the DELETE privilege on the table to delete from it.

Outputs

On successful completion, a DELETE command returns a command tag of the form

DELETE count

The count is the number of rows deleted. If count is 0, no rows matched the condition
(this is not considered an error).

Parameters

ONLY

If specified, delete rows from the named table only. When not specified, any tables
inheriting from the named table are also processed.

table
The name (optionally schema-qualified) of an existing table.

alias
A substitute name for the target table. When an alias is provided, it completely hides
the actual name of the table. For example, given DELETE FROM foo AS f, the
remainder of the DELETE statement must refer to this table as f not foo.
DELETE 203

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
usinglist
A list of table expressions, allowing columns from other tables to appear in the
WHERE condition. This is similar to the list of tables that can be specified in the FROM
Clause of a SELECT statement; for example, an alias for the table name can be
specified. Do not repeat the target table in the usinglist, unless you wish to set up
a self-join.

condition
An expression returning a value of type boolean, which determines the rows that
are to be deleted.

Notes

Greenplum Database lets you reference columns of other tables in the WHERE
condition by specifying the other tables in the USING clause. For example, to the name
Hannah from the rank table, one might do:

DELETE FROM rank USING names WHERE names.id = rank.id AND
name = 'Hannah';

What is essentially happening here is a join between rank and names, with all
successfully joined rows being marked for deletion. This syntax is not standard.
However, this join style is usually easier to write and faster to execute than a more
standard sub-select style, such as:

DELETE FROM rank WHERE id IN (SELECT id FROM names WHERE name
= 'Hannah');

When using DELETE to remove all the rows of a table (for example: DELETE * FROM
table;), Greenplum Database adds an implicit TRUNCATE command (when user
permissions allow). The added TRUNCATE command frees the disk space occupied by
the deleted rows without requiring a VACUUM of the table. This improves scan
performance of subsequent queries, and benefits ELT workloads that frequently insert
and delete from temporary tables.

Examples

Delete all films but musicals:

DELETE FROM films WHERE kind <> 'Musical';

Clear the table films:

DELETE FROM films;

Delete using a join:

DELETE FROM rank USING names WHERE names.id = rank.id AND
name = 'Hannah';

Compatibility

This command conforms to the SQL standard, except that the USING clause is a
Greenplum Database extension.
DELETE 204

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
See Also

TRUNCATE
DELETE 205

DROP AGGREGATE 206

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP AGGREGATE
Removes an aggregate function.

Synopsis
DROP AGGREGATE [IF EXISTS] name (type [, ...]) [CASCADE |
RESTRICT]

Description

DROP AGGREGATE will delete an existing aggregate function. To execute this
command the current user must be the owner of the aggregate function.

Parameters

IF EXISTS

Do not throw an error if the aggregate does not exist. A notice is issued in this case.

name
The name (optionally schema-qualified) of an existing aggregate function.

type
An input data type on which the aggregate function operates. To reference a
zero-argument aggregate function, write * in place of the list of input data types.

CASCADE

Automatically drop objects that depend on the aggregate function.

RESTRICT

Refuse to drop the aggregate function if any objects depend on it. This is the default.

Examples

To remove the aggregate function myavg for type integer:

DROP AGGREGATE myavg(integer);

Compatibility

There is no DROP AGGREGATE statement in the SQL standard.

See Also

ALTER AGGREGATE, CREATE AGGREGATE

DROP CAST 207

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP CAST
Removes a cast.

Synopsis
DROP CAST [IF EXISTS] (sourcetype AS targettype) [CASCADE |
RESTRICT]

Description

DROP CAST will delete a previously defined cast. To be able to drop a cast, you must
own the source or the target data type. These are the same privileges that are required
to create a cast.

Parameters

IF EXISTS

Do not throw an error if the cast does not exist. A notice is issued in this case.

sourcetype
The name of the source data type of the cast.

targettype
The name of the target data type of the cast.

CASCADE
RESTRICT

These keywords have no effect since there are no dependencies on casts.

Examples

To drop the cast from type text to type int:
DROP CAST (text AS int);

Compatibility

There DROP CAST command conforms to the SQL standard.

See Also

CREATE CAST

DROP CONVERSION 208

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP CONVERSION
Removes a conversion.

Synopsis
DROP CONVERSION [IF EXISTS] name [CASCADE | RESTRICT]

Description

DROP CONVERSION removes a previously defined conversion. To be able to drop a
conversion, you must own the conversion.

Parameters

IF EXISTS

Do not throw an error if the conversion does not exist. A notice is issued in this case.

name
The name of the conversion. The conversion name may be schema-qualified.

CASCADE
RESTRICT

These keywords have no effect since there are no dependencies on conversions.

Examples

Drop the conversion named myname:

DROP CONVERSION myname;

Compatibility

There is no DROP CONVERSION statement in the SQL standard.

See Also

ALTER CONVERSION, CREATE CONVERSION

DROP DATABASE 209

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP DATABASE
Removes a database.

Synopsis
DROP DATABASE [IF EXISTS] name

Description

DROP DATABASE drops a database. It removes the catalog entries for the database and
deletes the directory containing the data. It can only be executed by the database
owner. Also, it cannot be executed while you or anyone else are connected to the
target database. (Connect to template1 or any other database to issue this command.)

DROP DATABASE cannot be undone. Use it with care!

Parameters

IF EXISTS

Do not throw an error if the database does not exist. A notice is issued in this case.

name
The name of the database to remove.

Notes

DROP DATABASE cannot be executed inside a transaction block.

This command cannot be executed while connected to the target database. Thus, it
might be more convenient to use the program dropdb instead, which is a wrapper
around this command.

Examples

Drop the database named testdb:

DROP DATABASE testdb;

Compatibility

There is no DROP DATABASE statement in the SQL standard.

See Also

ALTER DATABASE, CREATE DATABASE

DROP DOMAIN 210

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP DOMAIN
Removes a domain.

Synopsis
DROP DOMAIN [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

DROP DOMAIN removes a previously defined domain. You must be the owner of a
domain to drop it.

Parameters

IF EXISTS

Do not throw an error if the domain does not exist. A notice is issued in this case.

name
The name (optionally schema-qualified) of an existing domain.

CASCADE

Automatically drop objects that depend on the domain (such as table columns).

RESTRICT

Refuse to drop the domain if any objects depend on it. This is the default.

Examples

Drop the domain named zipcode:

DROP DOMAIN zipcode;

Compatibility

This command conforms to the SQL standard, except for the IF EXISTS option,
which is a Greenplum Database extension.

See Also

ALTER DOMAIN, CREATE DOMAIN

DROP EXTERNAL TABLE 211

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP EXTERNAL TABLE
Removes an external table definition.

Synopsis
DROP EXTERNAL [WEB] TABLE [IF EXISTS] name [CASCADE | RESTRICT]

Description

DROP EXTERNAL TABLE drops an existing external table definition from the database
system. The external data sources or files are not deleted. To execute this command
you must be the owner of the external table.

Parameters

WEB

Optional keyword for dropping external web tables.

IF EXISTS

Do not throw an error if the external table does not exist. A notice is issued in this
case.

name
The name (optionally schema-qualified) of an existing external table.

CASCADE

Automatically drop objects that depend on the external table (such as views).

RESTRICT

Refuse to drop the external table if any objects depend on it. This is the default.

Examples

Remove the external table named staging if it exists:

DROP EXTERNAL TABLE IF EXISTS staging;

Compatibility

There is no DROP EXTERNAL TABLE statement in the SQL standard.

See Also

CREATE EXTERNAL TABLE

DROP FILESPACE 212

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP FILESPACE
Removes a filespace.

Synopsis
DROP FILESPACE [IF EXISTS] filespacename

Description

DROP FILESPACE removes a filespace definition and its system-generated data
directories from the system.

A filespace can only be dropped by its owner or a superuser. The filespace must be
empty of all tablespace objects before it can be dropped. It is possible that tablespaces
in other databases may still be using a filespace even if no tablespaces in the current
database are using the filespace.

Parameters

IF EXISTS

Do not throw an error if the filespace does not exist. A notice is issued in this case.

tablespacename
The name of the filespace to remove.

Examples

Remove the tablespace myfs:

DROP FILESPACE myfs;

Compatibility

There is no DROP FILESPACE statement in the SQL standard or in PostgreSQL.

See Also

ALTER FILESPACE, gpfilespace in the Greenplum Database Utility Guide, DROP
TABLESPACE

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
DROP FUNCTION
Removes a function.

Synopsis
DROP FUNCTION [IF EXISTS] name ([[argmode] [argname] argtype
[, ...]]) [CASCADE | RESTRICT]

Description

DROP FUNCTION removes the definition of an existing function. To execute this
command the user must be the owner of the function. The argument types to the
function must be specified, since several different functions may exist with the same
name and different argument lists.

Parameters

IF EXISTS

Do not throw an error if the function does not exist. A notice is issued in this case.

name
The name (optionally schema-qualified) of an existing function.

argmode
The mode of an argument: either IN, OUT, or INOUT. If omitted, the default is IN.
Note that DROP FUNCTION does not actually pay any attention to OUT arguments,
since only the input arguments are needed to determine the function’s identity. So it
is sufficient to list the IN and INOUT arguments.

argname
The name of an argument. Note that DROP FUNCTION does not actually pay any
attention to argument names, since only the argument data types are needed to
determine the function’s identity.

argtype
The data type(s) of the function’s arguments (optionally schema-qualified), if any.

CASCADE

Automatically drop objects that depend on the function (such as operators or
triggers).

RESTRICT

Refuse to drop the function if any objects depend on it. This is the default.
DROP FUNCTION 213

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Examples

Drop the square root function:

DROP FUNCTION sqrt(integer);

Compatibility

A DROP FUNCTION statement is defined in the SQL standard, but it is not compatible
with this command.

See Also

CREATE FUNCTION, ALTER FUNCTION
DROP FUNCTION 214

DROP GROUP 215

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP GROUP
Removes a database role.

Synopsis
DROP GROUP [IF EXISTS] name [, ...]

Description

DROP GROUP is an obsolete command, though still accepted for backwards
compatibility. Groups (and users) have been superseded by the more general concept
of roles. See DROP ROLE for more information.

Parameters

IF EXISTS

Do not throw an error if the role does not exist. A notice is issued in this case.

name
The name of an existing role.

Compatibility

There is no DROP GROUP statement in the SQL standard.

See Also

DROP ROLE

DROP INDEX 216

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP INDEX
Removes an index.

Synopsis
DROP INDEX [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

DROP INDEX drops an existing index from the database system. To execute this
command you must be the owner of the index.

Parameters

IF EXISTS

Do not throw an error if the index does not exist. A notice is issued in this case.

name
The name (optionally schema-qualified) of an existing index.

CASCADE

Automatically drop objects that depend on the index.

RESTRICT

Refuse to drop the index if any objects depend on it. This is the default.

Examples

Remove the index title_idx:

DROP INDEX title_idx;

Compatibility

DROP INDEX is a Greenplum Database language extension. There are no provisions
for indexes in the SQL standard.

See Also

ALTER INDEX, CREATE INDEX, REINDEX

DROP LANGUAGE 217

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP LANGUAGE
Removes a procedural language.

Synopsis
DROP [PROCEDURAL] LANGUAGE [IF EXISTS] name [CASCADE | RESTRICT]

Description

DROP LANGUAGE will remove the definition of the previously registered procedural
language. You must be a superuser to drop a language.

Parameters

PROCEDURAL

Optional keyword - has no effect.

IF EXISTS

Do not throw an error if the language does not exist. A notice is issued in this case.

name
The name of an existing procedural language. For backward compatibility, the name
may be enclosed by single quotes.

CASCADE

Automatically drop objects that depend on the language (such as functions written
in that language).

RESTRICT

Refuse to drop the language if any objects depend on it. This is the default.

Examples

Remove the procedural language plsample:

DROP LANGUAGE plsample;

Compatibility

There is no DROP LANGUAGE statement in the SQL standard.

See Also

ALTER LANGUAGE, CREATE LANGUAGE

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
DROP OPERATOR
Removes an operator.

Synopsis
DROP OPERATOR [IF EXISTS] name ({lefttype | NONE} , {righttype
| NONE}) [CASCADE | RESTRICT]

Description

DROP OPERATOR drops an existing operator from the database system. To execute this
command you must be the owner of the operator.

Parameters

IF EXISTS

Do not throw an error if the operator does not exist. A notice is issued in this case.

name
The name (optionally schema-qualified) of an existing operator.

lefttype
The data type of the operator’s left operand; write NONE if the operator has no left
operand.

righttype
The data type of the operator’s right operand; write NONE if the operator has no right
operand.

CASCADE

Automatically drop objects that depend on the operator.

RESTRICT

Refuse to drop the operator if any objects depend on it. This is the default.

Examples

Remove the power operator a^b for type integer:

DROP OPERATOR ^ (integer, integer);

Remove the left unary bitwise complement operator ~b for type bit:
DROP OPERATOR ~ (none, bit);

Remove the right unary factorial operator x! for type bigint:
DROP OPERATOR ! (bigint, none);
DROP OPERATOR 218

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Compatibility

There is no DROP OPERATOR statement in the SQL standard.

See Also

ALTER OPERATOR, CREATE OPERATOR
DROP OPERATOR 219

DROP OPERATOR CLASS 220

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP OPERATOR CLASS
Removes an operator class.

Synopsis
DROP OPERATOR CLASS [IF EXISTS] name USING index_method [CASCADE
| RESTRICT]

Description

DROP OPERATOR drops an existing operator class. To execute this command you must
be the owner of the operator class.

Parameters

IF EXISTS

Do not throw an error if the operator class does not exist. A notice is issued in this
case.

name
The name (optionally schema-qualified) of an existing operator class.

index_method
The name of the index access method the operator class is for.

CASCADE

Automatically drop objects that depend on the operator class.

RESTRICT

Refuse to drop the operator class if any objects depend on it. This is the default.

Examples

Remove the B-tree operator class widget_ops:

DROP OPERATOR CLASS widget_ops USING btree;

This command will not succeed if there are any existing indexes that use the operator
class. Add CASCADE to drop such indexes along with the operator class.

Compatibility

There is no DROP OPERATOR CLASS statement in the SQL standard.

See Also

ALTER OPERATOR CLASS, CREATE OPERATOR CLASS

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
DROP OWNED
Removes database objects owned by a database role.

Synopsis
DROP OWNED BY name [, ...] [CASCADE | RESTRICT]

Description

DROP OWNED drops all the objects in the current database that are owned by one of the
specified roles. Any privileges granted to the given roles on objects in the current
database will also be revoked.

Parameters

name
The name of a role whose objects will be dropped, and whose privileges will be
revoked.

CASCADE

Automatically drop objects that depend on the affected objects.

RESTRICT

Refuse to drop the objects owned by a role if any other database objects depend on
one of the affected objects. This is the default.

Notes

DROP OWNED is often used to prepare for the removal of one or more roles. Because
DROP OWNED only affects the objects in the current database, it is usually necessary to
execute this command in each database that contains objects owned by a role that is to
be removed.

Using the CASCADE option may make the command recurse to objects owned by other
users.

The REASSIGN OWNED command is an alternative that reassigns the ownership of all
the database objects owned by one or more roles.

Examples

Remove any database objects owned by the role named sally:

DROP OWNED BY sally;

Compatibility

The DROP OWNED statement is a Greenplum Database extension.
DROP OWNED 221

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
See Also

REASSIGN OWNED, DROP ROLE
DROP OWNED 222

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
DROP RESOURCE QUEUE
Removes a resource queue.

Synopsis
DROP RESOURCE QUEUE queue_name

Description

This command removes a workload management resource queue from Greenplum
Database. To drop a resource queue, the queue cannot have any roles assigned to it,
nor can it have any statements waiting in the queue. Only a superuser can drop a
resource queue.

Parameters

queue_name
The name of a resource queue to remove.

Notes

Use ALTER ROLE to remove a user from a resource queue.

To see all the currently active queries for all resource queues, perform the following
query of the pg_locks table joined with the pg_roles and pg_resqueue tables:

SELECT rolname, rsqname, locktype, objid, transaction, pid,
mode, granted FROM pg_roles, pg_resqueue, pg_locks WHERE
pg_roles.rolresqueue=pg_locks.objid AND
pg_locks.objid=pg_resqueue.oid;

To see the roles assigned to a resource queue, perform the following query of the
pg_roles and pg_resqueue system catalog tables:

SELECT rolname, rsqname FROM pg_roles, pg_resqueue WHERE
pg_roles.rolresqueue=pg_resqueue.oid;

Examples

Remove a role from a resource queue (and move the role to the default resource
queue, pg_default):

ALTER ROLE bob RESOURCE QUEUE NONE;

Remove the resource queue named adhoc:

DROP RESOURCE QUEUE adhoc;

Compatibility

The DROP RESOURCE QUEUE statement is a Greenplum Database extension.
DROP RESOURCE QUEUE 223

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
See Also

ALTER RESOURCE QUEUE, CREATE RESOURCE QUEUE, ALTER ROLE
DROP RESOURCE QUEUE 224

DROP ROLE 225

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP ROLE
Removes a database role.

Synopsis
DROP ROLE [IF EXISTS] name [, ...]

Description

DROP ROLE removes the specified role(s). To drop a superuser role, you must be a
superuser yourself. To drop non-superuser roles, you must have CREATEROLE
privilege.

A role cannot be removed if it is still referenced in any database; an error will be
raised if so. Before dropping the role, you must drop all the objects it owns (or
reassign their ownership) and revoke any privileges the role has been granted. The
REASSIGN OWNED and DROP OWNED commands can be useful for this purpose.

However, it is not necessary to remove role memberships involving the role; DROP
ROLE automatically revokes any memberships of the target role in other roles, and of
other roles in the target role. The other roles are not dropped nor otherwise affected.

Parameters

IF EXISTS

Do not throw an error if the role does not exist. A notice is issued in this case.

name
The name of the role to remove.

Examples

Remove the roles named sally and bob:

DROP ROLE sally, bob;

Compatibility

The SQL standard defines DROP ROLE, but it allows only one role to be dropped at a
time, and it specifies different privilege requirements than Greenplum Database uses.

See Also

REASSIGN OWNED, DROP OWNED, CREATE ROLE, ALTER ROLE, SET ROLE

DROP RULE 226

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP RULE
Removes a rewrite rule.

Synopsis
DROP RULE [IF EXISTS] name ON relation [CASCADE | RESTRICT]

Description

DROP RULE drops a rewrite rule from a table or view.

Parameters

IF EXISTS

Do not throw an error if the rule does not exist. A notice is issued in this case.

name
The name of the rule to remove.

relation
The name (optionally schema-qualified) of the table or view that the rule applies to.

CASCADE

Automatically drop objects that depend on the rule.

RESTRICT

Refuse to drop the rule if any objects depend on it. This is the default.

Examples

Remove the rewrite rule sales_2006 on the table sales:

DROP RULE sales_2006 ON sales;

Compatibility

There is no DROP RULE statement in the SQL standard.

See Also

CREATE RULE

DROP TYPE 227

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP TYPE
Removes a data type.

Synopsis
DROP TYPE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

DROP TYPE will remove a user-defined data type. Only the owner of a type can
remove it.

Parameters

IF EXISTS

Do not throw an error if the type does not exist. A notice is issued in this case.

name
The name (optionally schema-qualified) of the data type to remove.

CASCADE

Automatically drop objects that depend on the type (such as table columns,
functions, operators).

RESTRICT

Refuse to drop the type if any objects depend on it. This is the default.

Examples

Remove the data type box;

DROP TYPE box;

Compatibility

This command is similar to the corresponding command in the SQL standard, apart
from the IF EXISTS option, which is a Greenplum Database extension. But note that
the CREATE TYPE command and the data type extension mechanisms in Greenplum
Database differ from the SQL standard.

See Also

ALTER TYPE, CREATE TYPE

DROP SCHEMA 228

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP SCHEMA
Removes a schema.

Synopsis
DROP SCHEMA [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

DROP SCHEMA removes schemas from the database. A schema can only be dropped by
its owner or a superuser. Note that the owner can drop the schema (and thereby all
contained objects) even if he does not own some of the objects within the schema.

Parameters

IF EXISTS

Do not throw an error if the schema does not exist. A notice is issued in this case.

name
The name of the schema to remove.

CASCADE

Automatically drops any objects contained in the schema (tables, functions, etc.).

RESTRICT

Refuse to drop the schema if it contains any objects. This is the default.

Examples

Remove the schema mystuff from the database, along with everything it contains:

DROP SCHEMA mystuff CASCADE;

Compatibility

DROP SCHEMA is fully conforming with the SQL standard, except that the standard
only allows one schema to be dropped per command. Also, the IF EXISTS option is a
Greenplum Database extension.

See Also

CREATE SCHEMA, ALTER SCHEMA

DROP SEQUENCE 229

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP SEQUENCE
Removes a sequence.

Synopsis
DROP SEQUENCE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

DROP SEQUENCE removes a sequence generator table. You must own the sequence to
drop it (or be a superuser).

Parameters

IF EXISTS

Do not throw an error if the sequence does not exist. A notice is issued in this case.

name
The name (optionally schema-qualified) of the sequence to remove.

CASCADE

Automatically drop objects that depend on the sequence.

RESTRICT

Refuse to drop the sequence if any objects depend on it. This is the default.

Examples

Remove the sequence myserial:
DROP SEQUENCE myserial;

Compatibility

DROP SEQUENCE is fully conforming with the SQL standard, except that the standard
only allows one sequence to be dropped per command. Also, the IF EXISTS option is
a Greenplum Database extension.

See Also

ALTER SEQUENCE, CREATE SEQUENCE

DROP TABLE 230

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP TABLE
Removes a table.

Synopsis
DROP TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

DROP TABLE removes tables from the database. Only its owner may drop a table. To
empty a table of rows without removing the table definition, use DELETE or
TRUNCATE.

DROP TABLE always removes any indexes, rules, triggers, and constraints that exist for
the target table. However, to drop a table that is referenced by a view, CASCADE must
be specified. CASCADE will remove a dependent view entirely.

Parameters

IF EXISTS

Do not throw an error if the table does not exist. A notice is issued in this case.

name
The name (optionally schema-qualified) of the table to remove.

CASCADE

Automatically drop objects that depend on the table (such as views).

RESTRICT

Refuse to drop the table if any objects depend on it. This is the default.

Examples

Remove the table mytable:

DROP TABLE mytable;

Compatibility

DROP TABLE is fully conforming with the SQL standard, except that the standard only
allows one table to be dropped per command. Also, the IF EXISTS option is a
Greenplum Database extension.

See Also

CREATE TABLE, ALTER TABLE, TRUNCATE

DROP TABLESPACE 231

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP TABLESPACE
Removes a tablespace.

Synopsis
DROP TABLESPACE [IF EXISTS] tablespacename

Description

DROP TABLESPACE removes a tablespace from the system.

A tablespace can only be dropped by its owner or a superuser. The tablespace must be
empty of all database objects before it can be dropped. It is possible that objects in
other databases may still reside in the tablespace even if no objects in the current
database are using the tablespace.

Parameters

IF EXISTS

Do not throw an error if the tablespace does not exist. A notice is issued in this case.

tablespacename
The name of the tablespace to remove.

Examples

Remove the tablespace mystuff:
DROP TABLESPACE mystuff;

Compatibility

DROP TABLESPACE is a Greenplum Database extension.

See Also

CREATE TABLESPACE, ALTER TABLESPACE

DROP TRIGGER 232

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP TRIGGER
Removes a trigger.

Synopsis
DROP TRIGGER [IF EXISTS] name ON table [CASCADE | RESTRICT]

Description

DROP TRIGGER will remove an existing trigger definition. To execute this command,
the current user must be the owner of the table for which the trigger is defined.

Parameters

IF EXISTS

Do not throw an error if the trigger does not exist. A notice is issued in this case.

name
The name of the trigger to remove.

table
The name (optionally schema-qualified) of the table for which the trigger is defined.

CASCADE

Automatically drop objects that depend on the trigger.

RESTRICT

Refuse to drop the trigger if any objects depend on it. This is the default.

Examples

Remove the trigger sendmail on table expenses;

DROP TRIGGER sendmail ON expenses;

Compatibility

The DROP TRIGGER statement in Greenplum Database is not compatible with the SQL
standard. In the SQL standard, trigger names are not local to tables, so the command is
simply DROP TRIGGER name.

See Also

ALTER TRIGGER, CREATE TRIGGER

DROP USER 233

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP USER
Removes a database role.

Synopsis
DROP USER [IF EXISTS] name [, ...]

Description

DROP USER is an obsolete command, though still accepted for backwards
compatibility. Groups (and users) have been superseded by the more general concept
of roles. See DROP ROLE for more information.

Parameters

IF EXISTS

Do not throw an error if the role does not exist. A notice is issued in this case.

name
The name of an existing role.

Compatibility

There is no DROP USER statement in the SQL standard. The SQL standard leaves the
definition of users to the implementation.

See Also

DROP ROLE

DROP VIEW 234

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

DROP VIEW
Removes a view.

Synopsis
DROP VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

DROP VIEW will remove an existing view. Only the owner of a view can remove it.

Parameters

IF EXISTS

Do not throw an error if the view does not exist. A notice is issued in this case.

name
The name (optionally schema-qualified) of the view to remove.

CASCADE

Automatically drop objects that depend on the view (such as other views).

RESTRICT

Refuse to drop the view if any objects depend on it. This is the default.

Examples

Remove the view topten;

DROP VIEW topten;

Compatibility

DROP VIEW is fully conforming with the SQL standard, except that the standard only
allows one view to be dropped per command. Also, the IF EXISTS option is a
Greenplum Database extension.

See Also

CREATE VIEW

END 235

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

END
Commits the current transaction.

Synopsis
END [WORK | TRANSACTION]

Description

END commits the current transaction. All changes made by the transaction become
visible to others and are guaranteed to be durable if a crash occurs. This command is a
Greenplum Database extension that is equivalent to COMMIT.

Parameters

WORK
TRANSACTION

Optional keywords. They have no effect.

Examples

Commit the current transaction:

END;

Compatibility

END is a Greenplum Database extension that provides functionality equivalent to
COMMIT, which is specified in the SQL standard.

See Also

BEGIN, ROLLBACK, COMMIT

EXECUTE 236

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

EXECUTE
Executes a prepared SQL statement.

Synopsis
EXECUTE name [(parameter [, ...])]

Description

EXECUTE is used to execute a previously prepared statement. Since prepared
statements only exist for the duration of a session, the prepared statement must have
been created by a PREPARE statement executed earlier in the current session.

If the PREPARE statement that created the statement specified some parameters, a
compatible set of parameters must be passed to the EXECUTE statement, or else an
error is raised. Note that (unlike functions) prepared statements are not overloaded
based on the type or number of their parameters; the name of a prepared statement
must be unique within a database session.

For more information on the creation and usage of prepared statements, see PREPARE.

Parameters

name
The name of the prepared statement to execute.

parameter
The actual value of a parameter to the prepared statement. This must be an
expression yielding a value that is compatible with the data type of this parameter, as
was determined when the prepared statement was created.

Examples

Create a prepared statement for an INSERT statement, and then execute it:

PREPARE fooplan (int, text, bool, numeric) AS INSERT INTO
foo VALUES($1, $2, $3, $4);

EXECUTE fooplan(1, 'Hunter Valley', 't', 200.00);

Compatibility

The SQL standard includes an EXECUTE statement, but it is only for use in embedded
SQL. This version of the EXECUTE statement also uses a somewhat different syntax.

See Also

DEALLOCATE, PREPARE

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
EXPLAIN
Shows the query plan of a statement.

Synopsis
EXPLAIN [ANALYZE] [VERBOSE] statement

Description

EXPLAIN displays the query plan that the Greenplum planner generates for the
supplied statement. Query plans are a tree plan of nodes. Each node in the plan
represents a single operation, such as table scan, join, aggregation or a sort.

Plans should be read from the bottom up as each node feeds rows into the node
directly above it. The bottom nodes of a plan are usually table scan operations
(sequential, index or bitmap index scans). If the query requires joins, aggregations, or
sorts (or other operations on the raw rows) then there will be additional nodes above
the scan nodes to perform these operations. The topmost plan nodes are usually the
Greenplum Database motion nodes (redistribute, explicit redistribute, broadcast, or
gather motions). These are the operations responsible for moving rows between the
segment instances during query processing.

The output of EXPLAIN has one line for each node in the plan tree, showing the basic
node type plus the following cost estimates that the planner made for the execution of
that plan node:

• cost - measured in units of disk page fetches; that is, 1.0 equals one sequential
disk page read. The first estimate is the start-up cost (cost of getting to the first
row) and the second is the total cost (cost of getting all rows). Note that the total
cost assumes that all rows will be retrieved, which may not always be the case (if
using LIMIT for example).

• rows - the total number of rows output by this plan node. This is usually less than
the actual number of rows processed or scanned by the plan node, reflecting the
estimated selectivity of any WHERE clause conditions. Ideally the top-level nodes
estimate will approximate the number of rows actually returned, updated, or
deleted by the query.

• width - total bytes of all the rows output by this plan node.
It is important to note that the cost of an upper-level node includes the cost of all its
child nodes. The topmost node of the plan has the estimated total execution cost for
the plan. This is this number that the planner seeks to minimize. It is also important to
realize that the cost only reflects things that the query planner cares about. In
particular, the cost does not consider the time spent transmitting result rows to the
client.

EXPLAIN ANALYZE causes the statement to be actually executed, not only planned.
The EXPLAIN ANALYZE plan shows the actual results along with the planner’s
estimates. This is useful for seeing whether the planner’s estimates are close to reality.
In addition to the information shown in the EXPLAIN plan, EXPLAIN ANALYZE will
show the following additional information:
EXPLAIN 237

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
• The total elapsed time (in milliseconds) that it took to run the query.
• The number of workers (segments) involved in a plan node operation. Only

segments that return rows are counted.
• The maximum number of rows returned by the segment that produced the most

rows for an operation. If multiple segments produce an equal number of rows, the
one with the longest time to end is the one chosen.

• The segment id number of the segment that produced the most rows for an
operation.

• For relevant operations, the work_mem used by the operation. If work_mem was
not sufficient to perform the operation in memory, the plan will show how much
data was spilled to disk and how many passes over the data were required for the
lowest performing segment. For example:
Work_mem used: 64K bytes avg, 64K bytes max (seg0).

Work_mem wanted: 90K bytes avg, 90K bytes max (seg0) to abate workfile
I/O affecting 2 workers.

[seg0] pass 0: 488 groups made from 488 rows; 263 rows written to
workfile

[seg0] pass 1: 263 groups made from 263 rows

• The time (in milliseconds) it took to retrieve the first row from the segment that
produced the most rows, and the total time taken to retrieve all rows from that
segment. The <time> to first row may be omitted if it is the same as the <time> to
end.

Important: Keep in mind that the statement is actually executed when EXPLAIN
ANALYZE is used. Although EXPLAIN ANALYZE will discard any output that a
SELECT would return, other side effects of the statement will happen as usual. If
you wish to use EXPLAIN ANALYZE on a DML statement without letting the
command affect your data, use this approach:

BEGIN;

EXPLAIN ANALYZE ...;

ROLLBACK;

Parameters

name
The name of the prepared statement to execute.

parameter
The actual value of a parameter to the prepared statement. This must be an
expression yielding a value that is compatible with the data type of this parameter, as
was determined when the prepared statement was created.

Notes

In order to allow the query planner to make reasonably informed decisions when
optimizing queries, the ANALYZE statement should be run to record statistics about the
distribution of data within the table. If you have not done this (or if the statistical
EXPLAIN 238

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
distribution of the data in the table has changed significantly since the last time
ANALYZE was run), the estimated costs are unlikely to conform to the real properties of
the query, and consequently an inferior query plan may be chosen.

For more information about query profiling, see the Greenplum Database Database
Administrator Guide.

Examples

To illustrate how to read an EXPLAIN query plan, consider the following example for a
very simple query:

EXPLAIN SELECT * FROM names WHERE name = 'Joelle';

 QUERY PLAN
--

Gather Motion 2:1 (slice1) (cost=0.00..20.88 rows=1 width=13)
 -> Seq Scan on 'names' (cost=0.00..20.88 rows=1 width=13)

 Filter: name::text ~~ 'Joelle'::text

If we read the plan from the bottom up, the query planner starts by doing a sequential
scan of the names table. Notice that the WHERE clause is being applied as a filter
condition. This means that the scan operation checks the condition for each row it
scans, and outputs only the ones that pass the condition.

The results of the scan operation are passed up to a gather motion operation. In
Greenplum Database, a gather motion is when segments send rows up to the master. In
this case we have 2 segment instances sending to 1 master instance (2:1). This
operation is working on slice1 of the parallel query execution plan. In Greenplum
Database a query plan is divided into slices so that portions of the query plan can be
worked on in parallel by the segments.

The estimated startup cost for this plan is 00.00 (no cost) and a total cost of 20.88
disk page fetches. The planner is estimating that this query will return one row.

Compatibility

There is no EXPLAIN statement defined in the SQL standard.

See Also

ANALYZE
EXPLAIN 239

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
FETCH
Retrieves rows from a query using a cursor.

Synopsis
FETCH [forward_direction { FROM | IN }] cursorname

where forward_direction can be empty or one of:
 NEXT
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL

Description

FETCH retrieves rows using a previously-created cursor.

A cursor has an associated position, which is used by FETCH. The cursor position can
be before the first row of the query result, on any particular row of the result, or after
the last row of the result. When created, a cursor is positioned before the first row.
After fetching some rows, the cursor is positioned on the row most recently retrieved.
If FETCH runs off the end of the available rows then the cursor is left positioned after
the last row. FETCH ALL will always leave the cursor positioned after the last row.

The forms NEXT, FIRST, LAST, ABSOLUTE, RELATIVE fetch a single row after moving
the cursor appropriately. If there is no such row, an empty result is returned, and the
cursor is left positioned before the first row or after the last row as appropriate.

The forms using FORWARD retrieve the indicated number of rows moving in the
forward direction, leaving the cursor positioned on the last-returned row (or after all
rows, if the count exceeds the number of rows available). Note that it is not possible to
move a cursor position backwards in Greenplum Database, since scrollable cursors are
not supported. You can only move a cursor forward in position using FETCH.

RELATIVE 0 and FORWARD 0 request fetching the current row without moving the
cursor, that is, re-fetching the most recently fetched row. This will succeed unless the
cursor is positioned before the first row or after the last row, in which case no row is
returned.

Outputs

On successful completion, a FETCH command returns a command tag of the form

FETCH count
FETCH 240

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
The count is the number of rows fetched (possibly zero). Note that in psql, the
command tag will not actually be displayed, since psql displays the fetched rows
instead.

Parameters

forward_direction
Defines the fetch direction and number of rows to fetch. Only forward fetches are
allowed in Greenplum Database. It can be one of the following:

NEXT

Fetch the next row. This is the default if direction is omitted.

FIRST

Fetch the first row of the query (same as ABSOLUTE 1). Only allowed if it is the first
FETCH operation using this cursor.

LAST

Fetch the last row of the query (same as ABSOLUTE -1).

ABSOLUTE count
Fetch the specified row of the query. Position after last row if count is out of range.
Only allowed if the row specified by count moves the cursor position forward.

RELATIVE count
Fetch the specified row of the query count rows ahead of the current cursor
position. RELATIVE 0 re-fetches the current row, if any. Only allowed if count
moves the cursor position forward.

count
Fetch the next count number of rows (same as FORWARD count).

ALL

Fetch all remaining rows (same as FORWARD ALL).

FORWARD

Fetch the next row (same as NEXT).

FORWARD count
Fetch the next count number of rows. FORWARD 0 re-fetches the current row.

FORWARD ALL

Fetch all remaining rows.

cursorname
The name of an open cursor.
FETCH 241

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Notes

Greenplum Database does not support scrollable cursors, so you can only use FETCH
to move the cursor position forward.

ABSOLUTE fetches are not any faster than navigating to the desired row with a relative
move: the underlying implementation must traverse all the intermediate rows anyway.

Updating data via a cursor is currently not supported by Greenplum Database.

DECLARE is used to define a cursor. Use MOVE to change cursor position without
retrieving data.

Examples

-- Start the transaction:

BEGIN;

-- Set up a cursor:

DECLARE mycursor CURSOR FOR SELECT * FROM films;

-- Fetch the first 5 rows in the cursor mycursor:

FETCH FORWARD 5 FROM mycursor;
 code | title | did | date_prod | kind | len

-------+-------------------------+-----+------------+----------+------
-

 BL101 | The Third Man | 101 | 1949-12-23 | Drama | 01:44

 BL102 | The African Queen | 101 | 1951-08-11 | Romantic | 01:43

 JL201 | Une Femme est une Femme | 102 | 1961-03-12 | Romantic | 01:25

 P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08

 P_302 | Becket | 103 | 1964-02-03 | Drama | 02:28

-- Close the cursor and end the transaction:

CLOSE mycursor;

COMMIT;

Compatibility

SQL standard allows cursors only in embedded SQL and in modules. Greenplum
Database permits cursors to be used interactively.

The variant of FETCH described here returns the data as if it were a SELECT result
rather than placing it in host variables. Other than this point, FETCH is fully
upward-compatible with the SQL standard.

The FETCH forms involving FORWARD, as well as the forms FETCH count and FETCH
ALL, in which FORWARD is implicit, are Greenplum Database extensions. BACKWARD is
not supported.

The SQL standard allows only FROM preceding the cursor name; the option to use IN is
an extension.
FETCH 242

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
See Also

DECLARE, CLOSE, MOVE
FETCH 243

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
GRANT
Defines access privileges.

Synopsis
GRANT { {SELECT | INSERT | UPDATE | DELETE | REFERENCES |
TRIGGER} [,...] | ALL [PRIVILEGES] }
 ON [TABLE] tablename [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { {USAGE | SELECT | UPDATE} [,...] | ALL [PRIVILEGES] }
 ON SEQUENCE sequencename [, ...]
 TO { rolename | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { {CREATE | CONNECT | TEMPORARY | TEMP} [,...] | ALL
[PRIVILEGES] }
 ON DATABASE dbname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTION funcname ([[argmode] [argname] argtype [, ...]
]) [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE langname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { {CREATE | USAGE} [,...] | ALL [PRIVILEGES] }
 ON SCHEMA schemaname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespacename [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT parent_role [, ...]
 TO member_role [, ...] [WITH ADMIN OPTION]

GRANT { SELECT | INSERT | ALL [PRIVILEGES] }
 ON PROTOCOL protocolname
 TO username

Description

The GRANT command has two basic variants: one that grants privileges on a database
object (table, view, sequence, database, function, procedural language, schema, or
tablespace), and one that grants membership in a role.

GRANT on Database Objects

This variant of the GRANT command gives specific privileges on a database object to
one or more roles. These privileges are added to those already granted, if any.
GRANT 244

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
The key word PUBLIC indicates that the privileges are to be granted to all roles,
including those that may be created later. PUBLIC may be thought of as an implicitly
defined group-level role that always includes all roles. Any particular role will have
the sum of privileges granted directly to it, privileges granted to any role it is presently
a member of, and privileges granted to PUBLIC.

If WITH GRANT OPTION is specified, the recipient of the privilege may in turn grant it
to others. Without a grant option, the recipient cannot do that. Grant options cannot be
granted to PUBLIC.

There is no need to grant privileges to the owner of an object (usually the role that
created it), as the owner has all privileges by default. The right to drop an object, or to
alter its definition in any way is not described by a grantable privilege; it is inherent in
the owner, and cannot be granted or revoked. The owner implicitly has all grant
options for the object, too.

Depending on the type of object, the initial default privileges may include granting
some privileges to PUBLIC. The default is no public access for tables, schemas, and
tablespaces; CONNECT privilege and TEMP table creation privilege for databases;
EXECUTE privilege for functions; and USAGE privilege for languages. The object owner
may of course revoke these privileges.

Grant on Roles

This variant of the GRANT command grants membership in a role to one or more other
roles. Membership in a role is significant because it conveys the privileges granted to
a role to each of its members.

If WITH ADMIN OPTION is specified, the member may in turn grant membership in the
role to others, and revoke membership in the role as well. Database superusers can
grant or revoke membership in any role to anyone. Roles having CREATEROLE
privilege can grant or revoke membership in any role that is not a superuser.

Unlike the case with privileges, membership in a role cannot be granted to PUBLIC.

Grant on Protocols

After creating a custom protocol, specify CREATE TRUSTED PROTOCOL to be able to
allowing any user besides the owner to access it. If the protocol is not trusted, you
cannot give any other user permission to use it to read or write data. After a TRUSTED
protocol is created, you can specify which other users can access it with the GRANT
command.

• To allow a user to create a readable external table with a trusted protocol
GRANT SELECT ON PROTOCOL protocolname TO username

• To allow a user to create a writable external table with a trusted protocol
GRANT INSERT ON PROTOCOL protocolname TO username

• To allow a user to create both readable and writable external table with a trusted
protocol
GRANT ALL ON PROTOCOL protocolname TO username
GRANT 245

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Parameters

SELECT

Allows SELECT from any column of the specified table, view, or sequence. Also
allows the use of COPY TO. For sequences, this privilege also allows the use of the
currval function.

INSERT

Allows INSERT of a new row into the specified table. Also allows COPY FROM.

UPDATE

Allows UPDATE of any column of the specified table. SELECT ... FOR UPDATE and
SELECT ... FOR SHARE also require this privilege (as well as the SELECT
privilege). For sequences, this privilege allows the use of the nextval and setval
functions.

DELETE

Allows DELETE of a row from the specified table.

REFERENCES

This keyword is accepted, although foreign key constraints are currently not
supported in Greenplum Database. To create a foreign key constraint, it is necessary
to have this privilege on both the referencing and referenced tables.

TRIGGER

Allows the creation of a trigger on the specified table.

CREATE

For databases, allows new schemas to be created within the database.

For schemas, allows new objects to be created within the schema. To rename an
existing object, you must own the object and have this privilege for the containing
schema.

For tablespaces, allows tables and indexes to be created within the tablespace, and
allows databases to be created that have the tablespace as their default tablespace.
(Note that revoking this privilege will not alter the placement of existing objects.)

CONNECT

Allows the user to connect to the specified database. This privilege is checked at
connection startup (in addition to checking any restrictions imposed by
pg_hba.conf).

TEMPORARY
TEMP

Allows temporary tables to be created while using the database.
GRANT 246

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
EXECUTE

Allows the use of the specified function and the use of any operators that are
implemented on top of the function. This is the only type of privilege that is
applicable to functions. (This syntax works for aggregate functions, as well.)

USAGE

For procedural languages, allows the use of the specified language for the creation
of functions in that language. This is the only type of privilege that is applicable to
procedural languages.

For schemas, allows access to objects contained in the specified schema (assuming
that the objects’ own privilege requirements are also met). Essentially this allows
the grantee to look up objects within the schema.

For sequences, this privilege allows the use of the currval and nextval functions.

ALL PRIVILEGES

Grant all of the available privileges at once. The PRIVILEGES key word is optional
in Greenplum Database, though it is required by strict SQL.

PUBLIC

A special group-level role that denotes that the privileges are to be granted to all
roles, including those that may be created later.

WITH GRANT OPTION

The recipient of the privilege may in turn grant it to others.

WITH ADMIN OPTION

The member of a role may in turn grant membership in the role to others.

Notes

Database superusers can access all objects regardless of object privilege settings. One
exception to this rule is view objects. Access to tables referenced in the view is
determined by permissions of the view owner not the current user (even if the current
user is a superuser).

If a superuser chooses to issue a GRANT or REVOKE command, the command is
performed as though it were issued by the owner of the affected object. In particular,
privileges granted via such a command will appear to have been granted by the object
owner. For role membership, the membership appears to have been granted by the
containing role itself.

GRANT and REVOKE can also be done by a role that is not the owner of the affected
object, but is a member of the role that owns the object, or is a member of a role that
holds privileges WITH GRANT OPTION on the object. In this case the privileges will be
recorded as having been granted by the role that actually owns the object or holds the
privileges WITH GRANT OPTION.
GRANT 247

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Granting permission on a table does not automatically extend permissions to any
sequences used by the table, including sequences tied to SERIAL columns.
Permissions on a sequence must be set separately.

Greenplum Database does not support granting or revoking privileges for individual
columns of a table. One possible workaround is to create a view having just the
desired columns and then grant privileges to that view.

Use psql’s \z meta-command to obtain information about existing privileges for an
object.

Examples

Grant insert privilege to all roles on table mytable:

GRANT INSERT ON mytable TO PUBLIC;

Grant all available privileges to role sally on the view topten. Note that while the
above will indeed grant all privileges if executed by a superuser or the owner of
topten, when executed by someone else it will only grant those permissions for which
the granting role has grant options.

GRANT ALL PRIVILEGES ON topten TO sally;

Grant membership in role admins to user joe:

GRANT admins TO joe;

Compatibility

The PRIVILEGES key word in is required in the SQL standard, but optional in
Greenplum Database. The SQL standard does not support setting the privileges on
more than one object per command.

Greenplum Database allows an object owner to revoke his own ordinary privileges:
for example, a table owner can make the table read-only to himself by revoking his
own INSERT, UPDATE, and DELETE privileges. This is not possible according to the
SQL standard. Greenplum Database treats the owner’s privileges as having been
granted by the owner to himself; therefore he can revoke them too. In the SQL
standard, the owner’s privileges are granted by an assumed system entity.

The SQL standard allows setting privileges for individual columns within a table.

The SQL standard provides for a USAGE privilege on other kinds of objects: character
sets, collations, translations, domains.

Privileges on databases, tablespaces, schemas, and languages are Greenplum Database
extensions.

See Also

REVOKE
GRANT 248

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
INSERT
Creates new rows in a table.

Synopsis
INSERT INTO table [(column [, ...])]
 {DEFAULT VALUES | VALUES ({expression | DEFAULT} [, ...])
[, ...] | query}

Description

INSERT inserts new rows into a table. One can insert one or more rows specified by
value expressions, or zero or more rows resulting from a query.

The target column names may be listed in any order. If no list of column names is
given at all, the default is the columns of the table in their declared order. The values
supplied by the VALUES clause or query are associated with the explicit or implicit
column list left-to-right.

Each column not present in the explicit or implicit column list will be filled with a
default value, either its declared default value or null if there is no default.

If the expression for any column is not of the correct data type, automatic type
conversion will be attempted.

You must have INSERT privilege on a table in order to insert into it.

Outputs

On successful completion, an INSERT command returns a command tag of the form:

INSERT oid count

The count is the number of rows inserted. If count is exactly one, and the target table
has OIDs, then oid is the OID assigned to the inserted row. Otherwise oid is zero.

Parameters

table
The name (optionally schema-qualified) of an existing table.

column
The name of a column in table. The column name can be qualified with a subfield
name or array subscript, if needed. (Inserting into only some fields of a composite
column leaves the other fields null.)

DEFAULT VALUES

All columns will be filled with their default values.

expression
An expression or value to assign to the corresponding column.
INSERT 249

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
DEFAULT

The corresponding column will be filled with its default value.

query
A query (SELECT statement) that supplies the rows to be inserted. Refer to the
SELECT statement for a description of the syntax.

Examples

Insert a single row into table films:

INSERT INTO films VALUES ('UA502', 'Bananas', 105,
'1971-07-13', 'Comedy', '82 minutes');

In this example, the length column is omitted and therefore it will have the default
value:

INSERT INTO films (code, title, did, date_prod, kind) VALUES
('T_601', 'Yojimbo', 106, '1961-06-16', 'Drama');

This example uses the DEFAULT clause for the date_prod column rather than
specifying a value:

INSERT INTO films VALUES ('UA502', 'Bananas', 105, DEFAULT,
'Comedy', '82 minutes');

To insert a row consisting entirely of default values:

INSERT INTO films DEFAULT VALUES;

To insert multiple rows using the multirow VALUES syntax:

INSERT INTO films (code, title, did, date_prod, kind) VALUES

 ('B6717', 'Tampopo', 110, '1985-02-10', 'Comedy'),

 ('HG120', 'The Dinner Game', 140, DEFAULT, 'Comedy');

This example inserts some rows into table films from a table tmp_films with the same
column layout as films:

INSERT INTO films SELECT * FROM tmp_films WHERE date_prod <
'2004-05-07';

Compatibility

INSERT conforms to the SQL standard. The case in which a column name list is
omitted, but not all the columns are filled from the VALUES clause or query, is
disallowed by the standard.

Possible limitations of the query clause are documented under SELECT.

See Also

COPY, SELECT, CREATE EXTERNAL TABLE
INSERT 250

LOAD 251

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

LOAD
Loads or reloads a shared library file.

Synopsis
LOAD 'filename'

Description

This command loads a shared library file into the Greenplum Database server address
space. If the file had been loaded previously, it is first unloaded. This command is
primarily useful to unload and reload a shared library file that has been changed since
the server first loaded it. To make use of the shared library, function(s) in it need to be
declared using the CREATE FUNCTION command.

The file name is specified in the same way as for shared library names in CREATE
FUNCTION; in particular, one may rely on a search path and automatic addition of the
system’s standard shared library file name extension.

Note that in Greenplum Database the shared library file (.so file) must reside in the
same path location on every host in the Greenplum Database array (masters, segments,
and mirrors).

Only database superusers can load shared library files.

Parameters

filename
The path and file name of a shared library file. This file must exist in the same
location on all hosts in your Greenplum Database array.

Examples

Load a shared library file:

LOAD '/usr/local/greenplum-db/lib/myfuncs.so';

Compatibility

LOAD is a Greenplum Database extension.

See Also

CREATE FUNCTION

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
LOCK
Locks a table.

Synopsis
LOCK [TABLE] name [, ...] [IN lockmode MODE] [NOWAIT]

where lockmode is one of:
ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE
EXCLUSIVE | SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS
EXCLUSIVE

Description

LOCK TABLE obtains a table-level lock, waiting if necessary for any conflicting locks
to be released. If NOWAIT is specified, LOCK TABLE does not wait to acquire the
desired lock: if it cannot be acquired immediately, the command is aborted and an
error is emitted. Once obtained, the lock is held for the remainder of the current
transaction. There is no UNLOCK TABLE command; locks are always released at
transaction end.

When acquiring locks automatically for commands that reference tables, Greenplum
Database always uses the least restrictive lock mode possible. LOCK TABLE provides
for cases when you might need more restrictive locking. For example, suppose an
application runs a transaction at the Read Committed isolation level and needs to
ensure that data in a table remains stable for the duration of the transaction. To achieve
this you could obtain SHARE lock mode over the table before querying. This will
prevent concurrent data changes and ensure subsequent reads of the table see a stable
view of committed data, because SHARE lock mode conflicts with the ROW EXCLUSIVE
lock acquired by writers, and your LOCK TABLE name IN SHARE MODE statement
will wait until any concurrent holders of ROW EXCLUSIVE mode locks commit or roll
back. Thus, once you obtain the lock, there are no uncommitted writes outstanding;
furthermore none can begin until you release the lock.

To achieve a similar effect when running a transaction at the Serializable isolation
level, you have to execute the LOCK TABLE statement before executing any SELECT or
data modification statement. A serializable transaction’s view of data will be frozen
when its first SELECT or data modification statement begins. A LOCK TABLE later in
the transaction will still prevent concurrent writes — but it won’t ensure that what the
transaction reads corresponds to the latest committed values.

If a transaction of this sort is going to change the data in the table, then it should use
SHARE ROW EXCLUSIVE lock mode instead of SHARE mode. This ensures that only one
transaction of this type runs at a time. Without this, a deadlock is possible: two
transactions might both acquire SHARE mode, and then be unable to also acquire ROW
EXCLUSIVE mode to actually perform their updates. Note that a transaction’s own
locks never conflict, so a transaction can acquire ROW EXCLUSIVE mode when it holds
SHARE mode — but not if anyone else holds SHARE mode. To avoid deadlocks, make
LOCK 252

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
sure all transactions acquire locks on the same objects in the same order, and if
multiple lock modes are involved for a single object, then transactions should always
acquire the most restrictive mode first.

Parameters

name
The name (optionally schema-qualified) of an existing table to lock.

If multiple tables are given, tables are locked one-by-one in the order specified in
the LOCK TABLE command.

lockmode
The lock mode specifies which locks this lock conflicts with. If no lock mode is
specified, then ACCESS EXCLUSIVE, the most restrictive mode, is used. Lock modes
are as follows:

• ACCESS SHARE — Conflicts with the ACCESS EXCLUSIVE lock mode only.
The commands SELECT and ANALYZE automatically acquire a lock of this
mode on referenced tables. In general, any query that only reads a table and
does not modify it will acquire this lock mode.

• ROW SHARE — Conflicts with the EXCLUSIVE and ACCESS EXCLUSIVE lock
modes. The SELECT FOR UPDATE and SELECT FOR SHARE commands
automatically acquire a lock of this mode on the target table(s) (in addition to
ACCESS SHARE locks on any other tables that are referenced but not selected
FOR UPDATE/FOR SHARE).

• ROW EXCLUSIVE — Conflicts with the SHARE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. The commands INSERT
and COPY automatically acquire this lock mode on the target table (in addition
to ACCESS SHARE locks on any other referenced tables).

• SHARE UPDATE EXCLUSIVE — Conflicts with the SHARE UPDATE
EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS
EXCLUSIVE lock modes. This mode protects a table against concurrent
schema changes and VACUUM runs. Acquired automatically by VACUUM
(without FULL).

• SHARE — Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE,
SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes.
This mode protects a table against concurrent data changes. Acquired
automatically by CREATE INDEX.

• SHARE ROW EXCLUSIVE — Conflicts with the ROW EXCLUSIVE, SHARE
UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and
ACCESS EXCLUSIVE lock modes. This lock mode is not automatically
acquired by any Greenplum Database command.
LOCK 253

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
• EXCLUSIVE — Conflicts with the ROW SHARE, ROW EXCLUSIVE, SHARE
UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and
ACCESS EXCLUSIVE lock modes. This mode allows only concurrent ACCESS
SHARE locks, i.e., only reads from the table can proceed in parallel with a
transaction holding this lock mode. This lock mode is automatically acquired
for UPDATE and DELETE in Greenplum Database (which is more restrictive
locking than in regular PostgreSQL).

• ACCESS EXCLUSIVE — Conflicts with locks of all modes (ACCESS SHARE,
ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE
ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE). This mode
guarantees that the holder is the only transaction accessing the table in any
way. Acquired automatically by the ALTER TABLE, DROP TABLE, REINDEX,
CLUSTER, and VACUUM FULL commands. This is also the default lock mode
for LOCK TABLE statements that do not specify a mode explicitly.

NOWAIT

Specifies that LOCK TABLE should not wait for any conflicting locks to be released:
if the specified lock(s) cannot be acquired immediately without waiting, the
transaction is aborted.

Notes

LOCK TABLE ... IN ACCESS SHARE MODE requires SELECT privileges on the target
table. All other forms of LOCK require UPDATE and/or DELETE privileges.

LOCK TABLE is useful only inside a transaction block (BEGIN/COMMIT pair), since the
lock is dropped as soon as the transaction ends. A LOCK TABLE command appearing
outside any transaction block forms a self-contained transaction, so the lock will be
dropped as soon as it is obtained.

LOCK TABLE only deals with table-level locks, and so the mode names involving ROW
are all misnomers. These mode names should generally be read as indicating the
intention of the user to acquire row-level locks within the locked table. Also, ROW
EXCLUSIVE mode is a sharable table lock. Keep in mind that all the lock modes have
identical semantics so far as LOCK TABLE is concerned, differing only in the rules
about which modes conflict with which. For information on how to acquire an actual
row-level lock, see the FOR UPDATE/FOR SHARE clause in the SELECT reference
documentation.

Examples

Obtain a SHARE lock on the films table when going to perform inserts into the
films_user_comments table:

BEGIN WORK;

LOCK TABLE films IN SHARE MODE;

SELECT id FROM films

 WHERE name = 'Star Wars: Episode I - The Phantom Menace';

-- Do ROLLBACK if record was not returned

INSERT INTO films_user_comments VALUES
LOCK 254

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
 (_id_, 'GREAT! I was waiting for it for so long!');

COMMIT WORK;

Take a SHARE ROW EXCLUSIVE lock on a table when performing a delete operation:

BEGIN WORK;

LOCK TABLE films IN SHARE ROW EXCLUSIVE MODE;

DELETE FROM films_user_comments WHERE id IN

 (SELECT id FROM films WHERE rating < 5);

DELETE FROM films WHERE rating < 5;

COMMIT WORK;

Compatibility

There is no LOCK TABLE in the SQL standard, which instead uses SET TRANSACTION
to specify concurrency levels on transactions. Greenplum Database supports that too.

Except for ACCESS SHARE, ACCESS EXCLUSIVE, and SHARE UPDATE EXCLUSIVE
lock modes, the Greenplum Database lock modes and the LOCK TABLE syntax are
compatible with those present in Oracle.

See Also

BEGIN, SET TRANSACTION, SELECT
LOCK 255

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
MOVE
Positions a cursor.

Synopsis
MOVE [forward_direction {FROM | IN}] cursorname

where direction can be empty or one of:
 NEXT
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL

Description

MOVE repositions a cursor without retrieving any data. MOVE works exactly like the
FETCH command, except it only positions the cursor and does not return rows.

Note that it is not possible to move a cursor position backwards in Greenplum
Database, since scrollable cursors are not supported. You can only move a cursor
forward in position using MOVE.

Outputs

On successful completion, a MOVE command returns a command tag of the form

MOVE count

The count is the number of rows that a FETCH command with the same parameters
would have returned (possibly zero).

Parameters

forward_direction
See FETCH for more information.

cursorname
The name of an open cursor.

Examples

-- Start the transaction:

BEGIN;
MOVE 256

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
-- Set up a cursor:

DECLARE mycursor CURSOR FOR SELECT * FROM films;

-- Move forward 5 rows in the cursor mycursor:

MOVE FORWARD 5 IN mycursor;

MOVE 5

--Fetch the next row after that (row 6):

FETCH 1 FROM mycursor;

 code | title | did | date_prod | kind | len

-------+--------+-----+------------+--------+-------

 P_303 | 48 Hrs | 103 | 1982-10-22 | Action | 01:37

(1 row)

-- Close the cursor and end the transaction:

CLOSE mycursor;

COMMIT;

Compatibility

There is no MOVE statement in the SQL standard.

See Also

DECLARE, FETCH, CLOSE
MOVE 257

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
PREPARE
Prepare a statement for execution.

Synopsis
PREPARE name [(datatype [, ...])] AS statement

Description

PREPARE creates a prepared statement, possibly with unbound parameters. A prepared
statement is a server-side object that can be used to optimize performance. A prepared
statement may be subsequently executed with a binding for its parameters. Greenplum
Database may choose to replan the query for different executions of the same prepared
statement.

Prepared statements can take parameters: values that are substituted into the statement
when it is executed. When creating the prepared statement, refer to parameters by
position, using $1, $2, etc. A corresponding list of parameter data types can optionally
be specified. When a parameter’s data type is not specified or is declared as unknown,
the type is inferred from the context in which the parameter is used (if possible). When
executing the statement, specify the actual values for these parameters in the EXECUTE
statement.

Prepared statements only last for the duration of the current database session. When
the session ends, the prepared statement is forgotten, so it must be recreated before
being used again. This also means that a single prepared statement cannot be used by
multiple simultaneous database clients; however, each client can create their own
prepared statement to use. The prepared statement can be manually cleaned up using
the DEALLOCATE command.

Prepared statements have the largest performance advantage when a single session is
being used to execute a large number of similar statements. The performance
difference will be particularly significant if the statements are complex to plan or
rewrite, for example, if the query involves a join of many tables or requires the
application of several rules. If the statement is relatively simple to plan and rewrite but
relatively expensive to execute, the performance advantage of prepared statements
will be less noticeable.

Parameters

name
An arbitrary name given to this particular prepared statement. It must be unique
within a single session and is subsequently used to execute or deallocate a
previously prepared statement.
PREPARE 258

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
datatype
The data type of a parameter to the prepared statement. If the data type of a
particular parameter is unspecified or is specified as unknown, it will be inferred
from the context in which the parameter is used. To refer to the parameters in the
prepared statement itself, use $1, $2, etc.

statement
Any SELECT, INSERT, UPDATE, DELETE, or VALUES statement.

Notes

In some situations, the query plan produced for a prepared statement will be inferior to
the query plan that would have been chosen if the statement had been submitted and
executed normally. This is because when the statement is planned and the planner
attempts to determine the optimal query plan, the actual values of any parameters
specified in the statement are unavailable. Greenplum Database collects statistics on
the distribution of data in the table, and can use constant values in a statement to make
guesses about the likely result of executing the statement. Since this data is
unavailable when planning prepared statements with parameters, the chosen plan may
be suboptimal. To examine the query plan Greenplum Database has chosen for a
prepared statement, use EXPLAIN.

For more information on query planning and the statistics collected by Greenplum
Database for that purpose, see the ANALYZE documentation.

You can see all available prepared statements of a session by querying the
pg_prepared_statements system view.

Examples

Create a prepared statement for an INSERT statement, and then execute it:

PREPARE fooplan (int, text, bool, numeric) AS INSERT INTO
foo VALUES($1, $2, $3, $4);

EXECUTE fooplan(1, 'Hunter Valley', 't', 200.00);

Create a prepared statement for a SELECT statement, and then execute it. Note that the
data type of the second parameter is not specified, so it is inferred from the context in
which $2 is used:

PREPARE usrrptplan (int) AS SELECT * FROM users u, logs l
WHERE u.usrid=$1 AND u.usrid=l.usrid AND l.date = $2;

EXECUTE usrrptplan(1, current_date);

Compatibility

The SQL standard includes a PREPARE statement, but it is only for use in embedded
SQL. This version of the PREPARE statement also uses a somewhat different syntax.
PREPARE 259

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
See Also

EXECUTE, DEALLOCATE
PREPARE 260

REASSIGN OWNED 261

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

REASSIGN OWNED
Changes the ownership of database objects owned by a database role.

Synopsis
REASSIGN OWNED BY old_role [, ...] TO new_role

Description

REASSIGN OWNED reassigns all the objects in the current database that are owned by
old_row to new_role. Note that it does not change the ownership of the database
itself.

Parameters

old_role
The name of a role. The ownership of all the objects in the current database owned
by this role will be reassigned to new_role.

new_role
The name of the role that will be made the new owner of the affected objects.

Notes

REASSIGN OWNED is often used to prepare for the removal of one or more roles.
Because REASSIGN OWNED only affects the objects in the current database, it is usually
necessary to execute this command in each database that contains objects owned by a
role that is to be removed.

The DROP OWNED command is an alternative that drops all the database objects owned
by one or more roles.

The REASSIGN OWNED command does not affect the privileges granted to the old roles
in objects that are not owned by them. Use DROP OWNED to revoke those privileges.

Examples

Reassign any database objects owned by the role named sally and bob to admin;

REASSIGN OWNED BY sally, bob TO admin;

Compatibility

The REASSIGN OWNED statement is a Greenplum Database extension.

See Also

DROP OWNED, DROP ROLE

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
REINDEX
Rebuilds indexes.

Synopsis
REINDEX {INDEX | TABLE | DATABASE | SYSTEM} name

Description

REINDEX rebuilds an index using the data stored in the index’s table, replacing the old
copy of the index. There are several scenarios in which to use REINDEX:

• An index has become corrupted, and no longer contains valid data. Although in
theory this should never happen, in practice indexes may become corrupted due to
software bugs or hardware failures. REINDEX provides a recovery method.

• An index has become bloated, that it is contains many empty or nearly-empty
pages. This can occur with B-tree indexes in Greenplum Database under certain
uncommon access patterns. REINDEX provides a way to reduce the space
consumption of the index by writing a new version of the index without the dead
pages.

• You have altered the fillfactor storage parameter for an index, and wish to ensure
that the change has taken full effect.

Parameters

INDEX

Recreate the specified index.

TABLE

Recreate all indexes of the specified table. If the table has a secondary TOAST table,
that is reindexed as well.

DATABASE

Recreate all indexes within the current database. Indexes on shared system catalogs
are skipped. This form of REINDEX cannot be executed inside a transaction block.

SYSTEM

Recreate all indexes on system catalogs within the current database. Indexes on user
tables are not processed. Also, indexes on shared (global) system catalogs are
skipped. This form of REINDEX cannot be executed inside a transaction block.

name
The name of the specific index, table, or database to be reindexed. Index and table
names may be schema-qualified. Presently, REINDEX DATABASE and REINDEX
SYSTEM can only reindex the current database, so their parameter must match the
current database’s name.
REINDEX 262

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Notes

REINDEX is similar to a drop and recreate of the index in that the index contents are
rebuilt from scratch. However, the locking considerations are rather different.
REINDEX locks out writes but not reads of the index’s parent table. It also takes an
exclusive lock on the specific index being processed, which will block reads that
attempt to use that index. In contrast, DROP INDEX momentarily takes exclusive lock
on the parent table, blocking both writes and reads. The subsequent CREATE INDEX
locks out writes but not reads; since the index is not there, no read will attempt to use
it, meaning that there will be no blocking but reads may be forced into expensive
sequential scans. Another important point is that the drop/create approach invalidates
any cached query plans that use the index, while REINDEX does not.

Reindexing a single index or table requires being the owner of that index or table.
Reindexing a database requires being the owner of the database (note that the owner
can therefore rebuild indexes of tables owned by other users). Of course, superusers
can always reindex anything.

If you suspect that shared global system catalog indexes are corrupted, they can only
be reindexed in Greenplum utility mode. The typical symptom of a corrupt shared
index is “index is not a btree” errors, or else the server crashes immediately at startup
due to reliance on the corrupted indexes. Contact Greenplum Customer Support for
assistance in this situation.

Examples

Rebuild a single index:

REINDEX INDEX my_index;

Rebuild all the indexes on the table my_table:

REINDEX TABLE my_table;

Compatibility

There is no REINDEX command in the SQL standard.

See Also

CREATE INDEX, DROP INDEX, VACUUM
REINDEX 263

RELEASE SAVEPOINT 264

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

RELEASE SAVEPOINT
Destroys a previously defined savepoint.

Synopsis
RELEASE [SAVEPOINT] savepoint_name

Description

RELEASE SAVEPOINT destroys a savepoint previously defined in the current
transaction.

Destroying a savepoint makes it unavailable as a rollback point, but it has no other
user visible behavior. It does not undo the effects of commands executed after the
savepoint was established. (To do that, see ROLLBACK TO SAVEPOINT.) Destroying a
savepoint when it is no longer needed may allow the system to reclaim some resources
earlier than transaction end.

RELEASE SAVEPOINT also destroys all savepoints that were established after the
named savepoint was established.

Parameters

savepoint_name
The name of the savepoint to destroy.

Examples

To establish and later destroy a savepoint:

BEGIN;

 INSERT INTO table1 VALUES (3);

 SAVEPOINT my_savepoint;

 INSERT INTO table1 VALUES (4);

 RELEASE SAVEPOINT my_savepoint;

COMMIT;

The above transaction will insert both 3 and 4.

Compatibility

This command conforms to the SQL standard. The standard specifies that the key
word SAVEPOINT is mandatory, but Greenplum Database allows it to be omitted.

See Also

BEGIN, SAVEPOINT, ROLLBACK TO SAVEPOINT, COMMIT

RESET 265

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

RESET
Restores the value of a system configuration parameter to the default value.

Synopsis
RESET configuration_parameter

RESET ALL

Description

RESET restores system configuration parameters to their default values. RESET is an
alternative spelling for SET configuration_parameter TO DEFAULT.

The default value is defined as the value that the parameter would have had, had no
SET ever been issued for it in the current session. The actual source of this value might
be a compiled-in default, the master postgresql.conf configuration file,
command-line options, or per-database or per-user default settings. See “Server
Configuration Parameters” on page 466 for more information.

Parameters

configuration_parameter
The name of a system configuration parameter. See “Server Configuration
Parameters” on page 466 for details.

ALL

Resets all settable configuration parameters to their default values.

Examples

Set the work_mem configuration parameter to its default value:

RESET work_mem;

Compatibility

RESET is a Greenplum Database extension.

See Also

SET

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
REVOKE
Removes access privileges.

Synopsis
REVOKE [GRANT OPTION FOR] { {SELECT | INSERT | UPDATE | DELETE
 | REFERENCES | TRIGGER} [,...] | ALL [PRIVILEGES] }
 ON [TABLE] tablename [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {USAGE | SELECT | UPDATE} [,...]
 | ALL [PRIVILEGES] }
 ON SEQUENCE sequencename [, ...]
 FROM { rolename | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {CREATE | CONNECT
 | TEMPORARY | TEMP} [,...] | ALL [PRIVILEGES] }
 ON DATABASE dbname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] {EXECUTE | ALL [PRIVILEGES]}
 ON FUNCTION funcname ([[argmode] [argname] argtype
 [, ...]]) [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] {USAGE | ALL [PRIVILEGES]}
 ON LANGUAGE langname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {CREATE | USAGE} [,...]
 | ALL [PRIVILEGES] }
 ON SCHEMA schemaname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespacename [, ...]
 FROM { rolename | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [ADMIN OPTION FOR] parent_role [, ...]
 FROM member_role [, ...]
 [CASCADE | RESTRICT]
REVOKE 266

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Description

REVOKE command revokes previously granted privileges from one or more roles. The
key word PUBLIC refers to the implicitly defined group of all roles.

See the description of the GRANT command for the meaning of the privilege types.

Note that any particular role will have the sum of privileges granted directly to it,
privileges granted to any role it is presently a member of, and privileges granted to
PUBLIC. Thus, for example, revoking SELECT privilege from PUBLIC does not
necessarily mean that all roles have lost SELECT privilege on the object: those who
have it granted directly or via another role will still have it.

If GRANT OPTION FOR is specified, only the grant option for the privilege is revoked,
not the privilege itself. Otherwise, both the privilege and the grant option are revoked.

If a role holds a privilege with grant option and has granted it to other roles then the
privileges held by those other roles are called dependent privileges. If the privilege or
the grant option held by the first role is being revoked and dependent privileges exist,
those dependent privileges are also revoked if CASCADE is specified, else the revoke
action will fail. This recursive revocation only affects privileges that were granted
through a chain of roles that is traceable to the role that is the subject of this REVOKE
command. Thus, the affected roles may effectively keep the privilege if it was also
granted through other roles.

When revoking membership in a role, GRANT OPTION is instead called ADMIN
OPTION, but the behavior is similar.

Parameters

See GRANT.

Examples

Revoke insert privilege for the public on table films:

REVOKE INSERT ON films FROM PUBLIC;

Revoke all privileges from role sally on view topten. Note that this actually means
revoke all privileges that the current role granted (if not a superuser).

REVOKE ALL PRIVILEGES ON topten FROM sally;

Revoke membership in role admins from user joe:

REVOKE admins FROM joe;

Compatibility

The compatibility notes of the GRANT command also apply to REVOKE.

One of RESTRICT or CASCADE is required according to the standard, but Greenplum
Database assumes RESTRICT by default.
REVOKE 267

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
See Also

GRANT
REVOKE 268

ROLLBACK 269

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

ROLLBACK
Aborts the current transaction.

Synopsis
ROLLBACK [WORK | TRANSACTION]

Description

ROLLBACK rolls back the current transaction and causes all the updates made by the
transaction to be discarded.

Parameters

WORK
TRANSACTION

Optional key words. They have no effect.

Notes

Use COMMIT to successfully end the current transaction.

Issuing ROLLBACK when not inside a transaction does no harm, but it will provoke a
warning message.

Examples

To discard all changes made in the current transaction:

ROLLBACK;

Compatibility

The SQL standard only specifies the two forms ROLLBACK and ROLLBACK WORK.
Otherwise, this command is fully conforming.

See Also

BEGIN, COMMIT, SAVEPOINT, ROLLBACK TO SAVEPOINT

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
ROLLBACK TO SAVEPOINT
Rolls back the current transaction to a savepoint.

Synopsis
ROLLBACK [WORK | TRANSACTION] TO [SAVEPOINT] savepoint_name

Description

This command will roll back all commands that were executed after the savepoint was
established. The savepoint remains valid and can be rolled back to again later, if
needed.

ROLLBACK TO SAVEPOINT implicitly destroys all savepoints that were established
after the named savepoint.

Parameters

WORK
TRANSACTION

Optional key words. They have no effect.

savepoint_name
The name of a savepoint to roll back to.

Notes

Use RELEASE SAVEPOINT to destroy a savepoint without discarding the effects of
commands executed after it was established.

Specifying a savepoint name that has not been established is an error.

Cursors have somewhat non-transactional behavior with respect to savepoints. Any
cursor that is opened inside a savepoint will be closed when the savepoint is rolled
back. If a previously opened cursor is affected by a FETCH command inside a
savepoint that is later rolled back, the cursor position remains at the position that
FETCH left it pointing to (that is, FETCH is not rolled back). Closing a cursor is not
undone by rolling back, either. A cursor whose execution causes a transaction to abort
is put in a can’t-execute state, so while the transaction can be restored using ROLLBACK
TO SAVEPOINT, the cursor can no longer be used.

Examples

To undo the effects of the commands executed after my_savepoint was established:

ROLLBACK TO SAVEPOINT my_savepoint;

Cursor positions are not affected by a savepoint rollback:

BEGIN;

DECLARE foo CURSOR FOR SELECT 1 UNION SELECT 2;
ROLLBACK TO SAVEPOINT 270

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
SAVEPOINT foo;

FETCH 1 FROM foo;

column

 1

ROLLBACK TO SAVEPOINT foo;

FETCH 1 FROM foo;

column

 2

COMMIT;

Compatibility

The SQL standard specifies that the key word SAVEPOINT is mandatory, but
Greenplum Database (and Oracle) allow it to be omitted. SQL allows only WORK, not
TRANSACTION, as a noise word after ROLLBACK. Also, SQL has an optional clause AND
[NO] CHAIN which is not currently supported by Greenplum Database. Otherwise,
this command conforms to the SQL standard.

See Also

BEGIN, COMMIT, SAVEPOINT, RELEASE SAVEPOINT, ROLLBACK
ROLLBACK TO SAVEPOINT 271

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
SAVEPOINT
Defines a new savepoint within the current transaction.

Synopsis
SAVEPOINT savepoint_name

Description

SAVEPOINT establishes a new savepoint within the current transaction.

A savepoint is a special mark inside a transaction that allows all commands that are
executed after it was established to be rolled back, restoring the transaction state to
what it was at the time of the savepoint.

Parameters

savepoint_name
The name of the new savepoint.

Notes

Use ROLLBACK TO SAVEPOINT to rollback to a savepoint. Use RELEASE SAVEPOINT to
destroy a savepoint, keeping the effects of commands executed after it was
established.

Savepoints can only be established when inside a transaction block. There can be
multiple savepoints defined within a transaction.

Examples

To establish a savepoint and later undo the effects of all commands executed after it
was established:

BEGIN;

 INSERT INTO table1 VALUES (1);

 SAVEPOINT my_savepoint;

 INSERT INTO table1 VALUES (2);

 ROLLBACK TO SAVEPOINT my_savepoint;

 INSERT INTO table1 VALUES (3);

COMMIT;

The above transaction will insert the values 1 and 3, but not 2.

To establish and later destroy a savepoint:

BEGIN;

 INSERT INTO table1 VALUES (3);
SAVEPOINT 272

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
 SAVEPOINT my_savepoint;

 INSERT INTO table1 VALUES (4);

 RELEASE SAVEPOINT my_savepoint;

COMMIT;

The above transaction will insert both 3 and 4.

Compatibility

SQL requires a savepoint to be destroyed automatically when another savepoint with
the same name is established. In Greenplum Database, the old savepoint is kept,
though only the more recent one will be used when rolling back or releasing.
(Releasing the newer savepoint will cause the older one to again become accessible to
ROLLBACK TO SAVEPOINT and RELEASE SAVEPOINT.) Otherwise, SAVEPOINT is fully
SQL conforming.

See Also

BEGIN, COMMIT, ROLLBACK, RELEASE SAVEPOINT, ROLLBACK TO SAVEPOINT
SAVEPOINT 273

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
SELECT
Retrieves rows from a table or view.

Synopsis
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [[AS] output_name] [, ...]
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY grouping_element [, ...]]
 [HAVING condition [, ...]]
 [WINDOW window_name AS (window_specification)]
 [{UNION | INTERSECT | EXCEPT} [ALL] select]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT {count | ALL}]
 [OFFSET start]
 [FOR {UPDATE | SHARE} [OF table_name [, ...]] [NOWAIT] [...]]

where grouping_element can be one of:
 ()
 expression
 ROLLUP (expression [,...])
 CUBE (expression [,...])
 GROUPING SETS ((grouping_element [, ...]))

where window_specification can be:
 [window_name]
 [PARTITION BY expression [, ...]]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]
 [{RANGE | ROWS}
 { UNBOUNDED PRECEDING
 | expression PRECEDING
 | CURRENT ROW
 | BETWEEN window_frame_bound AND window_frame_bound }]]

 where window_frame_bound can be one of:
 UNBOUNDED PRECEDING
 expression PRECEDING
 CURRENT ROW
 expression FOLLOWING
 UNBOUNDED FOLLOWING

where from_item can be one of:
[ONLY] table_name [[AS] alias [(column_alias [, ...])]]
(select) [AS] alias [(column_alias [, ...])]
function_name ([argument [, ...]]) [AS] alias
 [(column_alias [, ...]
 | column_definition [, ...])]
function_name ([argument [, ...]]) AS
 (column_definition [, ...])
SELECT 274

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
from_item [NATURAL] join_type from_item
 [ON join_condition | USING (join_column [, ...])]

Description

SELECT retrieves rows from zero or more tables. The general processing of SELECT is
as follows:

1. All elements in the FROM list are computed. (Each element in the FROM list is a real
or virtual table.) If more than one element is specified in the FROM list, they are
cross-joined together.

2. If the WHERE clause is specified, all rows that do not satisfy the condition are
eliminated from the output.

3. If the GROUP BY clause is specified, the output is divided into groups of rows that
match on one or more of the defined grouping elements. If the HAVING clause is
present, it eliminates groups that do not satisfy the given condition.

4. If a window expression is specified (and optional WINDOW clause), the output is
organized according to the positional (row) or value-based (range) window frame.

5. DISTINCT eliminates duplicate rows from the result. DISTINCT ON eliminates
rows that match on all the specified expressions. ALL (the default) will return all
candidate rows, including duplicates.

6. The actual output rows are computed using the SELECT output expressions for
each selected row.

7. Using the operators UNION, INTERSECT, and EXCEPT, the output of more than one
SELECT statement can be combined to form a single result set. The UNION operator
returns all rows that are in one or both of the result sets. The INTERSECT operator
returns all rows that are strictly in both result sets. The EXCEPT operator returns
the rows that are in the first result set but not in the second. In all three cases,
duplicate rows are eliminated unless ALL is specified.

8. If the ORDER BY clause is specified, the returned rows are sorted in the specified
order. If ORDER BY is not given, the rows are returned in whatever order the
system finds fastest to produce.

9. If the LIMIT or OFFSET clause is specified, the SELECT statement only returns a
subset of the result rows.

10. If FOR UPDATE or FOR SHARE is specified, the SELECT statement locks the entire
table against concurrent updates.

You must have SELECT privilege on a table to read its values. The use of FOR UPDATE
or FOR SHARE requires UPDATE privilege as well.
SELECT 275

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Parameters

The SELECT List

The SELECT list (between the key words SELECT and FROM) specifies expressions that
form the output rows of the SELECT statement. The expressions can (and usually do)
refer to columns computed in the FROM clause.

Using the clause [AS] output_name, another name can be specified for an output
column. This name is primarily used to label the column for display. It can also be
used to refer to the column’s value in ORDER BY and GROUP BY clauses, but not in the
WHERE or HAVING clauses; there you must write out the expression instead. The AS
keyword is optional in most cases (such as when declaring an alias for column names,
constants, function calls, and simple unary operator expressions). In cases where the
declared alias is a reserved SQL keyword, the output_name must be enclosed in
double quotes to avoid ambiguity.

An expression in the SELECT list can be a constant value, a column reference, an
operator invocation, a function call, an aggregate expression, a window expression, a
scalar subquery, and so on. A number of constructs can be classified as an expression
but do not follow any general syntax rules. These generally have the semantics of a
function or operator. For information about SQL value expressions and function calls,
see the Greenplum Database Database Administrator Guide.

Instead of an expression, * can be written in the output list as a shorthand for all the
columns of the selected rows. Also, one can write table_name.* as a shorthand for
the columns coming from just that table.

The FROM Clause

The FROM clause specifies one or more source tables for the SELECT. If multiple
sources are specified, the result is the Cartesian product (cross join) of all the sources.
But usually qualification conditions are added to restrict the returned rows to a small
subset of the Cartesian product. The FROM clause can contain the following elements:

table_name
The name (optionally schema-qualified) of an existing table or view. If ONLY is
specified, only that table is scanned. If ONLY is not specified, the table and all its
descendant tables (if any) are scanned.

alias
A substitute name for the FROM item containing the alias. An alias is used for brevity
or to eliminate ambiguity for self-joins (where the same table is scanned multiple
times). When an alias is provided, it completely hides the actual name of the table or
function; for example given FROM foo AS f, the remainder of the SELECT must
refer to this FROM item as f not foo. If an alias is written, a column alias list can also
be written to provide substitute names for one or more columns of the table.

select
A sub-SELECT can appear in the FROM clause. This acts as though its output were
created as a temporary table for the duration of this single SELECT command. Note
that the sub-SELECT must be surrounded by parentheses, and an alias must be
SELECT 276

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
provided for it. A VALUES command can also be used here. See “Nonstandard
Clauses” on page 288 for limitations of using correlated sub-selects in Greenplum
Database.

function_name
Function calls can appear in the FROM clause. (This is especially useful for functions
that return result sets, but any function can be used.) This acts as though its output
were created as a temporary table for the duration of this single SELECT command.
An alias may also be used. If an alias is written, a column alias list can also be
written to provide substitute names for one or more attributes of the function’s
composite return type. If the function has been defined as returning the record data
type, then an alias or the key word AS must be present, followed by a column
definition list in the form (column_name data_type [, ...]). The column
definition list must match the actual number and types of columns returned by the
function.

join_type
One of:

• [INNER] JOIN
• LEFT [OUTER] JOIN
• RIGHT [OUTER] JOIN
• FULL [OUTER] JOIN
• CROSS JOIN

For the INNER and OUTER join types, a join condition must be specified, namely
exactly one of NATURAL, ON join_condition, or USING (join_column [,
...]). See below for the meaning. For CROSS JOIN, none of these clauses may
appear.

A JOIN clause combines two FROM items. Use parentheses if necessary to determine
the order of nesting. In the absence of parentheses, JOINs nest left-to-right. In any
case JOIN binds more tightly than the commas separating FROM items.

CROSS JOIN and INNER JOIN produce a simple Cartesian product, the same result
as you get from listing the two items at the top level of FROM, but restricted by the
join condition (if any). CROSS JOIN is equivalent to INNER JOIN ON (TRUE), that
is, no rows are removed by qualification. These join types are just a notational
convenience, since they do nothing you could not do with plain FROM and WHERE.

LEFT OUTER JOIN returns all rows in the qualified Cartesian product (i.e., all
combined rows that pass its join condition), plus one copy of each row in the
left-hand table for which there was no right-hand row that passed the join condition.
This left-hand row is extended to the full width of the joined table by inserting null
values for the right-hand columns. Note that only the JOIN clause’s own condition is
considered while deciding which rows have matches. Outer conditions are applied
afterwards.

Conversely, RIGHT OUTER JOIN returns all the joined rows, plus one row for each
unmatched right-hand row (extended with nulls on the left). This is just a notational
convenience, since you could convert it to a LEFT OUTER JOIN by switching the left
and right inputs.
SELECT 277

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
FULL OUTER JOIN returns all the joined rows, plus one row for each unmatched
left-hand row (extended with nulls on the right), plus one row for each unmatched
right-hand row (extended with nulls on the left).

ON join_condition
join_condition is an expression resulting in a value of type boolean (similar to a
WHERE clause) that specifies which rows in a join are considered to match.

USING (join_column [, ...])
A clause of the form USING (a, b, ...) is shorthand for ON left_table.a =
right_table.a AND left_table.b = right_table.b Also, USING
implies that only one of each pair of equivalent columns will be included in the join
output, not both.

NATURAL

NATURAL is shorthand for a USING list that mentions all columns in the two tables
that have the same names.

The WHERE Clause

The optional WHERE clause has the general form:

WHERE condition

Where condition is any expression that evaluates to a result of type boolean. Any
row that does not satisfy this condition will be eliminated from the output. A row
satisfies the condition if it returns true when the actual row values are substituted for
any variable references.

The GROUP BY Clause

The optional GROUP BY clause has the general form:

GROUP BY grouping_element [, ...]

where grouping_element can be one of:

()

expression

ROLLUP (expression [,...])

CUBE (expression [,...])

GROUPING SETS ((grouping_element [, ...]))

GROUP BY will condense into a single row all selected rows that share the same values
for the grouped expressions. expression can be an input column name, or the name
or ordinal number of an output column (SELECT list item), or an arbitrary expression
formed from input-column values. In case of ambiguity, a GROUP BY name will be
interpreted as an input-column name rather than an output column name.

Aggregate functions, if any are used, are computed across all rows making up each
group, producing a separate value for each group (whereas without GROUP BY, an
aggregate produces a single value computed across all the selected rows). When
SELECT 278

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
GROUP BY is present, it is not valid for the SELECT list expressions to refer to
ungrouped columns except within aggregate functions, since there would be more
than one possible value to return for an ungrouped column.

Greenplum Database has the following additional OLAP grouping extensions (often
referred to as supergroups):

ROLLUP

A ROLLUP grouping is an extension to the GROUP BY clause that creates aggregate
subtotals that roll up from the most detailed level to a grand total, following a list of
grouping columns (or expressions). ROLLUP takes an ordered list of grouping
columns, calculates the standard aggregate values specified in the GROUP BY clause,
then creates progressively higher-level subtotals, moving from right to left through
the list. Finally, it creates a grand total. A ROLLUP grouping can be thought of as a
series of grouping sets. For example:

GROUP BY ROLLUP (a,b,c)

is equivalent to:

GROUP BY GROUPING SETS((a,b,c), (a,b), (a), ())

Notice that the n elements of a ROLLUP translate to n+1 grouping sets. Also, the
order in which the grouping expressions are specified is significant in a ROLLUP.

CUBE

A CUBE grouping is an extension to the GROUP BY clause that creates subtotals for all
of the possible combinations of the given list of grouping columns (or expressions).
In terms of multidimensional analysis, CUBE generates all the subtotals that could be
calculated for a data cube with the specified dimensions. For example:

GROUP BY CUBE (a,b,c)

is equivalent to:

GROUP BY GROUPING SETS((a,b,c), (a,b), (a,c), (b,c), (a),
(b), (c), ())

Notice that n elements of a CUBE translate to 2n grouping sets. Consider using CUBE
in any situation requiring cross-tabular reports. CUBE is typically most suitable in
queries that use columns from multiple dimensions rather than columns representing
different levels of a single dimension. For instance, a commonly requested
cross-tabulation might need subtotals for all the combinations of month, state, and
product.

GROUPING SETS

You can selectively specify the set of groups that you want to create using a
GROUPING SETS expression within a GROUP BY clause. This allows precise
specification across multiple dimensions without computing a whole ROLLUP or
CUBE. For example:

GROUP BY GROUPING SETS((a,c), (a,b))
SELECT 279

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
If using the grouping extension clauses ROLLUP, CUBE, or GROUPING SETS, two
challenges arise. First, how do you determine which result rows are subtotals, and
then the exact level of aggregation for a given subtotal. Or, how do you differentiate
between result rows that contain both stored NULL values and “NULL” values
created by the ROLLUP or CUBE. Secondly, when duplicate grouping sets are
specified in the GROUP BY clause, how do you determine which result rows are
duplicates? There are two additional grouping functions you can use in the SELECT
list to help with this:

• grouping(column [, ...]) The grouping function can be applied to one
or more grouping attributes to distinguish super-aggregated rows from regular
grouped rows. This can be helpful in distinguishing a “NULL” representing
the set of all values in a super-aggregated row from a NULL value in a regular
row. Each argument in this function produces a bit — either 1 or 0, where 1
means the result row is super-aggregated, and 0 means the result row is from a
regular grouping. The grouping function returns an integer by treating these
bits as a binary number and then converting it to a base-10 integer.

• group_id() For grouping extension queries that contain duplicate grouping
sets, the group_id function is used to identify duplicate rows in the output.
All unique grouping set output rows will have a group_id value of 0. For each
duplicate grouping set detected, the group_id function assigns a group_id
number greater than 0. All output rows in a particular duplicate grouping set
are identified by the same group_id number.

The WINDOW Clause

The WINDOW clause is used to define a window that can be used in the OVER()
expression of a window function such as rank or avg. For example:

SELECT vendor, rank() OVER (mywindow) FROM sale
GROUP BY vendor
WINDOW mywindow AS (ORDER BY sum(prc*qty));

A WINDOW clause is has this general form:

WINDOW window_name AS (window_specification)

where window_specification can be:
[window_name]

[PARTITION BY expression [, ...]]

[ORDER BY expression [ASC | DESC | USING operator] [, ...]

 [{RANGE | ROWS}

 { UNBOUNDED PRECEDING

 | expression PRECEDING

 | CURRENT ROW

 | BETWEEN window_frame_bound AND window_frame_bound }]]

 where window_frame_bound can be one of:
 UNBOUNDED PRECEDING

 expression PRECEDING

 CURRENT ROW

 expression FOLLOWING

 UNBOUNDED FOLLOWING
SELECT 280

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
window_name
Gives a name to the window specification.

PARTITION BY

The PARTITION BY clause organizes the result set into logical groups based on the
unique values of the specified expression. When used with window functions, the
functions are applied to each partition independently. For example, if you follow
PARTITION BY with a column name, the result set is partitioned by the distinct
values of that column. If omitted, the entire result set is considered one partition.

ORDER BY

The ORDER BY clause defines how to sort the rows in each partition of the result set.
If omitted, rows are returned in whatever order is most efficient and may vary.
Note: Columns of data types that lack a coherent ordering, such as time, are not
good candidates for use in the ORDER BY clause of a window specification. Time,
with or without time zone, lacks a coherent ordering because addition and
subtraction do not have the expected effects. For example, the following is not
generally true: x::time < x::time + '2 hour'::interval

ROWS | RANGE

Use either a ROWS or RANGE clause to express the bounds of the window. The
window bound can be one, many, or all rows of a partition. You can express the
bound of the window either in terms of a range of data values offset from the value
in the current row (RANGE), or in terms of the number of rows offset from the current
row (ROWS). When using the RANGE clause, you must also use an ORDER BY clause.
This is because the calculation performed to produce the window requires that the
values be sorted. Additionally, the ORDER BY clause cannot contain more than one
expression, and the expression must result in either a date or a numeric value. When
using the ROWS or RANGE clauses, if you specify only a starting row, the current row
is used as the last row in the window.

PRECEDING

The PRECEDING clause defines the first row of the window using the current row
as a reference point. The starting row is expressed in terms of the number of rows
preceding the current row. For example, in the case of ROWS framing, 5
PRECEDING sets the window to start with the fifth row preceding the current row.
In the case of RANGE framing, it sets the window to start with the first row whose
ordering column value precedes that of the current row by 5 in the given order. If
the specified order is ascending by date, this will be the first row within 5 days
before the current row. UNBOUNDED PRECEDING sets the first row in the window to
be the first row in the partition.

BETWEEN

The BETWEEN clause defines the first and last row of the window, using the current
row as a reference point. First and last rows are expressed in terms of the number
of rows preceding and following the current row, respectively. For example,
BETWEEN 3 PRECEDING AND 5 FOLLOWING sets the window to start with the
third row preceding the current row, and end with the fifth row following the
current row. Use BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
SELECT 281

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
FOLLOWING to set the first and last rows in the window to be the first and last row
in the partition, respectively. This is equivalent to the default behavior if no ROW or
RANGE clause is specified.

FOLLOWING

The FOLLOWING clause defines the last row of the window using the current row
as a reference point. The last row is expressed in terms of the number of rows
following the current row. For example, in the case of ROWS framing, 5
FOLLOWING sets the window to end with the fifth row following the current row. In
the case of RANGE framing, it sets the window to end with the last row whose
ordering column value follows that of the current row by 5 in the given order. If
the specified order is ascending by date, this will be the last row within 5 days
after the current row. Use UNBOUNDED FOLLOWING to set the last row in the
window to be the last row in the partition.

If you do not specify a ROW or a RANGE clause, the window bound starts with the first
row in the partition (UNBOUNDED PRECEDING) and ends with the current row
(CURRENT ROW) if ORDER BY is used. If an ORDER BY is not specified, the window
starts with the first row in the partition (UNBOUNDED PRECEDING) and ends with last
row in the partition (UNBOUNDED FOLLOWING).

The HAVING Clause

The optional HAVING clause has the general form:

HAVING condition

Where condition is the same as specified for the WHERE clause. HAVING eliminates
group rows that do not satisfy the condition. HAVING is different from WHERE: WHERE
filters individual rows before the application of GROUP BY, while HAVING filters group
rows created by GROUP BY. Each column referenced in condition must
unambiguously reference a grouping column, unless the reference appears within an
aggregate function.

The presence of HAVING turns a query into a grouped query even if there is no GROUP
BY clause. This is the same as what happens when the query contains aggregate
functions but no GROUP BY clause. All the selected rows are considered to form a
single group, and the SELECT list and HAVING clause can only reference table columns
from within aggregate functions. Such a query will emit a single row if the HAVING
condition is true, zero rows if it is not true.

The UNION Clause

The UNION clause has this general form:

select_statement UNION [ALL] select_statement

Where select_statement is any SELECT statement without an ORDER BY, LIMIT,
FOR UPDATE, or FOR SHARE clause. (ORDER BY and LIMIT can be attached to a
subquery expression if it is enclosed in parentheses. Without parentheses, these
clauses will be taken to apply to the result of the UNION, not to its right-hand input
expression.)
SELECT 282

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
The UNION operator computes the set union of the rows returned by the involved
SELECT statements. A row is in the set union of two result sets if it appears in at least
one of the result sets. The two SELECT statements that represent the direct operands of
the UNION must produce the same number of columns, and corresponding columns
must be of compatible data types.

The result of UNION does not contain any duplicate rows unless the ALL option is
specified. ALL prevents elimination of duplicates. (Therefore, UNION ALL is usually
significantly quicker than UNION; use ALL when you can.)

Multiple UNION operators in the same SELECT statement are evaluated left to right,
unless otherwise indicated by parentheses.

Currently, FOR UPDATE and FOR SHARE may not be specified either for a UNION result
or for any input of a UNION.

The INTERSECT Clause

The INTERSECT clause has this general form:

select_statement INTERSECT [ALL] select_statement

Where select_statement is any SELECT statement without an ORDER BY, LIMIT,
FOR UPDATE, or FOR SHARE clause.

The INTERSECT operator computes the set intersection of the rows returned by the
involved SELECT statements. A row is in the intersection of two result sets if it appears
in both result sets.

The result of INTERSECT does not contain any duplicate rows unless the ALL option is
specified. With ALL, a row that has m duplicates in the left table and n duplicates in the
right table will appear min(m,n) times in the result set.

Multiple INTERSECT operators in the same SELECT statement are evaluated left to
right, unless parentheses dictate otherwise. INTERSECT binds more tightly than UNION.
That is, A UNION B INTERSECT C will be read as A UNION (B INTERSECT C).

Currently, FOR UPDATE and FOR SHARE may not be specified either for an INTERSECT
result or for any input of an INTERSECT.

The EXCEPT Clause

The EXCEPT clause has this general form:

select_statement EXCEPT [ALL] select_statement

Where select_statement is any SELECT statement without an ORDER BY, LIMIT,
FOR UPDATE, or FOR SHARE clause.

The EXCEPT operator computes the set of rows that are in the result of the left SELECT
statement but not in the result of the right one.

The result of EXCEPT does not contain any duplicate rows unless the ALL option is
specified. With ALL, a row that has m duplicates in the left table and n duplicates in the
right table will appear max(m-n,0) times in the result set.

Multiple EXCEPT operators in the same SELECT statement are evaluated left to right,
unless parentheses dictate otherwise. EXCEPT binds at the same level as UNION.
SELECT 283

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Currently, FOR UPDATE and FOR SHARE may not be specified either for an EXCEPT
result or for any input of an EXCEPT.

The ORDER BY Clause

The optional ORDER BY clause has this general form:

ORDER BY expression [ASC | DESC | USING operator] [, ...]

Where expression can be the name or ordinal number of an output column (SELECT
list item), or it can be an arbitrary expression formed from input-column values.

The ORDER BY clause causes the result rows to be sorted according to the specified
expressions. If two rows are equal according to the left-most expression, they are
compared according to the next expression and so on. If they are equal according to all
specified expressions, they are returned in an implementation-dependent order.

The ordinal number refers to the ordinal (left-to-right) position of the result column.
This feature makes it possible to define an ordering on the basis of a column that does
not have a unique name. This is never absolutely necessary because it is always
possible to assign a name to a result column using the AS clause.

It is also possible to use arbitrary expressions in the ORDER BY clause, including
columns that do not appear in the SELECT result list. Thus the following statement is
valid:

SELECT name FROM distributors ORDER BY code;

A limitation of this feature is that an ORDER BY clause applying to the result of a
UNION, INTERSECT, or EXCEPT clause may only specify an output column name or
number, not an expression.

If an ORDER BY expression is a simple name that matches both a result column name
and an input column name, ORDER BY will interpret it as the result column name. This
is the opposite of the choice that GROUP BY will make in the same situation. This
inconsistency is made to be compatible with the SQL standard.

Optionally one may add the key word ASC (ascending) or DESC (descending) after any
expression in the ORDER BY clause. If not specified, ASC is assumed by default.
Alternatively, a specific ordering operator name may be specified in the USING clause.
ASC is usually equivalent to USING < and DESC is usually equivalent to USING >. (But
the creator of a user-defined data type can define exactly what the default sort ordering
is, and it might correspond to operators with other names.)

The null value sorts higher than any other value. In other words, with ascending sort
order, null values sort at the end, and with descending sort order, null values sort at the
beginning.

Character-string data is sorted according to the locale-specific collation order that was
established when the Greenplum Database system was initialized.

The DISTINCT Clause

If DISTINCT is specified, all duplicate rows are removed from the result set (one row
is kept from each group of duplicates). ALL specifies the opposite: all rows are kept.
ALL is the default.
SELECT 284

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
DISTINCT ON (expression [, ...]) keeps only the first row of each set of
rows where the given expressions evaluate to equal. The DISTINCT ON expressions
are interpreted using the same rules as for ORDER BY. Note that the ‘first row’ of each
set is unpredictable unless ORDER BY is used to ensure that the desired row appears
first. For example:

SELECT DISTINCT ON (location) location, time, report FROM
weather_reports ORDER BY location, time DESC;

retrieves the most recent weather report for each location. But if we had not used
ORDER BY to force descending order of time values for each location, we would have
gotten a report from an unpredictable time for each location.

The DISTINCT ON expression(s) must match the left-most ORDER BY expression(s).
The ORDER BY clause will normally contain additional expression(s) that determine
the desired precedence of rows within each DISTINCT ON group.

The LIMIT Clause

The LIMIT clause consists of two independent sub-clauses:

LIMIT {count | ALL}

OFFSET start

Where count specifies the maximum number of rows to return, while start specifies
the number of rows to skip before starting to return rows. When both are specified,
start rows are skipped before starting to count the count rows to be returned.

When using LIMIT, it is a good idea to use an ORDER BY clause that constrains the
result rows into a unique order. Otherwise you will get an unpredictable subset of the
query’s rows — you may be asking for the tenth through twentieth rows, but tenth
through twentieth in what ordering? You don’t know what ordering unless you specify
ORDER BY.

The query planner takes LIMIT into account when generating a query plan, so you are
very likely to get different plans (yielding different row orders) depending on what
you use for LIMIT and OFFSET. Thus, using different LIMIT/OFFSET values to select
different subsets of a query result will give inconsistent results unless you enforce a
predictable result ordering with ORDER BY. This is not a defect; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in
any particular order unless ORDER BY is used to constrain the order.

FOR UPDATE/FOR SHARE Clause

The FOR UPDATE clause has this form:

FOR UPDATE [OF table_name [, ...]] [NOWAIT]

The closely related FOR SHARE clause has this form:

FOR SHARE [OF table_name [, ...]] [NOWAIT]

FOR UPDATE causes the tables accessed by the SELECT statement to be locked as
though for update. This prevents the table from being modified or deleted by other
transactions until the current transaction ends. That is, other transactions that attempt
UPDATE, DELETE, or SELECT FOR UPDATE of this table will be blocked until the
current transaction ends. Also, if an UPDATE, DELETE, or SELECT FOR UPDATE from
SELECT 285

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
another transaction has already locked a selected table, SELECT FOR UPDATE will
wait for the other transaction to complete, and will then lock and return the updated
table.

To prevent the operation from waiting for other transactions to commit, use the
NOWAIT option. SELECT FOR UPDATE NOWAIT reports an error, rather than waiting, if
a selected row cannot be locked immediately. Note that NOWAIT applies only to the
row-level lock(s) — the required ROW SHARE table-level lock is still taken in the
ordinary way. You can use the NOWAIT option of LOCK if you need to acquire the
table-level lock without waiting (see LOCK).

FOR SHARE behaves similarly, except that it acquires a shared rather than exclusive
lock on the table. A shared lock blocks other transactions from performing UPDATE,
DELETE, or SELECT FOR UPDATE on the table, but it does not prevent them from
performing SELECT FOR SHARE.

If specific tables are named in FOR UPDATE or FOR SHARE, then only those tables are
locked; any other tables used in the SELECT are simply read as usual. A FOR UPDATE
or FOR SHARE clause without a table list affects all tables used in the command. If FOR
UPDATE or FOR SHARE is applied to a view or subquery, it affects all tables used in the
view or subquery.

Multiple FOR UPDATE and FOR SHARE clauses can be written if it is necessary to
specify different locking behavior for different tables. If the same table is mentioned
(or implicitly affected) by both FOR UPDATE and FOR SHARE clauses, then it is
processed as FOR UPDATE. Similarly, a table is processed as NOWAIT if that is specified
in any of the clauses affecting it.

Examples

To join the table films with the table distributors:

SELECT f.title, f.did, d.name, f.date_prod, f.kind FROM
distributors d, films f WHERE f.did = d.did

To sum the column length of all films and group the results by kind:

SELECT kind, sum(length) AS total FROM films GROUP BY kind;

To sum the column length of all films, group the results by kind and show those group
totals that are less than 5 hours:

SELECT kind, sum(length) AS total FROM films GROUP BY kind
HAVING sum(length) < interval '5 hours';

Calculate the subtotals and grand totals of all sales for movie kind and distributor.

SELECT kind, distributor, sum(prc*qty) FROM sales

GROUP BY ROLLUP(kind, distributor)

ORDER BY 1,2,3;

Calculate the rank of movie distributors based on total sales:

SELECT distributor, sum(prc*qty),

 rank() OVER (ORDER BY sum(prc*qty) DESC)

FROM sale
SELECT 286

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
GROUP BY distributor ORDER BY 2 DESC;

The following two examples are identical ways of sorting the individual results
according to the contents of the second column (name):

SELECT * FROM distributors ORDER BY name;

SELECT * FROM distributors ORDER BY 2;

The next example shows how to obtain the union of the tables distributors and actors,
restricting the results to those that begin with the letter W in each table. Only distinct
rows are wanted, so the key word ALL is omitted:

SELECT distributors.name FROM distributors WHERE
distributors.name LIKE 'W%' UNION SELECT actors.name FROM
actors WHERE actors.name LIKE 'W%';

This example shows how to use a function in the FROM clause, both with and without a
column definition list:

CREATE FUNCTION distributors(int) RETURNS SETOF distributors
AS $$ SELECT * FROM distributors WHERE did = $1; $$ LANGUAGE
SQL;

SELECT * FROM distributors(111);

CREATE FUNCTION distributors_2(int) RETURNS SETOF record AS
$$ SELECT * FROM distributors WHERE did = $1; $$ LANGUAGE
SQL;

SELECT * FROM distributors_2(111) AS (dist_id int, dist_name
text);

Compatibility

The SELECT statement is compatible with the SQL standard, but there are some
extensions and some missing features.

Omitted FROM Clauses

Greenplum Database allows one to omit the FROM clause. It has a straightforward use
to compute the results of simple expressions. For example:

SELECT 2+2;

Some other SQL databases cannot do this except by introducing a dummy one-row
table from which to do the SELECT.

Note that if a FROM clause is not specified, the query cannot reference any database
tables. For compatibility with applications that rely on this behavior the
add_missing_from configuration variable can be enabled.

The AS Key Word

In the SQL standard, the optional key word AS is just noise and can be omitted without
affecting the meaning. The Greenplum Database parser requires this key word when
renaming output columns because the type extensibility features lead to parsing
ambiguities without it. AS is optional in FROM items, however.
SELECT 287

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Namespace Available to GROUP BY and ORDER BY

In the SQL-92 standard, an ORDER BY clause may only use result column names or
numbers, while a GROUP BY clause may only use expressions based on input column
names. Greenplum Database extends each of these clauses to allow the other choice as
well (but it uses the standard’s interpretation if there is ambiguity). Greenplum
Database also allows both clauses to specify arbitrary expressions. Note that names
appearing in an expression will always be taken as input-column names, not as
result-column names.

SQL:1999 and later use a slightly different definition which is not entirely upward
compatible with SQL-92. In most cases, however, Greenplum Database will interpret
an ORDER BY or GROUP BY expression the same way SQL:1999 does.

Nonstandard Clauses

The clauses DISTINCT ON, LIMIT, and OFFSET are not defined in the SQL standard.

Limited Use of STABLE and VOLATILE Functions

To prevent data from becoming out-of-sync across the segments in Greenplum
Database, any function classified as STABLE or VOLATILE cannot be executed at the
segment database level if it contains SQL or modifies the database in any way. See
CREATE FUNCTION for more information.

See Also

EXPLAIN
SELECT 288

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
SELECT INTO
Defines a new table from the results of a query.

Synopsis
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [AS output_name] [, ...]
 INTO [TEMPORARY | TEMP] [TABLE] new_table
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition [, ...]]
 [{UNION | INTERSECT | EXCEPT} [ALL] select]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT {count | ALL}]
 [OFFSET start]
 [FOR {UPDATE | SHARE} [OF table_name [, ...]] [NOWAIT]
[...]]

Description

SELECT INTO creates a new table and fills it with data computed by a query. The data
is not returned to the client, as it is with a normal SELECT. The new table’s columns
have the names and data types associated with the output columns of the SELECT.

Parameters

The majority of parameters for SELECT INTO are the same as SELECT.

TEMPORARY
TEMP

If specified, the table is created as a temporary table.

new_table
The name (optionally schema-qualified) of the table to be created.

Examples

Create a new table films_recent consisting of only recent entries from the table films:

SELECT * INTO films_recent FROM films WHERE date_prod >=
'2006-01-01';
SELECT INTO 289

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Compatibility

The SQL standard uses SELECT INTO to represent selecting values into scalar
variables of a host program, rather than creating a new table. The Greenplum Database
usage of SELECT INTO to represent table creation is historical. It is best to use CREATE
TABLE AS for this purpose in new applications.

See Also

SELECT, CREATE TABLE AS
SELECT INTO 290

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
SET
Changes the value of a Greenplum Database configuration parameter.

Synopsis
SET [SESSION | LOCAL] configuration_parameter {TO | =} value |
'value' | DEFAULT}

SET [SESSION | LOCAL] TIME ZONE {timezone | LOCAL | DEFAULT}

Description

The SET command changes server configuration parameters. Any configuration
parameter classified as a session parameter can be changed on-the-fly with SET. SET
affects only the value used by the current session.

If SET or SET SESSION is issued within a transaction that is later aborted, the effects
of the SET command disappear when the transaction is rolled back. Once the
surrounding transaction is committed, the effects will persist until the end of the
session, unless overridden by another SET.

The effects of SET LOCAL last only till the end of the current transaction, whether
committed or not. A special case is SET followed by SET LOCAL within a single
transaction: the SET LOCAL value will be seen until the end of the transaction, but
afterwards (if the transaction is committed) the SET value will take effect.

See “Server Configuration Parameters” on page 466 for information about server
parameters.

Parameters

SESSION

Specifies that the command takes effect for the current session. This is the default.

LOCAL

Specifies that the command takes effect for only the current transaction. After
COMMIT or ROLLBACK, the session-level setting takes effect again. Note that SET
LOCAL will appear to have no effect if it is executed outside of a transaction.

configuration_parameter
The name of a Greenplum Database configuration parameter. Only parameters
classified as session can be changed with SET. See “Server Configuration
Parameters” on page 466 for details.

value
New value of parameter. Values can be specified as string constants, identifiers,
numbers, or comma-separated lists of these. DEFAULT can be used to specify
resetting the parameter to its default value. If specifying memory sizing or time
units, enclose the value in single quotes.
SET 291

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
TIME ZONE

SET TIME ZONE value is an alias for SET timezone TO value. The syntax SET
TIME ZONE allows special syntax for the time zone specification. Here are examples
of valid values:

'PST8PDT'

'Europe/Rome'

-7 (time zone 7 hours west from UTC)

INTERVAL '-08:00' HOUR TO MINUTE (time zone 8 hours west from UTC).

LOCAL
DEFAULT

Set the time zone to your local time zone (the one that the server’s operating system
defaults to). See the Time zone section of the PostgreSQL documentation for more
information about time zones in Greenplum Database.

Examples

Set the schema search path:

SET search_path TO my_schema, public;

Increase work memory to 200 MB:

SET work_mem TO '200MB';

Set the style of date to traditional POSTGRES with “day before month” input
convention:

SET datestyle TO postgres, dmy;

Set the time zone for San Mateo, California:

SET TIME ZONE 'PST8PDT';

Set the time zone for Italy:

SET TIME ZONE 'Europe/Rome';

Compatibility

SET TIME ZONE extends syntax defined in the SQL standard. The standard allows
only numeric time zone offsets while Greenplum Database allows more flexible
time-zone specifications. All other SET features are Greenplum Database extensions.

See Also

RESET, SHOW
SET 292

http://www.postgresql.org/docs/8.2/static/datatype-datetime.html#DATATYPE-TIMEZONES

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
SET ROLE
Sets the current role identifier of the current session.

Synopsis
SET [SESSION | LOCAL] ROLE rolename

SET [SESSION | LOCAL] ROLE NONE

RESET ROLE

Description

This command sets the current role identifier of the current SQL-session context to be
rolename. The role name may be written as either an identifier or a string literal. After
SET ROLE, permissions checking for SQL commands is carried out as though the
named role were the one that had logged in originally.

The specified rolename must be a role that the current session user is a member of. If
the session user is a superuser, any role can be selected.

The NONE and RESET forms reset the current role identifier to be the current session
role identifier. These forms may be executed by any user.

Parameters

SESSION

Specifies that the command takes effect for the current session. This is the default.

LOCAL

Specifies that the command takes effect for only the current transaction. After
COMMIT or ROLLBACK, the session-level setting takes effect again. Note that SET
LOCAL will appear to have no effect if it is executed outside of a transaction.

rolename
The name of a role to use for permissions checking in this session.

NONE
RESET

Reset the current role identifier to be the current session role identifier (that of the
role used to log in).

Notes

Using this command, it is possible to either add privileges or restrict privileges. If the
session user role has the INHERITS attribute, then it automatically has all the
privileges of every role that it could SET ROLE to; in this case SET ROLE effectively
drops all the privileges assigned directly to the session user and to the other roles it is
a member of, leaving only the privileges available to the named role. On the other
SET ROLE 293

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
hand, if the session user role has the NOINHERITS attribute, SET ROLE drops the
privileges assigned directly to the session user and instead acquires the privileges
available to the named role.

In particular, when a superuser chooses to SET ROLE to a non-superuser role, she loses
her superuser privileges.

SET ROLE has effects comparable to SET SESSION AUTHORIZATION, but the
privilege checks involved are quite different. Also, SET SESSION AUTHORIZATION
determines which roles are allowable for later SET ROLE commands, whereas
changing roles with SET ROLE does not change the set of roles allowed to a later SET
ROLE.

Examples
SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user

--------------+--------------

 peter | peter

SET ROLE 'paul';

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user

--------------+--------------

 peter | paul

Compatibility

Greenplum Database allows identifier syntax (rolename), while the SQL standard
requires the role name to be written as a string literal. SQL does not allow this
command during a transaction; Greenplum Database does not make this restriction.
The SESSION and LOCAL modifiers are a Greenplum Database extension, as is the
RESET syntax.

See Also

SET SESSION AUTHORIZATION
SET ROLE 294

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
SET SESSION AUTHORIZATION
Sets the session role identifier and the current role identifier of the current session.

Synopsis
SET [SESSION | LOCAL] SESSION AUTHORIZATION rolename

SET [SESSION | LOCAL] SESSION AUTHORIZATION DEFAULT

RESET SESSION AUTHORIZATION

Description

This command sets the session role identifier and the current role identifier of the
current SQL-session context to be rolename. The role name may be written as either
an identifier or a string literal. Using this command, it is possible, for example, to
temporarily become an unprivileged user and later switch back to being a superuser.

The session role identifier is initially set to be the (possibly authenticated) role name
provided by the client. The current role identifier is normally equal to the session user
identifier, but may change temporarily in the context of setuid functions and similar
mechanisms; it can also be changed by SET ROLE. The current user identifier is
relevant for permission checking.

The session user identifier may be changed only if the initial session user (the
authenticated user) had the superuser privilege. Otherwise, the command is accepted
only if it specifies the authenticated user name.

The DEFAULT and RESET forms reset the session and current user identifiers to be the
originally authenticated user name. These forms may be executed by any user.

Parameters

SESSION

Specifies that the command takes effect for the current session. This is the default.

LOCAL

Specifies that the command takes effect for only the current transaction. After
COMMIT or ROLLBACK, the session-level setting takes effect again. Note that SET
LOCAL will appear to have no effect if it is executed outside of a transaction.

rolename
The name of the role to assume.

NONE
RESET

Reset the session and current role identifiers to be that of the role used to log in.
SET SESSION AUTHORIZATION 295

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Examples
SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user

--------------+--------------

 peter | peter

SET SESSION AUTHORIZATION 'paul';

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user

--------------+--------------

 paul | paul

Compatibility

The SQL standard allows some other expressions to appear in place of the literal
rolename, but these options are not important in practice. Greenplum Database
allows identifier syntax (“rolename”), which SQL does not. SQL does not allow this
command during a transaction; Greenplum Database does not make this restriction.
The SESSION and LOCAL modifiers are a Greenplum Database extension, as is the
RESET syntax.

See Also

SET ROLE
SET SESSION AUTHORIZATION 296

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
SET TRANSACTION
Sets the characteristics of the current transaction.

Synopsis
SET TRANSACTION [transaction_mode][READ ONLY | READ WRITE]

SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode
[READ ONLY | READ WRITE]

where transaction_mode is one of:
ISOLATION LEVEL {SERIALIZABLE | REPEATABLE READ | READ
COMMITTED | READ UNCOMMITTED}

Description

The SET TRANSACTION command sets the characteristics of the current transaction. It
has no effect on any subsequent transactions.

The available transaction characteristics are the transaction isolation level and the
transaction access mode (read/write or read-only).

The isolation level of a transaction determines what data the transaction can see when
other transactions are running concurrently.

• READ COMMITTED — A statement can only see rows committed before it began.
This is the default.

• SERIALIZABLE — All statements of the current transaction can only see rows
committed before the first query or data-modification statement was executed in
this transaction.

The SQL standard defines two additional levels, READ UNCOMMITTED and
REPEATABLE READ. In Greenplum Database READ UNCOMMITTED is treated as READ
COMMITTED, while REPEATABLE READ is treated as SERIALIZABLE.

The transaction isolation level cannot be changed after the first query or
data-modification statement (SELECT, INSERT, DELETE, UPDATE, FETCH, or COPY) of a
transaction has been executed.

The transaction access mode determines whether the transaction is read/write or
read-only. Read/write is the default. When a transaction is read-only, the following
SQL commands are disallowed: INSERT, UPDATE, DELETE, and COPY FROM if the table
they would write to is not a temporary table; all CREATE, ALTER, and DROP commands;
GRANT, REVOKE, TRUNCATE; and EXPLAIN ANALYZE and EXECUTE if the command
they would execute is among those listed. This is a high-level notion of read-only that
does not prevent all writes to disk.

Parameters

SESSION CHARACTERISTICS

Sets the default transaction characteristics for subsequent transactions of a session.
SET TRANSACTION 297

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
SERIALIZABLE
REPEATABLE READ
READ COMMITTED
READ UNCOMMITTED

The SQL standard defines four transaction isolation levels: READ COMMITTED, READ
UNCOMMITTED, SERIALIZABLE, and REPEATABLE READ. The default behavior is that
a statement can only see rows committed before it began (READ COMMITTED). In
Greenplum Database READ UNCOMMITTED is treated the same as READ COMMITTED.
SERIALIZABLE is supported the same as REPEATABLE READ wherein all statements
of the current transaction can only see rows committed before the first statement
was executed in the transaction. SERIALIZABLE is the strictest transaction isolation.
This level emulates serial transaction execution, as if transactions had been executed
one after another, serially, rather than concurrently. Applications using this level
must be prepared to retry transactions due to serialization failures.

READ WRITE
READ ONLY

Determines whether the transaction is read/write or read-only. Read/write is the
default. When a transaction is read-only, the following SQL commands are
disallowed: INSERT, UPDATE, DELETE, and COPY FROM if the table they would write
to is not a temporary table; all CREATE, ALTER, and DROP commands; GRANT,
REVOKE, TRUNCATE; and EXPLAIN ANALYZE and EXECUTE if the command they
would execute is among those listed.

Notes

If SET TRANSACTION is executed without a prior START TRANSACTION or BEGIN, it
will appear to have no effect.

It is possible to dispense with SET TRANSACTION by instead specifying the desired
transaction_modes in BEGIN or START TRANSACTION.

The session default transaction modes can also be set by setting the configuration
parameters default_transaction_isolation and default_transaction_read_only.

Examples

Set the transaction isolation level for the current transaction:

BEGIN;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Compatibility

Both commands are defined in the SQL standard. SERIALIZABLE is the default
transaction isolation level in the standard. In Greenplum Database the default is READ
COMMITTED. Because of lack of predicate locking, the SERIALIZABLE level is not truly
serializable. Essentially, a predicate-locking system prevents phantom reads by
restricting what is written, whereas a multi-version concurrency control model
(MVCC) as used in Greenplum Database prevents them by restricting what is read.
SET TRANSACTION 298

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
In the SQL standard, there is one other transaction characteristic that can be set with
these commands: the size of the diagnostics area. This concept is specific to embedded
SQL, and therefore is not implemented in the Greenplum Database server.

The SQL standard requires commas between successive transaction_modes, but
for historical reasons Greenplum Database allows the commas to be omitted.

See Also

BEGIN, LOCK
SET TRANSACTION 299

SHOW 300

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

SHOW
Shows the value of a system configuration parameter.

Synopsis
SHOW configuration_parameter

SHOW ALL

Description

SHOW displays the current settings of Greenplum Database system configuration
parameters. You can set these parameters with the SET statement, or by editing the
postgresql.conf configuration file of the Greenplum Database master. Note that
some parameters viewable by SHOW are read-only — their values can be viewed but
not set. See the Greenplum Database Reference Guide for details.

Parameters

configuration_parameter
The name of a system configuration parameter.

ALL

Shows the current value of all configuration parameters.

Examples

Show the current setting of the parameter search_path:

SHOW search_path;

Show the current setting of all parameters:

SHOW ALL;

Compatibility

SHOW is a Greenplum Database extension.

See Also

SET, RESET

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
START TRANSACTION
Starts a transaction block.

Synopsis
START TRANSACTION [SERIALIZABLE | REPEATABLE READ | READ
COMMITTED | READ UNCOMMITTED] [READ WRITE | READ ONLY]

Description

START TRANSACTION begins a new transaction block. If the isolation level or
read/write mode is specified, the new transaction has those characteristics, as if SET
TRANSACTION was executed. This is the same as the BEGIN command.

Parameters

SERIALIZABLE
REPEATABLE READ
READ COMMITTED
READ UNCOMMITTED

The SQL standard defines four transaction isolation levels: READ COMMITTED, READ
UNCOMMITTED, SERIALIZABLE, and REPEATABLE READ. The default behavior is that
a statement can only see rows committed before it began (READ COMMITTED). In
Greenplum Database READ UNCOMMITTED is treated the same as READ COMMITTED.
SERIALIZABLE is supported the same as REPEATABLE READ wherein all statements
of the current transaction can only see rows committed before the first statement
was executed in the transaction. SERIALIZABLE is the strictest transaction isolation.
This level emulates serial transaction execution, as if transactions had been executed
one after another, serially, rather than concurrently. Applications using this level
must be prepared to retry transactions due to serialization failures.

READ WRITE
READ ONLY

Determines whether the transaction is read/write or read-only. Read/write is the
default. When a transaction is read-only, the following SQL commands are
disallowed: INSERT, UPDATE, DELETE, and COPY FROM if the table they would write
to is not a temporary table; all CREATE, ALTER, and DROP commands; GRANT,
REVOKE, TRUNCATE; and EXPLAIN ANALYZE and EXECUTE if the command they
would execute is among those listed.

Examples

To begin a transaction block:

START TRANSACTION;
START TRANSACTION 301

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Compatibility

In the standard, it is not necessary to issue START TRANSACTION to start a transaction
block: any SQL command implicitly begins a block. Greenplum Database behavior
can be seen as implicitly issuing a COMMIT after each command that does not follow
START TRANSACTION (or BEGIN), and it is therefore often called ‘autocommit’. Other
relational database systems may offer an autocommit feature as a convenience.

The SQL standard requires commas between successive transaction_modes, but
for historical reasons Greenplum Database allows the commas to be omitted.

See also the compatibility section of SET TRANSACTION.

See Also

BEGIN, SET TRANSACTION
START TRANSACTION 302

TRUNCATE 303

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference

TRUNCATE
Empties a table of all rows.

Synopsis
TRUNCATE [TABLE] name [, ...] [CASCADE | RESTRICT]

Description

TRUNCATE quickly removes all rows from a table or set of tables. It has the same effect
as an unqualified DELETE on each table, but since it does not actually scan the tables it
is faster. This is most useful on large tables.

Parameters

name
The name (optionally schema-qualified) of a table to be truncated.

CASCADE

Since this key word applies to foreign key references (which are not supported in
Greenplum Database) it has no effect.

RESTRICT

Since this key word applies to foreign key references (which are not supported in
Greenplum Database) it has no effect.

Notes

Only the owner of a table may TRUNCATE it.

TRUNCATE will not run any user-defined ON DELETE triggers that might exist for the
tables.

TRUNCATE will not truncate any tables that inherit from the named table. Only the
named table is truncated, not its child tables.

Examples

Empty the table films:

TRUNCATE films;

Compatibility

There is no TRUNCATE command in the SQL standard.

See Also

DELETE, DROP TABLE

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
UPDATE
Updates rows of a table.

Synopsis
UPDATE [ONLY] table [[AS] alias]
 SET {column = {expression | DEFAULT} |
 (column [, ...]) = ({expression | DEFAULT} [, ...])} [, ...]
 [FROM fromlist]
 [WHERE condition]

Description

UPDATE changes the values of the specified columns in all rows that satisfy the
condition. Only the columns to be modified need be mentioned in the SET clause;
columns not explicitly modified retain their previous values.

By default, UPDATE will update rows in the specified table and all its subtables. If you
wish to only update the specific table mentioned, you must use the ONLY clause.

There are two ways to modify a table using information contained in other tables in
the database: using sub-selects, or specifying additional tables in the FROM clause.
Which technique is more appropriate depends on the specific circumstances.

You must have the UPDATE privilege on the table to update it, as well as the SELECT
privilege to any table whose values are read in the expressions or condition.

Outputs

On successful completion, an UPDATE command returns a command tag of the form:

UPDATE count

Where count is the number of rows updated. If count is 0, no rows matched the
condition (this is not considered an error).

Parameters

ONLY

If specified, update rows from the named table only. When not specified, any tables
inheriting from the named table are also processed.

table
The name (optionally schema-qualified) of an existing table.

alias
A substitute name for the target table. When an alias is provided, it completely hides
the actual name of the table. For example, given UPDATE foo AS f, the remainder
of the UPDATE statement must refer to this table as f not foo.
UPDATE 304

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
column
The name of a column in table. The column name can be qualified with a subfield
name or array subscript, if needed. Do not include the table’s name in the
specification of a target column.

expression
An expression to assign to the column. The expression may use the old values of this
and other columns in the table.

DEFAULT

Set the column to its default value (which will be NULL if no specific default
expression has been assigned to it).

fromlist
A list of table expressions, allowing columns from other tables to appear in the
WHERE condition and the update expressions. This is similar to the list of tables that
can be specified in the FROM clause of a SELECT statement. Note that the target table
must not appear in the fromlist, unless you intend a self-join (in which case it
must appear with an alias in the fromlist).

condition
An expression that returns a value of type boolean. Only rows for which this
expression returns true will be updated.

output_expression
An expression to be computed and returned by the UPDATE command after each row
is updated. The expression may use any column names of the table or table(s) listed
in FROM. Write * to return all columns.

output_name
A name to use for a returned column.

Notes

SET is not allowed on the Greenplum distribution key columns of a table.

When a FROM clause is present, what essentially happens is that the target table is
joined to the tables mentioned in the from list, and each output row of the join
represents an update operation for the target table. When using FROM you should
ensure that the join produces at most one output row for each row to be modified. In
other words, a target row should not join to more than one row from the other table(s).
If it does, then only one of the join rows will be used to update the target row, but
which one will be used is not readily predictable.

Because of this indeterminacy, referencing other tables only within sub-selects is
safer, though often harder to read and slower than using a join.
UPDATE 305

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Examples

Change the word Drama to Dramatic in the column kind of the table films:

UPDATE films SET kind = 'Dramatic' WHERE kind = 'Drama';

Adjust temperature entries and reset precipitation to its default value in one row of the
table weather:

UPDATE weather SET temp_lo = temp_lo+1, temp_hi =
temp_lo+15, prcp = DEFAULT

WHERE city = 'San Francisco' AND date = '2006-07-03';

Use the alternative column-list syntax to do the same update:

UPDATE weather SET (temp_lo, temp_hi, prcp) = (temp_lo+1,
temp_lo+15, DEFAULT)

WHERE city = 'San Francisco' AND date = '2006-07-03';

Increment the sales count of the salesperson who manages the account for Acme
Corporation, using the FROM clause syntax (assuming both tables being joined are
distributed in Greenplum Database on the id column):

UPDATE employees SET sales_count = sales_count + 1 FROM
accounts

WHERE accounts.name = 'Acme Corporation'

AND employees.id = accounts.id;

Perform the same operation, using a sub-select in the WHERE clause:

UPDATE employees SET sales_count = sales_count + 1 WHERE id =

 (SELECT id FROM accounts WHERE name = 'Acme Corporation');

Attempt to insert a new stock item along with the quantity of stock. If the item already
exists, instead update the stock count of the existing item. To do this without failing
the entire transaction, use savepoints.

BEGIN;

-- other operations

SAVEPOINT sp1;

INSERT INTO wines VALUES('Chateau Lafite 2003', '24');

-- Assume the above fails because of a unique key violation,

-- so now we issue these commands:

ROLLBACK TO sp1;

UPDATE wines SET stock = stock + 24 WHERE winename = 'Chateau
Lafite 2003';

-- continue with other operations, and eventually

COMMIT;

Compatibility

This command conforms to the SQL standard, except that the FROM clause is a
Greenplum Database extension.
UPDATE 306

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
According to the standard, the column-list syntax should allow a list of columns to be
assigned from a single row-valued expression, such as a sub-select:

UPDATE accounts SET (contact_last_name, contact_first_name) =

 (SELECT last_name, first_name FROM salesmen

 WHERE salesmen.id = accounts.sales_id);

This is not currently implemented — the source must be a list of independent
expressions.

Some other database systems offer a FROM option in which the target table is supposed
to be listed again within FROM. That is not how Greenplum Database interprets FROM.
Be careful when porting applications that use this extension.

See Also

DELETE, SELECT, INSERT
UPDATE 307

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
VACUUM
Garbage-collects and optionally analyzes a database.

Synopsis
VACUUM [FULL] [FREEZE] [VERBOSE] [table]

VACUUM [FULL] [FREEZE] [VERBOSE] ANALYZE
 [table [(column [, ...])]]

Description

VACUUM reclaims storage occupied by deleted tuples. In normal Greenplum Database
operation, tuples that are deleted or obsoleted by an update are not physically removed
from their table; they remain present on disk until a VACUUM is done. Therefore it is
necessary to do VACUUM periodically, especially on frequently-updated tables.

With no parameter, VACUUM processes every table in the current database. With a
parameter, VACUUM processes only that table.

VACUUM ANALYZE performs a VACUUM and then an ANALYZE for each selected table.
This is a handy combination form for routine maintenance scripts. See ANALYZE for
more details about its processing.

Plain VACUUM (without FULL) simply reclaims space and makes it available for re-use.
This form of the command can operate in parallel with normal reading and writing of
the table, as an exclusive lock is not obtained. VACUUM FULL does more extensive
processing, including moving of tuples across blocks to try to compact the table to the
minimum number of disk blocks. This form is much slower and requires an exclusive
lock on each table while it is being processed.

Outputs

When VERBOSE is specified, VACUUM emits progress messages to indicate which table
is currently being processed. Various statistics about the tables are printed as well.

Parameters

FULL

Selects a full vacuum, which may reclaim more space, but takes much longer and
exclusively locks the table.
Warning: A VACUUM FULL is not recommended in Greenplum Database. See the
“Notes” section.

FREEZE

Specifying FREEZE is equivalent to performing VACUUM with the
vacuum_freeze_min_age server configuration parameter set to zero. The FREEZE
option is deprecated and will be removed in a future release. Set the parameter in the
master postgresql.conf file instead.
VACUUM 308

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
VERBOSE

Prints a detailed vacuum activity report for each table.

ANALYZE

Updates statistics used by the planner to determine the most efficient way to execute
a query.

table
The name (optionally schema-qualified) of a specific table to vacuum. Defaults to
all tables in the current database.

column
The name of a specific column to analyze. Defaults to all columns.

Notes

VACUUM cannot be executed inside a transaction block.

Greenplum recommends that active production databases be vacuumed frequently (at
least nightly), in order to remove expired rows. After adding or deleting a large
number of rows, it may be a good idea to issue a VACUUM ANALYZE command for the
affected table. This will update the system catalogs with the results of all recent
changes, and allow the Greenplum query planner to make better choices in planning
queries.

VACUUM causes a substantial increase in I/O traffic, which can cause poor performance
for other active sessions. Therefore, it is advisable to vacuum the database at low
usage times.

Regular PostgreSQL has a separate optional server process called the autovacuum
daemon, whose purpose is to automate the execution of VACUUM and ANALYZE
commands. This feature is currently disabled in Greenplum Database.

Expired rows are held in what is called the free space map. The free space map must
be sized large enough to cover the dead rows of all tables in your database. If not sized
large enough, space occupied by dead rows that overflow the free space map cannot
be reclaimed by a regular VACUUM command.

A VACUUM FULL will reclaim all expired row space, but is a very expensive operation
and may take an unacceptably long time to finish on large, distributed Greenplum
Database tables. If you do get into a situation where the free space map has
overflowed, it may be more timely to recreate the table with a CREATE TABLE AS
statement and drop the old table. A VACUUM FULL is not recommended in Greenplum
Database.

Size the free space map appropriately. You configure the free space map using the
following server configuration parameters:

max_fsm_pages

max_fsm_relations

For more information about concurrency control in Greenplum Database, see the
Greenplum Database Database Administrator Guide.
VACUUM 309

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Examples

Vacuum all tables in the current database:

VACUUM;

Vacuum a specific table only:

VACUUM mytable;

Vacuum all tables in the current database and collect statistics for the query planner:

VACUUM ANALYZE;

Compatibility

There is no VACUUM statement in the SQL standard.

See Also
ANALYZE

Greenplum Database Server Parameters Guide
VACUUM 310

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
VALUES
Computes a set of rows.

Synopsis
VALUES (expression [, ...]) [, ...]
[ORDER BY sort_expression [ASC | DESC | USING operator] [, ...]]
[LIMIT {count | ALL}] [OFFSET start]

Description

VALUES computes a row value or set of row values specified by value expressions. It is
most commonly used to generate a ‘constant table’ within a larger command, but it
can be used on its own.

When more than one row is specified, all the rows must have the same number of
elements. The data types of the resulting table’s columns are determined by combining
the explicit or inferred types of the expressions appearing in that column, using the
same rules as for UNION.

Within larger commands, VALUES is syntactically allowed anywhere that SELECT is.
Because it is treated like a SELECT by the grammar, it is possible to use the ORDER BY,
LIMIT, and OFFSET clauses with a VALUES command.

Parameters

expression
A constant or expression to compute and insert at the indicated place in the resulting
table (set of rows). In a VALUES list appearing at the top level of an INSERT, an
expression can be replaced by DEFAULT to indicate that the destination column’s
default value should be inserted. DEFAULT cannot be used when VALUES appears in
other contexts.

sort_expression
An expression or integer constant indicating how to sort the result rows. This
expression may refer to the columns of the VALUES result as column1, column2, etc.
For more details see “The ORDER BY Clause” on page 284.

operator
A sorting operator. For details see “The ORDER BY Clause” on page 284.

LIMIT count
OFFSET start

The maximum number of rows to return. For details see “The LIMIT Clause” on
page 285.
VALUES 311

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
Notes

VALUES lists with very large numbers of rows should be avoided, as you may
encounter out-of-memory failures or poor performance. VALUES appearing within
INSERT is a special case (because the desired column types are known from the
INSERT’s target table, and need not be inferred by scanning the VALUES list), so it can
handle larger lists than are practical in other contexts.

Examples

A bare VALUES command:

VALUES (1, 'one'), (2, 'two'), (3, 'three');

This will return a table of two columns and three rows. It is effectively equivalent to:

SELECT 1 AS column1, 'one' AS column2

UNION ALL

SELECT 2, 'two'

UNION ALL

SELECT 3, 'three';

More usually, VALUES is used within a larger SQL command. The most common use is
in INSERT:

INSERT INTO films (code, title, did, date_prod, kind)

 VALUES ('T_601', 'Yojimbo', 106, '1961-06-16', 'Drama');

In the context of INSERT, entries of a VALUES list can be DEFAULT to indicate that the
column default should be used here instead of specifying a value:

INSERT INTO films VALUES

 ('UA502', 'Bananas', 105, DEFAULT, 'Comedy', '82
minutes'),

 ('T_601', 'Yojimbo', 106, DEFAULT, 'Drama', DEFAULT);

VALUES can also be used where a sub-SELECT might be written, for example in a FROM
clause:

SELECT f.* FROM films f, (VALUES('MGM', 'Horror'), ('UA',
'Sci-Fi')) AS t (studio, kind) WHERE f.studio = t.studio AND
f.kind = t.kind;

UPDATE employees SET salary = salary * v.increase FROM
(VALUES(1, 200000, 1.2), (2, 400000, 1.4)) AS v (depno,
target, increase) WHERE employees.depno = v.depno AND
employees.sales >= v.target;

Note that an AS clause is required when VALUES is used in a FROM clause, just as is true
for SELECT. It is not required that the AS clause specify names for all the columns, but
it is good practice to do so. The default column names for VALUES are column1,
column2, etc. in Greenplum Database, but these names might be different in other
database systems.
VALUES 312

Greenplum Database Reference Guide 4.2– Chapter 1: SQL Command Reference
When VALUES is used in INSERT, the values are all automatically coerced to the data
type of the corresponding destination column. When it is used in other contexts, it
may be necessary to specify the correct data type. If the entries are all quoted literal
constants, coercing the first is sufficient to determine the assumed type for all:

SELECT * FROM machines WHERE ip_address IN
(VALUES('192.168.0.1'::inet), ('192.168.0.10'),
('192.168.1.43'));

Note: For simple IN tests, it is better to rely on the list-of-scalars form of IN than to write a
VALUES query as shown above. The list of scalars method requires less writing and is
often more efficient.

Compatibility

VALUES conforms to the SQL standard, except that LIMIT and OFFSET are Greenplum
Database extensions.

See Also

INSERT, SELECT
VALUES 313

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
2. SQL 2008 Optional Feature Compliance

The following table lists the features described in the 2008 SQL standard. Features
that are supported in Greenplum Database are marked as YES in the ‘Supported’
column, features that are not implemented are marked as NO.

For information about Greenplum features and SQL compliance, see the Greenplum
Database Database Administrator Guide.

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments

B011 Embedded Ada NO

B012 Embedded C NO Due to issues with PostgreSQL
ecpg

B013 Embedded COBOL NO

B014 Embedded Fortran NO

B015 Embedded MUMPS NO

B016 Embedded Pascal NO

B017 Embedded PL/I NO

B021 Direct SQL YES

B031 Basic dynamic SQL NO

B032 Extended dynamic SQL NO

B033 Untyped SQL-invoked function arguments NO

B034 Dynamic specification of cursor attributes NO

B035 Non-extended descriptor names NO

B041 Extensions to embedded SQL exception declarations NO

B051 Enhanced execution rights NO

B111 Module language Ada NO

B112 Module language C NO

B113 Module language COBOL NO

B114 Module language Fortran NO

B115 Module language MUMPS NO

B116 Module language Pascal NO

B117 Module language PL/I NO

B121 Routine language Ada NO

B122 Routine language C NO

B123 Routine language COBOL NO

B124 Routine language Fortran NO
314

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
B125 Routine language MUMPS NO

B126 Routine language Pascal NO

B127 Routine language PL/I NO

B128 Routine language SQL NO

E011 Numeric data types YES

E011-01 INTEGER and SMALLINT data types YES

E011-02 DOUBLE PRECISION and FLOAT data types YES

E011-03 DECIMAL and NUMERIC data types YES

E011-04 Arithmetic operators YES

E011-05 Numeric comparison YES

E011-06 Implicit casting among the numeric data types YES

E021 Character data types YES

E021-01 CHARACTER data type YES

E021-02 CHARACTER VARYING data type YES

E021-03 Character literals YES

E021-04 CHARACTER_LENGTH function YES Trims trailing spaces from
CHARACTER values before
counting

E021-05 OCTET_LENGTH function YES

E021-06 SUBSTRING function YES

E021-07 Character concatenation YES

E021-08 UPPER and LOWER functions YES

E021-09 TRIM function YES

E021-10 Implicit casting among the character string types YES

E021-11 POSITION function YES

E021-12 Character comparison YES

E031 Identifiers YES

E031-01 Delimited identifiers YES

E031-02 Lower case identifiers YES

E031-03 Trailing underscore YES

E051 Basic query specification YES

E051-01 SELECT DISTINCT YES

E051-02 GROUP BY clause YES

E051-03 GROUP BY can contain columns not in SELECT list YES

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
315

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
E051-04 SELECT list items can be renamed YES

E051-05 HAVING clause YES

E051-06 Qualified * in SELECT list YES

E051-07 Correlation names in the FROM clause YES

E051-08 Rename columns in the FROM clause YES

E061 Basic predicates and search conditions YES

E061-01 Comparison predicate YES

E061-02 BETWEEN predicate YES

E061-03 IN predicate with list of values YES

E061-04 LIKE predicate YES

E061-05 LIKE predicate ESCAPE clause YES

E061-06 NULL predicate YES

E061-07 Quantified comparison predicate YES

E061-08 EXISTS predicate YES Not all uses work in Greenplum

E061-09 Subqueries in comparison predicate YES

E061-11 Subqueries in IN predicate YES

E061-12 Subqueries in quantified comparison predicate YES

E061-13 Correlated subqueries YES

E061-14 Search condition YES

E071 Basic query expressions YES

E071-01 UNION DISTINCT table operator YES

E071-02 UNION ALL table operator YES

E071-03 EXCEPT DISTINCT table operator YES

E071-05 Columns combined via table operators need not have
exactly the same data type

YES

E071-06 Table operators in subqueries YES

E081 Basic Privileges NO Partial sub-feature support

E081-01 SELECT privilege YES

E081-02 DELETE privilege YES

E081-03 INSERT privilege at the table level YES

E081-04 UPDATE privilege at the table level YES

E081-05 UPDATE privilege at the column level NO

E081-06 REFERENCES privilege at the table level NO

E081-07 REFERENCES privilege at the column level NO

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
316

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
E081-08 WITH GRANT OPTION YES

E081-09 USAGE privilege YES

E081-10 EXECUTE privilege YES

E091 Set Functions YES

E091-01 AVG YES

E091-02 COUNT YES

E091-03 MAX YES

E091-04 MIN YES

E091-05 SUM YES

E091-06 ALL quantifier YES

E091-07 DISTINCT quantifier YES

E101 Basic data manipulation YES

E101-01 INSERT statement YES

E101-03 Searched UPDATE statement YES

E101-04 Searched DELETE statement YES

E111 Single row SELECT statement YES

E121 Basic cursor support YES

E121-01 DECLARE CURSOR YES

E121-02 ORDER BY columns need not be in select list YES

E121-03 Value expressions in ORDER BY clause YES

E121-04 OPEN statement YES

E121-06 Positioned UPDATE statement NO

E121-07 Positioned DELETE statement NO

E121-08 CLOSE statement YES

E121-10 FETCH statement implicit NEXT YES

E121-17 WITH HOLD cursors YES

E131 Null value support YES

E141 Basic integrity constraints YES

E141-01 NOT NULL constraints YES

E141-02 UNIQUE constraints of NOT NULL columns YES Must be the same as or a
superset of the Greenplum
distribution key

E141-03 PRIMARY KEY constraints YES Must be the same as or a
superset of the Greenplum
distribution key

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
317

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
E141-04 Basic FOREIGN KEY constraint with the NO ACTION
default for both referential delete action and
referential update action

NO

E141-06 CHECK constraints YES

E141-07 Column defaults YES

E141-08 NOT NULL inferred on PRIMARY KEY YES

E141-10 Names in a foreign key can be specified in any order YES Foreign keys can be declared but
are not enforced in Greenplum

E151 Transaction support YES

E151-01 COMMIT statement YES

E151-02 ROLLBACK statement YES

E152 Basic SET TRANSACTION statement YES

E152-01 ISOLATION LEVEL SERIALIZABLE clause YES

E152-02 READ ONLY and READ WRITE clauses YES

E153 Updatable queries with subqueries NO

E161 SQL comments using leading double minus YES

E171 SQLSTATE support YES

E182 Module language NO

F021 Basic information schema YES

F021-01 COLUMNS view YES

F021-02 TABLES view YES

F021-03 VIEWS view YES

F021-04 TABLE_CONSTRAINTS view YES

F021-05 REFERENTIAL_CONSTRAINTS view YES

F021-06 CHECK_CONSTRAINTS view YES

F031 Basic schema manipulation YES

F031-01 CREATE TABLE statement to create persistent base
tables

YES

F031-02 CREATE VIEW statement YES

F031-03 GRANT statement YES

F031-04 ALTER TABLE statement: ADD COLUMN clause YES

F031-13 DROP TABLE statement: RESTRICT clause YES

F031-16 DROP VIEW statement: RESTRICT clause YES

F031-19 REVOKE statement: RESTRICT clause YES

F032 CASCADE drop behavior YES

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
318

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
F033 ALTER TABLE statement: DROP COLUMN clause YES

F034 Extended REVOKE statement YES

F034-01 REVOKE statement performed by other than the owner
of a schema object

YES

F034-02 REVOKE statement: GRANT OPTION FOR clause YES

F034-03 REVOKE statement to revoke a privilege that the
grantee has WITH GRANT OPTION

YES

F041 Basic joined table YES

F041-01 Inner join (but not necessarily the INNER keyword) YES

F041-02 INNER keyword YES

F041-03 LEFT OUTER JOIN YES

F041-04 RIGHT OUTER JOIN YES

F041-05 Outer joins can be nested YES

F041-07 The inner table in a left or right outer join can also be
used in an inner join

YES

F041-08 All comparison operators are supported (rather than
just =)

YES

F051 Basic date and time YES

F051-01 DATE data type (including support of DATE literal) YES

F051-02 TIME data type (including support of TIME literal) with
fractional seconds precision of at least 0

YES

F051-03 TIMESTAMP data type (including support of
TIMESTAMP literal) with fractional seconds precision
of at least 0 and 6

YES

F051-04 Comparison predicate on DATE, TIME, and
TIMESTAMP data types

YES

F051-05 Explicit CAST between datetime types and character
string types

YES

F051-06 CURRENT_DATE YES

F051-07 LOCALTIME YES

F051-08 LOCALTIMESTAMP YES

F052 Intervals and datetime arithmetic YES

F053 OVERLAPS predicate YES

F081 UNION and EXCEPT in views YES

F111 Isolation levels other than SERIALIZABLE YES

F111-01 READ UNCOMMITTED isolation level NO Can be declared but is treated as
a synonym for READ COMMITTED

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
319

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
F111-02 READ COMMITTED isolation level YES

F111-03 REPEATABLE READ isolation level NO Can be declared but is treated as
a synonym for SERIALIZABLE

F121 Basic diagnostics management NO

F122 Enhanced diagnostics management NO

F123 All diagnostics NO

F131- Grouped operations YES

F131-01 WHERE, GROUP BY, and HAVING clauses supported in
queries with grouped views

YES

F131-02 Multiple tables supported in queries with grouped
views

YES

F131-03 Set functions supported in queries with grouped views YES

F131-04 Subqueries with GROUP BY and HAVING clauses and
grouped views

YES

F131-05 Single row SELECT with GROUP BY and HAVING
clauses and grouped views

YES

F171 Multiple schemas per user YES

F181 Multiple module support NO

F191 Referential delete actions NO

F200 TRUNCATE TABLE statement YES

F201 CAST function YES

F202 TRUNCATE TABLE: identity column restart option NO

F221 Explicit defaults YES

F222 INSERT statement: DEFAULT VALUES clause YES

F231 Privilege tables YES

F231-01 TABLE_PRIVILEGES view YES

F231-02 COLUMN_PRIVILEGES view YES

F231-03 USAGE_PRIVILEGES view YES

F251 Domain support

F261 CASE expression YES

F261-01 Simple CASE YES

F261-02 Searched CASE YES

F261-03 NULLIF YES

F261-04 COALESCE YES

F262 Extended CASE expression NO

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
320

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
F263 Comma-separated predicates in simple CASE
expression

NO

F271 Compound character literals YES

F281 LIKE enhancements YES

F291 UNIQUE predicate NO

F301 CORRESPONDING in query expressions NO

F302 INTERSECT table operator YES

F302-01 INTERSECT DISTINCT table operator YES

F302-02 INTERSECT ALL table operator YES

F304 EXCEPT ALL table operator

F311 Schema definition statement YES Partial sub-feature support

F311-01 CREATE SCHEMA YES

F311-02 CREATE TABLE for persistent base tables YES

F311-03 CREATE VIEW YES

F311-04 CREATE VIEW: WITH CHECK OPTION NO

F311-05 GRANT statement YES

F312 MERGE statement NO

F313 Enhanced MERGE statement NO

F321 User authorization YES

F341 Usage Tables NO

F361 Subprogram support YES

F381 Extended schema manipulation YES

F381-01 ALTER TABLE statement: ALTER COLUMN clause Some limitations on altering
distribution key columns

F381-02 ALTER TABLE statement: ADD CONSTRAINT clause

F381-03 ALTER TABLE statement: DROP CONSTRAINT
clause

F382 Alter column data type YES Some limitations on altering
distribution key columns

F391 Long identifiers YES

F392 Unicode escapes in identifiers NO

F393 Unicode escapes in literals NO

F394 Optional normal form specification NO

F401 Extended joined table YES

F401-01 NATURAL JOIN YES

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
321

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
F401-02 FULL OUTER JOIN YES

F401-04 CROSS JOIN YES

F402 Named column joins for LOBs, arrays, and multisets NO

F403 Partitioned joined tables NO

F411 Time zone specification YES Differences regarding literal
interpretation

F421 National character YES

F431 Read-only scrollable cursors YES Forward scrolling only

01 FETCH with explicit NEXT YES

02 FETCH FIRST NO

03 FETCH LAST YES

04 FETCH PRIOR NO

05 FETCH ABSOLUTE NO

06 FETCH RELATIVE NO

F441 Extended set function support YES

F442 Mixed column references in set functions YES

F451 Character set definition NO

F461 Named character sets NO

F471 Scalar subquery values YES

F481 Expanded NULL predicate YES

F491 Constraint management YES

F501 Features and conformance views YES

F501-01 SQL_FEATURES view YES

F501-02 SQL_SIZING view YES

F501-03 SQL_LANGUAGES view YES

F502 Enhanced documentation tables YES

F502-01 SQL_SIZING_PROFILES view YES

F502-02 SQL_IMPLEMENTATION_INFO view YES

F502-03 SQL_PACKAGES view YES

F521 Assertions NO

F531 Temporary tables YES Non-standard form

F555 Enhanced seconds precision YES

F561 Full value expressions YES

F571 Truth value tests YES

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
322

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
F591 Derived tables YES

F611 Indicator data types YES

F641 Row and table constructors NO

F651 Catalog name qualifiers YES

F661 Simple tables NO

F671 Subqueries in CHECK NO Intentionally ommitted

F672 Retrospective check constraints YES

F690 Collation support NO

F692 Enhanced collation support NO

F693 SQL-session and client module collations NO

F695 Translation support NO

F696 Additional translation documentation NO

F701 Referential update actions NO

F711 ALTER domain YES

F721 Deferrable constraints NO

F731 INSERT column privileges NO

F741 Referential MATCH types NO No partial match

F751 View CHECK enhancements NO

F761 Session management YES

F762 CURRENT_CATALOG NO

F763 CURRENT_SCHEMA NO

F771 Connection management YES

F781 Self-referencing operations YES

F791 Insensitive cursors YES

F801 Full set function YES

F812 Basic flagging NO

F813 Extended flagging NO

F831 Full cursor update NO

F841 LIKE_REGEX predicate NO Non-standard syntax for regex

F842 OCCURENCES_REGEX function NO

F843 POSITION_REGEX function NO

F844 SUBSTRING_REGEX function NO

F845 TRANSLATE_REGEX function NO

F846 Octet support in regular expression operators NO

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
323

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
F847 Nonconstant regular expressions NO

F850 Top-level ORDER BY clause in query expression YES

F851 Top-level ORDER BY clause in subqueries NO

F852 Top-level ORDER BY clause in views NO

F855 Nested ORDER BY clause in query expression NO

F856 Nested FETCH FIRST clause in query expression NO

F857 Top-level FETCH FIRST clause in query expression NO

F858 FETCH FIRST clause in subqueries NO

F859 Top-level FETCH FIRST clause in views NO

F860 FETCH FIRST ROW count in FETCH FIRST clause NO

F861 Top-level RESULT OFFSET clause in query
expression

NO

F862 RESULT OFFSET clause in subqueries NO

F863 Nested RESULT OFFSET clause in query expression NO

F864 Top-level RESULT OFFSET clause in views NO

F865 OFFSET ROW count in RESULT OFFSET clause NO

S011 Distinct data types NO

S023 Basic structured types NO

S024 Enhanced structured types NO

S025 Final structured types NO

S026 Self-referencing structured types NO

S027 Create method by specific method name NO

S028 Permutable UDT options list NO

S041 Basic reference types NO

S043 Enhanced reference types NO

S051 Create table of type NO

S071 SQL paths in function and type name resolution YES

S091 Basic array support NO Greenplum has arrays, but is
not fully standards compliant

S091-01 Arrays of built-in data types NO Partially compliant

S091-02 Arrays of distinct types NO

S091-03 Array expressions NO

S092 Arrays of user-defined types NO

S094 Arrays of reference types NO

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
324

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
S095 Array constructors by query NO

S096 Optional array bounds NO

S097 Array element assignment NO

S098 ARRAY_AGG Partially Supported: Using array_agg
without a window specification;
for example
SELECT array_agg(x)
FROM ...

SELECT array_agg
(x order by y) FROM ...

Not supported: Using array_agg
as an aggregate derived window
function; for example
SELECT array_agg(x) over
(ORDER BY y) FROM ...

SELECT array_agg(x order
by y) over
(PARTITION BY z) FROM ...

SELECT array_agg(x order
by y) over (ORDER BY z)
FROM ...

S111 ONLY in query expressions YES

S151 Type predicate NO

S161 Subtype treatment NO

S162 Subtype treatment for references NO

S201 SQL-invoked routines on arrays NO Functions can be passed
Greenplum array types

S202 SQL-invoked routines on multisets NO

S211 User-defined cast functions YES

S231 Structured type locators NO

S232 Array locators NO

S233 Multiset locators NO

S241 Transform functions NO

S242 Alter transform statement NO

S251 User-defined orderings NO

S261 Specific type method NO

S271 Basic multiset support NO

S272 Multisets of user-defined types NO

S274 Multisets of reference types NO

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
325

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
S275 Advanced multiset support NO

S281 Nested collection types NO

S291 Unique constraint on entire row NO

S301 Enhanced UNNEST NO

S401 Distinct types based on array types NO

S402 Distinct types based on distinct types NO

S403 MAX_CARDINALITY NO

S404 TRIM_ARRAY NO

T011 Timestamp in Information Schema NO

T021 BINARY and VARBINARY data types NO

T022 Advanced support for BINARY and VARBINARY data
types

NO

T023 Compound binary literal NO

T024 Spaces in binary literals NO

T031 BOOLEAN data type YES

T041 Basic LOB data type support NO

T042 Extended LOB data type support NO

T043 Multiplier T NO

T044 Multiplier P NO

T051 Row types NO

T052 MAX and MIN for row types NO

T053 Explicit aliases for all-fields reference NO

T061 UCS support NO

T071 BIGINT data type YES

T101 Enhanced nullability determiniation NO

T111 Updatable joins, unions, and columns NO

T121 WITH (excluding RECURSIVE) in query expression NO

T122 WITH (excluding RECURSIVE) in subquery NO

T131 Recursive query NO

T132 Recursive query in subquery NO

T141 SIMILAR predicate YES

T151 DISTINCT predicate YES

T152 DISTINCT predicate with negation NO

T171 LIKE clause in table definition YES

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
326

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
T172 AS subquery clause in table definition YES

T173 Extended LIKE clause in table definition YES

T174 Identity columns NO

T175 Generated columns NO

T176 Sequence generator support NO

T177 Sequence generator support: simple restart option NO

T178 Identity columns: simple restart option NO

T191 Referential action RESTRICT NO

T201 Comparable data types for referential constraints NO

T211 Basic trigger capability NO

T211-01 Triggers activated on UPDATE, INSERT, or DELETE of
one base table

NO

T211-02 BEFORE triggers NO

T211-03 AFTER triggers NO

T211-04 FOR EACH ROW triggers NO

T211-05 Ability to specify a search condition that must be true
before the trigger is invoked

NO

T211-06 Support for run-time rules for the interaction of
triggers and constraints

NO

T211-07 TRIGGER privilege YES

T211-08 Multiple triggers for the same event are executed in
the order in which they were created in the catalog

NO Intentionally omitted

T212 Enhanced trigger capability NO

T213 INSTEAD OF triggers NO

T231 Sensitive cursors YES

T241 START TRANSACTION statement YES

T251 SET TRANSACTION statement: LOCAL option NO

T261 Chained transactions NO

T271 Savepoints YES

T272 Enhanced savepoint management NO

T281 SELECT privilege with column granularity NO

T285 Enhanced derived column names NO

T301 Functional dependencies NO

T312 OVERLAY function YES

T321 Basic SQL-invoked routines NO Partial support

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
327

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
T321-01 User-defined functions with no overloading YES

T321-02 User-defined stored procedures with no overloading NO

T321-03 Function invocation YES

T321-04 CALL statement NO

T321-05 RETURN statement NO

T321-06 ROUTINES view YES

T321-07 PARAMETERS view YES

T322 Overloading of SQL-invoked functions and
procedures

YES

T323 Explicit security for external routines YES

T324 Explicit security for SQL routines NO

T325 Qualified SQL parameter references NO

T326 Table functions NO

T331 Basic roles NO

T332 Extended roles NO

T351 Bracketed SQL comments (/*...*/ comments) YES

T431 Extended grouping capabilities NO

T432 Nested and concatenated GROUPING SETS NO

T433 Multiargument GROUPING function NO

T434 GROUP BY DISTINCT NO

T441 ABS and MOD functions YES

T461 Symmetric BETWEEN predicate YES

T471 Result sets return value NO

T491 LATERAL derived table NO

T501 Enhanced EXISTS predicate NO

T511 Transaction counts NO

T541 Updatable table references NO

T561 Holdable locators NO

T571 Array-returning external SQL-invoked functions NO

T572 Multiset-returning external SQL-invoked functions NO

T581 Regular expression substring function YES

T591 UNIQUE constraints of possibly null columns YES

T601 Local cursor references NO

T611 Elementary OLAP operations YES

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
328

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
T612 Advanced OLAP operations NO Partially supported

T613 Sampling NO

T614 NTILE function YES

T615 LEAD and LAG functions YES

T616 Null treatment option for LEAD and LAG functions NO

T617 FIRST_VALUE and LAST_VALUE function YES

T618 NTH_VALUE NO Function exists in Greenplum but
not all options are supported

T621 Enhanced numeric functions YES

T631 N predicate with one list element NO

T641 Multiple column assignment NO Some syntax variants supported

T651 SQL-schema statements in SQL routines NO

T652 SQL-dynamic statements in SQL routines NO

T653 SQL-schema statements in external routines NO

T654 SQL-dynamic statements in external routines NO

T655 Cyclically dependent routines NO

M001 Datalinks NO

M002 Datalinks via SQL/CLI NO

M003 Datalinks via Embedded SQL NO

M004 Foreign data support NO

M005 Foreign schema support NO

M006 GetSQLString routine NO

M007 TransmitRequest NO

M009 GetOpts and GetStatistics routines NO

M010 Foreign data wrapper support NO

M011 Datalinks via Ada NO

M012 Datalinks via C NO

M013 Datalinks via COBOL NO

M014 Datalinks via Fortran NO

M015 Datalinks via M NO

M016 Datalinks via Pascal NO

M017 Datalinks via PL/I NO

M018 Foreign data wrapper interface routines in Ada NO

M019 Foreign data wrapper interface routines in C NO

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
329

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
M020 Foreign data wrapper interface routines in COBOL NO

M021 Foreign data wrapper interface routines in Fortran NO

M022 Foreign data wrapper interface routines in MUMPS NO

M023 Foreign data wrapper interface routines in Pascal NO

M024 Foreign data wrapper interface routines in PL/I NO

M030 SQL-server foreign data support NO

M031 Foreign data wrapper general routines NO

X010 XML type YES

X011 Arrays of XML type YES

X012 Multisets of XML type NO

X013 Distinct types of XML type NO

X014 Attributes of XML type NO

X015 Fields of XML type NO

X016 Persistent XML values YES

X020 XMLConcat NO xmlconcat2() supported

X025 XMLCast NO

X030 XMLDocument NO

X031 XMLElement NO

X032 XMLForest NO

X034 XMLAgg YES

X035 XMLAgg: ORDER BY option YES

X036 XMLComment YES

X037 XMLPI NO

X038 XMLText NO

X040 Basic table mapping NO

X041 Basic table mapping: nulls absent NO

X042 Basic table mapping: null as nil NO

X043 Basic table mapping: table as forest NO

X044 Basic table mapping: table as element NO

X045 Basic table mapping: with target namespace NO

X046 Basic table mapping: data mapping NO

X047 Basic table mapping: metadata mapping NO

X048 Basic table mapping: base64 encoding of binary
strings

NO

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
330

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
X049 Basic table mapping: hex encoding of binary strings NO

X051 Advanced table mapping: nulls absent NO

X052 Advanced table mapping: null as nil NO

X053 Advanced table mapping: table as forest NO

X054 Advanced table mapping: table as element NO

X055 Advanced table mapping: target namespace NO

X056 Advanced table mapping: data mapping NO

X057 Advanced table mapping: metadata mapping NO

X058 Advanced table mapping: base64 encoding of binary
strings

NO

X059 Advanced table mapping: hex encoding of binary
strings

NO

X060 XMLParse: Character string input and CONTENT
option

NO xml() supported

X061 XMLParse: Character string input and DOCUMENT
option

NO xml() supported

X065 XMLParse: BLOB input and CONTENT option NO

X066 XMLParse: BLOB input and DOCUMENT option NO

X068 XMLSerialize: BOM NO

X069 XMLSerialize: INDENT NO

X070 XMLSerialize: Character string serialization and
CONTENT option

NO text(xml) supported

X071 XMLSerialize: Character string serialization and
DOCUMENT option

NO text(xml) supported

X072 XMLSerialize: Character string serialization NO text(xml) supported

X073 XMLSerialize: BLOB serialization and CONTENT
option

NO

X074 XMLSerialize: BLOB serialization and DOCUMENT
option

NO

X075 XMLSerialize: BLOB serialization NO

X076 XMLSerialize: VERSION NO

X077 XMLSerialize: explicit ENCODING option NO

X078 XMLSerialize: explicit XML declaration NO

X080 Namespaces in XML publishing NO

X081 Query-level XML namespace declarations NO

X082 XML namespace declarations in DML NO

X083 XML namespace declarations in DDL NO

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
331

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
X084 XML namespace declarations in compound
statements

NO

X085 Predefined namespace prefixes NO

X086 XML namespace declarations in XMLTable NO

X090 XML document predicate NO xml_is_well_formed_document()
supported

X091 XML content predicate NO xml_is_well_formed_content()
supported

X096 XMLExists NO xmlexists() supported

X100 Host language support for XML: CONTENT option NO

X101 Host language support for XML: DOCUMENT option NO

X110 Host language support for XML: VARCHAR mapping NO

X111 Host language support for XML: CLOB mapping NO

X112 Host language support for XML: BLOB mapping NO

X113 Host language support for XML: STRIP
WHITESPACE option

NO

X114 Host language support for XML: PRESERVE
WHITESPACE option

NO

X120 XML parameters in SQL routines YES

X121 XML parameters in external routines YES

X131 Query-level XMLBINARY clause NO

X132 XMLBINARY clause in DML NO

X133 XMLBINARY clause in DDL NO

X134 XMLBINARY clause in compound statements NO

X135 XMLBINARY clause in subqueries NO

X141 IS VALID predicate: data-driven case NO

X142 IS VALID predicate: ACCORDING TO clause NO

X143 IS VALID predicate: ELEMENT clause NO

X144 IS VALID predicate: schema location NO

X145 IS VALID predicate outside check constraints NO

X151 IS VALID predicate with DOCUMENT option NO

X152 IS VALID predicate with CONTENT option NO

X153 IS VALID predicate with SEQUENCE option NO

X155 IS VALID predicate: NAMESPACE without ELEMENT
clause

NO

X157 IS VALID predicate: NO NAMESPACE with
ELEMENT clause

NO

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
332

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
X160 Basic Information Schema for registered XML
Schemas

NO

X161 Advanced Information Schema for registered XML
Schemas

NO

X170 XML null handling options NO

X171 NIL ON NO CONTENT option NO

X181 XML(DOCUMENT(UNTYPED)) type NO

X182 XML(DOCUMENT(ANY)) type NO

X190 XML(SEQUENCE) type NO

X191 XML(DOCUMENT(XMLSCHEMA)) type NO

X192 XML(CONTENT(XMLSCHEMA)) type NO

X200 XMLQuery NO

X201 XMLQuery: RETURNING CONTENT NO

X202 XMLQuery: RETURNING SEQUENCE NO

X203 XMLQuery: passing a context item NO

X204 XMLQuery: initializing an XQuery variable NO

X205 XMLQuery: EMPTY ON EMPTY option NO

X206 XMLQuery: NULL ON EMPTY option NO

X211 XML 1.1 support NO

X221 XML passing mechanism BY VALUE NO

X222 XML passing mechanism BY REF NO

X231 XML(CONTENT(UNTYPED)) type NO

X232 XML(CONTENT(ANY)) type NO

X241 RETURNING CONTENT in XML publishing NO

X242 RETURNING SEQUENCE in XML publishing NO

X251 Persistent XML values of
XML(DOCUMENT(UNTYPED)) type

NO

X252 Persistent XML values of XML(DOCUMENT(ANY))
type

NO

X253 Persistent XML values of
XML(CONTENT(UNTYPED)) type

NO

X254 Persistent XML values of XML(CONTENT(ANY)) type NO

X255 Persistent XML values of XML(SEQUENCE) type NO

X256 Persistent XML values of
XML(DOCUMENT(XMLSCHEMA)) type

NO

X257 Persistent XML values of
XML(CONTENT(XMLSCHEMA)) type

NO

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
333

Greenplum Database Reference Guide 4.2– Chapter 2: SQL 2008 Optional Feature Compliance
X260 XML type: ELEMENT clause NO

X261 XML type: NAMESPACE without ELEMENT clause NO

X263 XML type: NO NAMESPACE with ELEMENT clause NO

X264 XML type: schema location NO

X271 XMLValidate: data-driven case NO

X272 XMLValidate: ACCORDING TO clause NO

X273 XMLValidate: ELEMENT clause NO

X274 XMLValidate: schema location NO

X281 XMLValidate: with DOCUMENT option NO

X282 XMLValidate with CONTENT option NO

X283 XMLValidate with SEQUENCE option NO

X284 XMLValidate NAMESPACE without ELEMENT clause NO

X286 XMLValidate: NO NAMESPACE with ELEMENT
clause

NO

X300 XMLTable NO

X301 XMLTable: derived column list option NO

X302 XMLTable: ordinality column option NO

X303 XMLTable: column default option NO

X304 XMLTable: passing a context item NO

X305 XMLTable: initializing an XQuery variable NO

X400 Name and identifier mapping NO

Table 2.1 SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments
334

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
3. System Catalog Reference

This reference describes the Greenplum Database system catalog tables and views.
System tables prefixed with gp_ relate to the parallel features of Greenplum Database.
Tables prefixed with pg_ are either standard PostgreSQL system catalog tables
supported in Greenplum Database, or are related to features Greenplum that provides
to enhance PostgreSQL for data warehousing workloads. Note that the global system
catalog for Greenplum Database resides on the master instance.

System Tables
• gp_configuration (Deprecated. See gp_segment_configuration.)
• gp_configuration_history
• gp_db_interfaces
• gp_distribution_policy
• gp_fastsequence
• gp_fault_strategy
• gp_global_sequence
• gp_id
• gp_interfaces
• gp_master_mirroring
• gp_persistent_database_node
• gp_persistent_filespace_node
• gp_persistent_relation_node
• gp_persistent_tablespace_node
• gp_relation_node
• gp_san_configuration
• gp_segment_configuration
• gp_version_at_initdb
• gpexpand.status
• gpexpand.status_detail
• pg_aggregate
• pg_am
• pg_amop
• pg_amproc
• pg_appendonly
335

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
• pg_appendonly_alter_column (not supported in 4.2)
• pg_attrdef
• pg_attribute
• pg_auth_members
• pg_authid
• pg_autovacuum
• pg_cast
• pg_class
• pg_constraint
• pg_conversion
• pg_database
• pg_depend
• pg_description
• pg_exttable
• pg_filespace
• pg_filespace_entry
• pg_foreign_data_wrapper (not supported in 4.2)
• pg_foreign_server (not supported in 4.2)
• pg_foreign_table (not supported in 4.2)
• pg_index
• pg_inherits
• pg_language
• pg_largeobject
• pg_listener
• pg_namespace
• pg_opclass
• pg_operator
• pg_partition
• pg_partition_rule
• pg_pltemplate
• pg_proc
• pg_resourcetype
• pg_resqueue
• pg_resqueuecapability
• pg_rewrite
336

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
• pg_shdepend
• pg_shdescription
• pg_stat_last_operation
• pg_stat_last_shoperation
• pg_statistic
• pg_tablespace
• pg_trigger
• pg_type
• pg_user_mapping (not supported in 4.2)
• pg_window

System Views

Greenplum Database provides the following system views not available in
PostgreSQL.

• gp_distributed_log
• gp_distributed_xacts
• gp_pgdatabase
• gp_resqueue_status
• gp_transaction_log
• gpexpand.expansion_progress
• pg_max_external_files (shows number of external table files allowed per segment

host when using the file protocol)
• pg_partition_columns
• pg_partition_templates
• pg_partitions
• pg_resqueue_attributes
• pg_resqueue_status (Deprecated. Use gp_toolkit.gp_resqueue_status.)
• pg_stat_resqueues
• pg_user_mappings (not supported)
For more information about the standard system views supported in PostgreSQL and
Greenplum Database, see the following sections of the PostgreSQL documentation:

• System Views
• Statistics Collector Views
• The Information Schema
337

http://www.postgresql.org/docs/8.2/static/views-overview.html
http://www.postgresql.org/docs/8.2/static/monitoring-stats.html#MONITORING-STATS-VIEWS-TABLE
http://www.postgresql.org/docs/8.2/static/information-schema.html

gp_configuration_history 338

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_configuration_history
The gp_configuration_history table contains information about system changes related to fault
detection and recovery operations. The fts_probe process logs data to this table, as do certain
related management utilities such as gpcheck, gprecoverseg, and gpinitsystem. For example, when
you add a new segment and mirror segment to the system, records for these events are logged to
gp_configuration_history.

The event descriptions stored in this table may be helpful for troubleshooting serious system issues in
collaboration with Greenplum support technicians.

This table is populated only on the master. This table is defined in the pg_global tablespace, meaning it
is globally shared across all databases in the system.

Table 3.1 pg_catalog.gp_configuration_history

column type references description

Timestamp for the event recorded.

gp_segment_config
uration.dbid

System-assigned ID. The unique
identifier of a segment (or master)
instance.

Text description of the event.

For information about gprecoverseg, see the Greenplum Database Utility Guide.

time timestamp with time
zone

dbid smallint

desc text

gp_distributed_log 339

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_distributed_log
The gp_distributed_log view contains status information about distributed transactions and their
associated local transactions. A distributed transaction is a transaction that involves modifying data on
the segment instances. Greenplum’s distributed transaction manager ensures that the segments stay in
synch. This view allows you to see the status of distributed transactions.

Table 3.2 pg_catalog.gp_distributed_log

column type references description

gp_segment_configurati
on.content

The content id if the segment. The
master is always -1 (no content).

gp_segment_configurati
on.dbid

The unique id of the segment
instance.

The global transaction id.

A system assigned ID for a
distributed transaction.

The status of the distributed
transaction (Committed or Aborted).

The local transaction ID.

segment_id smallint

dbid small_int

distributed_xid xid

distributed_id text

status text

local_transaction xid

gp_distributed_xacts 340

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_distributed_xacts
The gp_distributed_xacts view contains information about Greenplum Database distributed
transactions. A distributed transaction is a transaction that involves modifying data on the segment
instances. Greenplum’s distributed transaction manager ensures that the segments stay in synch. This
view allows you to see the currently active sessions and their associated distributed transactions.

Table 3.3 pg_catalog.gp_distributed_xacts

column type references description

The transaction ID used by the
distributed transaction across the
Greenplum Database array.

The distributed transaction identifier.
It has 2 parts — a unique timestamp
and the distributed transaction
number.

The current state of this session with
regards to distributed transactions.

The ID number of the Greenplum
Database session associated with
this transaction.

The minimum distributed transaction
number found among all open
transactions when this transaction
was started. It is used for MVCC
distributed snapshot purposes.

distributed_xid xid

distributed_id text

state text

gp_session_id int

xmin_distributed_snapshot xid

gp_distribution_policy 341

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_distribution_policy
The gp_distribution_policy table contains information about Greenplum Database tables and their
policy for distributing table data across the segments. This table is populated only on the master. This
table is not globally shared, meaning each database has its own copy of this table.

Table 3.4 pg_catalog.gp_distribution_policy

column type references description

pg_class.oid The table object identifier (OID).

pg_attribute.attnum The column number(s) of the
distribution column(s).

localoid oid

attrnums smallint[]

gpexpand.expansion_progress 342

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gpexpand.expansion_progress
The gpexpand.expansion_progress view contains information about the status of a system expansion
operation. The view provides calculations of the estimated rate of table redistribution and estimated
time to completion.

Status for specific tables involved in the expansion is stored in gpexpand.status_detail..

Table 3.5 gpexpand.expansion_progress

column type references description

Name for the data field provided
Includes:

Bytes Left
Bytes Done
Estimated Expansion Rate
Estimated Time to Completion
Tables Expanded
Tables Left

The value for the progress data.
For example:

Estimated Expansion Rate
- 9.75667095996092 MB/s

name text

value text

gpexpand.status 343

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gpexpand.status
The gpexpand.status table contains information about the status of a system expansion operation.
Status for specific tables involved in the expansion is stored in gpexpand.status_detail.

In a normal expansion operation it is not necessary to modify the data stored in this table. .

Table 3.6 gpexpand.status

column type references description

Tracks the status of an expansion
operation. Valid values are:
SETUP

SETUP DONE
EXPANSION STARTED

EXPANSION STOPPED
COMPLETED

Timestamp of the last change in
status.

status text

updated timestamp with time
zone

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
gpexpand.status_detail
The gpexpand.status_detail table contains information about the status of tables involved in a system
expansion operation. You can query this table to determine the status of tables being expanded, or to
view the start and end time for completed tables.

This table also stores related information about the table such as the oid, disk size, and normal
distribution policy and key. Overall status information for the expansion is stored in gpexpand.status.

In a normal expansion operation it is not necessary to modify the data stored in this table. .

Table 3.7 gpexpand.status_detail

column type references description

dbname text Name of the database to which the
table belongs.

fq_name text Fully qualified name of the table.

schema_oid oid OID for the schema of the
database to which the table
belongs.

table_oid oid OID of the table.

distribution_policy smallint() Array of column IDs for the
distribution key of the table.

distribution_policy_names text Column names for the hash
distribution key.

distribution_policy_coloids text Column IDs for the distribution
keys of the table.

storage_options text Not enabled in this release. Do not
update this field.

rank int Rank determines the order in
which tables are expanded. The
expansion utility will sort on rank
and expand the lowest-ranking
tables first.

status text Status of expansion for this table.
Valid values are:
NOT STARTED
IN PROGRESS
FINISHED

last updated timestamp with time
zone

Timestamp of the last change in
status for this table.

expansion started timestamp with time
zone

Timestamp for the start of the
expansion of this table. This field is
only populated after a table is
successfully expanded.
gpexpand.status_detail 344

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
expansion finished timestamp with time
zone

Timestamp for the completion of
expansion of this table.

source bytes The size of disk space associated
with the source table. Due to table
bloat in heap tables and differing
numbers of segments after
expansion, it is not expected that
the final number of bytes will equal
the source number. This
information is tracked to help
provide progress measurement to
aid in duration estimation for the
end-to-end expansion operation.

Table 3.7 gpexpand.status_detail

column type references description
gpexpand.status_detail 345

gp_fastsequence 346

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_fastsequence
The gp_fastsequence table contains information about indexes on append-only column-oriented tables.
It is used to track the maximum row number used by a file segment of an append-only column-oriented
table.

Table 3.8 pg_catalog.gp_fastsequence

column type references description

pg_class.oid Object id of the
pg_aoseg.pg_aocsseg_* table
used to track append-only file
segments.

Object modifier.

The last sequence number used
by the object.

objid oid

objmod bigint

last_sequence bigint

gp_fault_strategy 347

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_fault_strategy
The gp_fault_strategy table specifies the fault action.

Table 3.9 pg_catalog.gp_fault_strategy

column type references description

The mirror failover action to take
when a segment failure occurs:
n = nothing.
f = file-based failover.
s = SAN-based failover.

fault_strategy char

gp_global_sequence 348

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_global_sequence
The gp_global_sequence table contains the log sequence number position in the transaction log, which
is used by the file replication process to determine the file blocks to replicate from a primary to a
mirror segment.

Table 3.10 pg_catalog.gp_global_sequence

column type references description

log sequence number position in
the transaction log

sequence_num bigint

gp_id 349

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_id
The gp_id system catalog table identifies the Greenplum Database system name and number of
segments for the system. It also has local values for the particular database instance (segment or
master) on which the table resides. This table is defined in the pg_global tablespace, meaning it is
globally shared across all databases in the system.

Table 3.11 pg_catalog.gp_id

column type references description

The name of this Greenplum
Database system.

The number of segments in the
Greenplum Database system.

The unique identifier of this segment
(or master) instance.

The ID for the portion of data on this
segment instance. A primary and its
mirror will have the same content ID.
For a segment the value is from 0-N,
where N is the number of segments
in Greenplum Database.
For the master, the value is -1.

gpname name

numsegments integer

dbid integer

content integer

gp_interfaces 350

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_interfaces
The gp_interfaces table contains information about network interfaces on segment hosts. This
information, joined with data from gp_db_interfaces, is used by the system to optimize the usage of
available network interfaces for various purposes, including fault detection.

Table 3.12 gp_interfaces

column type references description

System-assigned ID. The unique
identifier of a network interface.

Hostname address for the
segment host containing the
network interface. Can be a
numeric IP address or a hostname.

Status for the network interface. A
value of 0 indicates that the
interface is unavailable.

interfaceid smallint

address name

status smallint

gp_master_mirroring 351

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_master_mirroring
The gp_master_mirroring table contains state information about the standby master host and its
associated write-ahead log (WAL) replication process. If this synchronization process (gpsyncagent)
fails on the standby master, it may not always be noticeable to users of the system. This catalog is a
place where Greenplum Database administrators can check to see if the standby master is current and
fully synchronized.

Table 3.13 pg_catalog.gp_master_mirroring

column type references description

The current state of the log
replication process between the
master and standby master - logs
are either ‘Synchronized’ or ‘Not
Synchronized’

If not synchronized, this column
will have information about the
cause of the error.

This contains the timestamp of the
last time the master sent its logs to
the standby master.

If not synchronized, this column
will have the error message from
the failed synchronization attempt.

summary_state text

detail_state text

log_time timestampz

error_message text

gp_persistent_database_node 352

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_persistent_database_node
The gp_persistent_database_node table keeps track of the status of file system objects in relation to
the transaction status of database objects. This information is used to make sure the state of the system
catalogs and the file system files persisted to disk are synchronized. This information is used by the
primary to mirror file replication process.

Table 3.14 pg_catalog.gp_persistent_database_node

column type references description

pg_tablespace.oid Table space object id.

pg_database.oid Database object id.

0 - free
1 - create pending
2 - created
3 - drop pending
4 - aborting create
5 - “Just in Time” create pending
6 - bulk load create pending

0 - none
1 - not mirrored
2 - mirror create pending
3 - mirrorcreated
4 - mirror down before create
5 - mirror down during create
6 - mirror drop pending
7 - only mirror drop remains

Global transaction id.

Log sequence number position in
the transaction log for a file block.

Used by Greenplum Database to
internally manage persistent
representations of file system
objects.

tablespace_oid oid

database_oid oid

persistent_state smallint

mirror_existence_state smallint

parent_xid integer

persistent_serial_num bigint

previous_free_tid tid

gp_persistent_filespace_node 353

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_persistent_filespace_node
The gp_persistent_filespace_node table keeps track of the status of file system objects in relation to
the transaction status of filespace objects. This information is used to make sure the state of the system
catalogs and the file system files persisted to disk are synchronized. This information is used by the
primary to mirror file replication process.

Table 3.15 pg_catalog.gp_persistent_filespace_node

column type references description

pg_filespace.oid object id of the filespace

primary segment id

primary filesystem location

mirror segment id

mirror filesystem location

0 - free
1 - create pending
2 - created
3 - drop pending
4 - aborting create
5 - “Just in Time” create pending
6 - bulk load create pending

0 - none
1 - not mirrored
2 - mirror create pending
3 - mirrorcreated
4 - mirror down before create
5 - mirror down during create
6 - mirror drop pending
7 - only mirror drop remains

Global transaction id.

Log sequence number position in
the transaction log for a file block.

Used by Greenplum Database to
internally manage persistent
representations of file system
objects.

filespace_oid oid

db_id_1 smallint

location_1 text

db_id_2 smallint

location_2 text

persistent_state smallint

mirror_existence_state smallint

parent_xid integer

persistent_serial_num bigint

previous_free_tid tid

gp_persistent_relation_node 354

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_persistent_relation_node
The gp_persistent_relation_node table table keeps track of the status of file system objects in relation
to the transaction status of relation objects (tables, view, indexes, and so on). This information is used
to make sure the state of the system catalogs and the file system files persisted to disk are
synchronized. This information is used by the primary to mirror file replication process.

Table 3.16 pg_catalog.gp_persistent_relation_node

column type references description

pg_tablespace.oid Tablespace object id

pg_database.oid Database object id

pg_class.relfilenode The object id of the relation file
node.

For append-only tables, the
append-only segment file number.

Whether the relation is heap
storage or append-only storage.

0 - free
1 - create pending
2 - created
3 - drop pending
4 - aborting create
5 - “Just in Time” create pending
6 - bulk load create pending

0 - none
1 - not mirrored
2 - mirror create pending
3 - mirrorcreated
4 - mirror down before create
5 - mirror down during create
6 - mirror drop pending
7 - only mirror drop remains

Global transaction id.

Log sequence number position in
the transaction log for a file block.

Used by Greenplum Database to
internally manage persistent
representations of file system
objects.

tablespace_oid oid

database_oid oid

relfilenode_oid oid

segment_file_num integer

relation_storage_manager smallint

persistent_state smallint

mirror_existence_state smallint

parent_xid integer

persistent_serial_num bigint

previous_free_tid tid

gp_persistent_tablespace_node 355

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_persistent_tablespace_node
The gp_persistent_tablespace_node table keeps track of the status of file system objects in relation to
the transaction status of tablespace objects. This information is used to make sure the state of the
system catalogs and the file system files persisted to disk are synchronized. This information is used by
the primary to mirror file replication process

Table 3.17 pg_catalog.gp_persistent_tablespace_node

column type references description

pg_filespace.oid Filespace object id

pg_tablespace.oid Tablespace object id

0 - free
1 - create pending
2 - created
3 - drop pending
4 - aborting create
5 - “Just in Time” create pending
6 - bulk load create pending

0 - none
1 - not mirrored
2 - mirror create pending
3 - mirrorcreated
4 - mirror down before create
5 - mirror down during create
6 - mirror drop pending
7 - only mirror drop remains

Global transaction id.

Log sequence number position in
the transaction log for a file block.

Used by Greenplum Database to
internally manage persistent
representations of file system
objects.

filespace_oid oid

tablespace_oid oid

persistent_state smallint

mirror_existence_state smallint

parent_xid integer

persistent_serial_num bigint

previous_free_tid tid

gp_pgdatabase 356

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_pgdatabase
The gp_pgdatabase view shows status information about the Greenplum segment instances and
whether they are acting as the mirror or the primary. This view is used internally by the Greenplum
fault detection and recovery utilities to determine failed segments.

Table 3.18 pg_catalog.gp_pgdatabase

column type references description

gp_segment_configuration.dbid System-assigned ID. The unique
identifier of a segment (or master)
instance.

gp_segment_configuration.role Whether or not this instance is active.
Is it currently acting as the primary
segment (as opposed to the mirror).

gp_segment_configuration.cont
ent

The ID for the portion of data on an
instance. A primary segment
instance and its mirror will have the
same content ID.
For a segment the value is from 0-N,
where N is the number of segments
in Greenplum Database.
For the master, the value is -1.

gp_segment_configuration.prefe
rred_role

Whether or not this instance was
defined as the primary (as opposed
to the mirror) at the time the system
was initialized.

dbid smallint

isprimary boolean

content smallint

definedprimary boolean

gp_relation_node 357

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_relation_node
The gp_relation_node table contains information about the file system objects for a relation (table,
view, index, and so on).

Table 3.19 pg_catalog.gp_relation_node

column type references description

pg_class.relfilenode The object id of the relation file
node.

For append-only tables, the
append-only segment file number.

Used by Greenplum Database to
internally manage persistent
representations of file system
objects.

Log sequence number position in
the transaction log for a file block.

relfilenode_oid oid

segment_file_num integer

persistent_tid tid

persistent_serial_num bigint

gp_resqueue_status 358

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_resqueue_status
The gp_toolkit.gp_resqueue_status view allows administrators to see status and activity for a workload
management resource queue. It shows how many queries are waiting to run and how many queries are
currently active in the system from a particular resource queue.

Table 3.1 gp_toolkit.gp_resqueue_status

column type references description

gp_toolkit.gp_resqueue_
queueid

The ID of the resource queue.

gp_toolkit.gp_resqueue_
rsqname

The name of the resource queue.

gp_toolkit.gp_resqueue_
rsqcountlimit

The active query threshold of the
resource queue. A value of -1 means
no limit.

gp_toolkit.gp_resqueue_
rsqcountvalue

The number of active query slots
currently being used in the resource
queue.

gp_toolkit.gp_resqueue_
rsqcostlimit

The query cost threshold of the
resource queue. A value of -1 means
no limit.

gp_toolkit.gp_resqueue_
rsqcostvalue

The total cost of all statements
currently in the resource queue.

gp_toolkit.gp_resqueue_
rsqmemorylimit

The memory limit for the resource
queue.

gp_toolkit.gp_resqueue_
rsqmemoryvalue

The total memory used by all
statements currently in the resource
queue.

gp_toolkit.gp_resqueue_
rsqwaiter

The number of statements currently
waiting in the resource queue.

gp_toolkit.gp_resqueue_
rsqholders

The number of statements currently
running on the system from this
resource queue.

queueid oid

rsqname name

rsqcountlimit real

rsqcountvalue real

rsqcostlimit real

rsqcostvalue real

rsqmemorylimit real

rsqmemoryvalue real

rsqwaiters integer

rsqholders integer

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
gp_san_configuration
The gp_san_configuration table contains mount-point information for SAN failover.

Table 3.2 pg_catalog.gp_san_configuration

column type references description

mountid smallint A value that identifies the
mountpoint for the primary and
mirror hosts. This is the primary
key which is referred to by the
value that appears in the
san_mounts structure in
gp_segment_configuration.

active_host char The current active host. p
indidcates primary, and m indicates
mirror.

san_type char The type of shared storage in use.
n indidcates NFS, and e indicates
EMC SAN.

primary_host text The name of the primary host
system

primary_mountpoint text The mount point for the primary
host.

primary_device text A string specifying the device to
mount on the primary mountpoint.
For NFS, this string is similar to:
nfs-server:/exported/fs.
For EMC this is a larger string that
includes the WWN for the storage
processor, the storage-processor
IP, and the storage-group name.

The primary_device field is
identical to the mirror_device
field.

mirror_host text The name or the mirror/backup
host system.
gp_san_configuration 359

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
mirror_mountpoint text The mount point for the
mirror/backup host.

mirror_device text A string specifying the device to
mount on the mirror mountpoint.
For NFS, this string is similar to:
nfs-server:/exported/fs.
For EMC this is a larger string that
includes the WWN for the storage
processor, the storage-processor
IP, and the storage-group name.

The mirror_device field is
identical to the primary_device
field.

Table 3.2 pg_catalog.gp_san_configuration

column type references description
gp_san_configuration 360

gp_segment_configuration 361

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_segment_configuration
The gp_segment_configuration table contains information about mirroring and segment configuration.

Table 3.3 pg_catalog.gp_segment_configuration

column type references description

The unique identifier of a segment
(or master) instance.

The content identifier for a
segment instance. A primary
segment instance and its
corresponding mirror will always
have the same content identifier.
For a segment the value is from
0-N, where N is the number of
primary segments in the system.
For the master, the value is always
-1.

The role that a segment is
currently running as. Values are p
(primary) or m (mirror).

The role that a segment was
originally assigned at initialization
time. Values are p (primary) or m
(mirror).

The synchronization status of a
segment with its mirror copy.
Values are s (synchronized), c
(change logging), or r (resyncing).

The fault status of a segment.
Values are u (up) or d (down).

The TCP port the database server
listener process is using.

The hostname of a segment host.

The hostname used to access a
particular segment on a segment
host. This value may be the same
as hostname in systems
upgraded from 3.x or on systems
that do not have per-interface
hostnames configured.

The TCP port the file block
replication process is using to keep
primary and mirror segments
synchronized.

gp_san_configurati
on.oid

An array of references to the
gp_san_configuration table. Only
used on systems that were
initialized using sharred storage.

dbid smallint

content smallint

role char

preferred_role char

mode char

status char

port integer

hostname text

address text

replication_port integer

san_mounts int2vector

gp_transaction_log 362

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_transaction_log
The gp_transaction_log view contains status information about transactions local to a particular
segment. This view allows you to see the status of local transactions.

Table 3.4 pg_catalog.gp_transaction_log

column type references description

gp_segment_configurati
on.content

The content id if the segment. The
master is always -1 (no content).

gp_segment_configurati
on.dbid

The unique id of the segment
instance.

The local transaction ID.

The status of the local transaction
(Committed or Aborted).

segment_id smallint

dbid smallint

transaction xid

status text

gp_version_at_initdb 363

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

gp_version_at_initdb
The gp_version_at_initdb table is populated on the master and each segment in the Greenplum
Database system. It identifies the version of Greenplum Database used when the system was first
initialized. This table is defined in the pg_global tablespace, meaning it is globally shared across all
databases in the system.

Table 3.5 pg_catalog.gp_version

column type references description

Schema version number.

Product version number.

schemaversion integer

productversion text

pg_aggregate 364

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_aggregate
The pg_aggregate table stores information about aggregate functions. An aggregate function is a
function that operates on a set of values (typically one column from each row that matches a query
condition) and returns a single value computed from all these values. Typical aggregate functions are
sum, count, and max. Each entry in pg_aggregate is an extension of an entry in pg_proc. The pg_proc
entry carries the aggregate’s name, input and output data types, and other information that is similar to
ordinary functions.

Table 3.6 pg_catalog.pg_aggregate

column type references description

pg_proc.oid Aggregate function OID

pg_proc.oid Transition function OID

Preliminary function OID (zero if
none)

pg_proc.oid Final function OID (zero if none)

The initial value of the transition
state. This is a text field containing
the initial value in its external string
representation. If this field is NULL,
the transition state value starts out
NULL

pg_proc.oid The OID in pg_proc of the inverse
function of aggtransfn

pg_proc.oid The OID in pg_proc of the inverse
function of aggprelimfn

If true, the aggregate is defined as
ORDERED.

pg_operator.oid Associated sort operator OID (zero if
none)

pg_type.oid Data type of the aggregate function’s
internal transition (state) data

aggfnoid regproc

aggtransfn regproc

aggprelimfn regproc

aggfinalfn regproc

agginitval text

agginvtransfn regproc

agginvprelimfn regproc

aggordered Boolean

aggsortop oid

aggtranstype oid

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
pg_am
The pg_am table stores information about index access methods. There is one row for each index
access method supported by the system.

Table 3.7 pg_catalog.pg_am

column type references description

amname name Name of the access method

amstrategies int2 Number of operator strategies for this
access method

amsupport int2 Number of support routines for this
access method

amorderstrategy int2 Zero if the index offers no sort order,
otherwise the strategy number of the
strategy operator that describes the
sort order

amcanunique boolean Does the access method support
unique indexes?

amcanmulticol boolean Does the access method support
multicolumn indexes?

amoptionalkey boolean Does the access method support a
scan without any constraint for the
first index column?

amindexnulls boolean Does the access method support null
index entries?

amstorage boolean Can index storage data type differ
from column data type?

amclusterable boolean Can an index of this type be
clustered on?

aminsert regproc pg_proc.oid “Insert this tuple” function

ambeginscan regproc pg_proc.oid “Start new scan” function

amgettuple regproc pg_proc.oid “Next valid tuple” function

amgetmulti regproc pg_proc.oid “Fetch multiple tuples” function

amrescan regproc pg_proc.oid “Restart this scan” function

amendscan regproc pg_proc.oid “End this scan” function

ammarkpos regproc pg_proc.oid “Mark current scan position” function

amrestrpos regproc pg_proc.oid “Restore marked scan position”
function

ambuild regproc pg_proc.oid “Build new index” function

ambulkdelete regproc pg_proc.oid Bulk-delete function

amvacuumcleanup regproc pg_proc.oid Post-VACUUM cleanup function
pg_am 365

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
amcostestimate regproc pg_proc.oid Function to estimate cost of an index
scan

amoptions regproc pg_proc.oid Function to parse and validate
reloptions for an index

Table 3.7 pg_catalog.pg_am

column type references description
pg_am 366

pg_amop 367

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_amop
The pg_amop table stores information about operators associated with index access method operator
classes. There is one row for each operator that is a member of an operator class.

Table 3.8 pg_catalog.pg_amop

column type references description

pg_opclass.oid The index operator class this entry is
for

pg_type.oid Subtype to distinguish multiple
entries for one strategy; zero for
default

Operator strategy number

Index hit must be rechecked

pg_operator.oid OID of the operator

amopclaid oid

amopsubtype oid

amopstrategy int2

amopreqcheck boolean

amopopr oid

pg_amproc 368

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_amproc
The pg_amproc table stores information about support procedures associated with index access
method operator classes. There is one row for each support procedure belonging to an operator class.

Table 3.9 pg_catalog.pg_amproc

column type references description

pg_opclass.oid The index operator class this entry is
for

pg_type.oid Subtype, if cross-type routine, else
zero

Support procedure number

pg_proc.oid OID of the procedure

ì

amopclaid oid

amprocsubtype oid

amprocnum int2

amproc regproc

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
pg_appendonly
The pg_appendonly table contains information about the storage options and other characteristics of
append-only tables. This table is populated only on the master.

Table 3.10 pg_catalog.pg_appendonly

column type references description

relid oid The table object identifier (OID) of
the compressed table.

blocksize integer Block size used for compression of
append-only tables. Valid values
are 8K - 2M. Default is 32K.

safefswritesize integer Minimum size for safe write
operations to append-only tables in
a non-mature file system.
Commonly set to a multiple of the
extent size of the file system; for
example, Linux ext3 is 4096 bytes,
so a value of 32768 is commonly
used.

majorversion smallint The major version number of the
pg_appendonly table.

minorversion smallint The minor version number of the
pg_appendonly table.

checksum boolean A checksum value that is stored to
compare the state of a block of
data at compression time and at
scan time to ensure data integrity.
This data is stored only if
gp_appendonly_verify_bloc
k_checksums is enabled (this
parameter is disabled by default to
optimize performance).

compresstype text Type of compression used to
compress append-only tables.
Valid values are zlib (gzip
compression) and quicklz.

compresslevel smallint The compression level, with
compression ratio increasing from
1 to 9. When quicklz is specified
for compresstype, valid values are
1 or 3. With zlib specified, valid
values are 1-9.

columnstore boolean 1 for column-oriented storage, 0
for row-oriented storage.

segrelid oid Table on-disk segment file id.

segidxid oid Index on-disk segment file id.
pg_appendonly 369

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
blkdirrelid oid Block used for on-disk
column-oriented table file.

blkdiridxid oid Block used for on-disk
column-oriented index file.

Table 3.10 pg_catalog.pg_appendonly

column type references description
pg_appendonly 370

pg_attrdef 371

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_attrdef
The pg_attrdef table stores column default values. The main information about columns is stored in
pg_attribute. Only columns that explicitly specify a default value (when the table is created or the
column is added) will have an entry here.

Table 3.11 pg_catalog.pg_attrdef

column type references description

pg_class.oid The table this column belongs to

pg_attribute.attnum The number of the column

The internal representation of the
column default value

A human-readable representation of
the default value. This field is
historical, and is best not used.

adrelid oid

adnum int2

adbin text

adsrc text

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
pg_attribute
The pg_attribute table stores information about table columns. There will be exactly one pg_attribute
row for every column in every table in the database. (There will also be attribute entries for indexes,
and all objects that have pg_class entries.) The term attribute is equivalent to column.

Table 3.12 pg_catalog.pg_attribute

column type references description

attrelid oid pg_class.oid The table this column belongs to

attname name The column name

atttypid oid pg_type.oid The data type of this column

attstattarget int4 Controls the level of detail of
statistics accumulated for this column
by ANALYZE. A zero value indicates
that no statistics should be collected.
A negative value says to use the
system default statistics target. The
exact meaning of positive values is
data type-dependent. For scalar data
types, it is both the target number of
“most common values” to collect, and
the target number of histogram bins
to create.

attlen int2 A copy of pg_type.typlen of this
column’s type.

attnum int2 The number of the column. Ordinary
columns are numbered from 1 up.
System columns, such as oid, have
(arbitrary) negative numbers.

attndims int4 Number of dimensions, if the column
is an array type; otherwise 0.
(Presently, the number of dimensions
of an array is not enforced, so any
nonzero value effectively means it is
an array)

attcacheoff int4 Always -1 in storage, but when
loaded into a row descriptor in
memory this may be updated to
cache the offset of the attribute within
the row

atttypmod int4 Records type-specific data supplied
at table creation time (for example,
the maximum length of a varchar
column). It is passed to type-specific
input functions and length coercion
functions. The value will generally be
-1 for types that do not need it.

attbyval boolean A copy of pg_type.typbyval of this
column’s type
pg_attribute 372

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
attstorage char Normally a copy of
pg_type.typstorage of this column’s
type. For TOAST-able data types,
this can be altered after column
creation to control storage policy.

attalign char A copy of pg_type.typalign of this
column’s type

attnotnull boolean This represents a not-null constraint.
It is possible to change this column to
enable or disable the constraint.

atthasdef boolean This column has a default value, in
which case there will be a
corresponding entry in the pg_attrdef
catalog that actually defines the
value

attisdropped boolean This column has been dropped and
is no longer valid. A dropped column
is still physically present in the table,
but is ignored by the parser and so
cannot be accessed via SQL

attislocal boolean This column is defined locally in the
relation. Note that a column may be
locally defined and inherited
simultaneously

attinhcount int4 The number of direct ancestors this
column has. A column with a
nonzero number of ancestors cannot
be dropped nor renamed

Table 3.12 pg_catalog.pg_attribute

column type references description
pg_attribute 373

pg_attribute_encoding 374

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_attribute_encoding
The pg_attribute_encoding system catalog table contains column storage information.

Table 3.13 pg_catalog.pg_attribute_encoding

column type modifers storage description

not null plain Foreign key to pg_attribute.attrelid

not null plain Foreign key to pg_attribute.attnum

extended The options

attrelid oid

attnum smallint

attoptions text []

pg_auth_members 375

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_auth_members
The pg_auth_members system catalog table shows the membership relations between roles. Any
non-circular set of relationships is allowed. Because roles are system-wide, pg_auth_members is
shared across all databases of a Greenplum Database system.

Table 3.14 pg_catalog.pg_auth_members

column type references description

pg_authid.oid ID of the parent-level (group) role

pg_authid.oid ID of a member role

pg_authid.oid ID of the role that granted this
membership

True if role member may grant
membership to others

roleid oid

member oid

grantor oid

admin_option boolean

pg_authid 376

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_authid
The pg_authid table contains information about database authorization identifiers (roles). A role
subsumes the concepts of users and groups. A user is a role with the rolcanlogin flag set. Any role
(with or without rolcanlogin) may have other roles as members. See pg_auth_members.

Since this catalog contains passwords, it must not be publicly readable. pg_roles is a publicly readable
view on pg_authid that blanks out the password field.

Because user identities are system-wide, pg_authid is shared across all databases in a Greenplum
Database system: there is only one copy of pg_authid per system, not one per database.

Table 3.15 pg_catalog.pg_authid

column type references description

Role name

Role has superuser privileges

Role automatically inherits privileges
of roles it is a member of

Role may create more roles

Role may create databases

Role may update system catalogs
directly. (Even a superuser may not
do this unless this column is true)

Role may log in. That is, this role can
be given as the initial session
authorization identifier

For roles that can log in, this sets
maximum number of concurrent
connections this role can make. -1
means no limit

Password (possibly encrypted);
NULL if none

Password expiry time (only used for
password authentication); NULL if no
expiration

Session defaults for server
configuration parameters

rolname name

rolsuper boolean

rolinherit boolean

rolcreaterole boolean

rolcreatedb boolean

rolcatupdate boolean

rolcanlogin boolean

rolconnlimit int4

rolpassword text

rolvaliduntil timestamptz

rolconfig text[]

pg_autovacuum 377

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_autovacuum
The pg_autovacuum system catalog table stores optional per-relation configuration parameters for the
autovacuum daemon. If there is an entry here for a particular relation, the given parameters will be
used for autovacuuming that table. If no entry is present, the system-wide defaults will be used.

The autovacuum daemon will initiate a VACUUM operation on a particular table when the number of
updated or deleted tuples exceeds vac_base_thresh plus vac_scale_factor times the number of live
tuples currently estimated to be in the relation. Similarly, it will initiate an ANALYZE operation when
the number of inserted, updated or deleted tuples exceeds anl_base_thresh plus anl_scale_factor times
the number of live tuples currently estimated to be in the relation.

Also, the autovacuum daemon will perform a VACUUM operation to prevent transaction ID wraparound
if the table’s pg_class.relfrozenxid field attains an age of more than freeze_max_age transactions,
whether the table has been changed or not. The system will launch autovacuum to perform such
VACUUMs even if autovacuum is otherwise disabled.

Any of the numerical fields can contain -1 to indicate that the system-wide default should be used for
this particular value. Observe that the vac_cost_delay variable inherits its default value from the
autovacuum_vacuum_cost_delay configuration parameter, or from vacuum_cost_delay if the
former is set to a negative value. The same applies to vac_cost_limit. Also, autovacuum will ignore
attempts to set a per-table freeze_max_age larger than the system-wide setting (it can only be set
smaller), and the freeze_min_age value will be limited to half the system-wide
autovacuum_freeze_max_age setting.

Table 3.16 pg_catalog.pg_autovacuum

column type references description

pg_class.oid The table this entry is for

If false, this table is never
autovacuumed

Minimum number of modified tuples
before vacuum

Multiplier for reltuples to add to
vac_base_thresh

Minimum number of modified tuples
before analyze

Multiplier for reltuples to add to
anl_base_thresh

Custom vacuum_cost_delay
parameter

Custom vacuum_cost_limit
parameter

Custom vacuum_freeze_min_age
parameter

Custom
autovacuum_freeze_max_age
parameter

vacrelid oid

enabled boolean

vac_base_thresh integer

vac_scale_factor float4

anl_base_thresh integer

anl_scale_factor float4

vac_cost_delay integer

vac_cost_limit integer

freeze_min_age integer

freeze_max_age integer

pg_cast 378

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_cast
The catalog pg_cast stores data type conversion paths, both built-in paths and those defined with
CREATE CAST. The cast functions listed in pg_cast must always take the cast source type as their first
argument type, and return the cast destination type as their result type. A cast function can have up to
three arguments. The second argument, if present, must be type integer; it receives the type modifier
associated with the destination type, or -1 if there is none. The third argument, if present, must be type
boolean; it receives true if the cast is an explicit cast, false otherwise.

It is legitimate to create a pg_cast entry in which the source and target types are the same, if the
associated function takes more than one argument. Such entries represent ‘length coercion functions’
that coerce values of the type to be legal for a particular type modifier value. Note however that at
present there is no support for associating non-default type modifiers with user-created data types, and
so this facility is only of use for the small number of built-in types that have type modifier syntax built
into the grammar.

When a pg_cast entry has different source and target types and a function that takes more than one
argument, it represents converting from one type to another and applying a length coercion in a single
step. When no such entry is available, coercion to a type that uses a type modifier involves two steps,
one to convert between data types and a second to apply the modifier.

Table 3.17 pg_catalog.pg_cast

column type references description

pg_type.oid OID of the source data type.

pg_type.oid OID of the target data type.

pg_proc.oid The OID of the function to use to
perform this cast. Zero is stored if the
data types are binary compatible
(that is, no run-time operation is
needed to perform the cast).

Indicates what contexts the cast may
be invoked in. e means only as an
explicit cast (using CAST or ::
syntax). a means implicitly in
assignment to a target column, as
well as explicitly. i means implicitly in
expressions, as well as the other
cases.

castsource oid

casttarget oid

castfunc oid

castcontext char

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
pg_class
The system catalog table pg_class catalogs tables and most everything else that has columns or is
otherwise similar to a table (also known as relations). This includes indexes (see also pg_index),
sequences, views, composite types, and TOAST tables. Not all columns are meaningful for all relation
types.

Table 3.18 pg_catalog.pg_class

column type references description

relname name Name of the table, index, view, etc.

relnamespace oid pg_namespace.oid The OID of the namespace (schema)
that contains this relation

reltype oid pg_type.oid The OID of the data type that
corresponds to this table’s row type,
if any (zero for indexes, which have
no pg_type entry)

relowner oid pg_authid.oid Owner of the relation

relam oid pg_am.oid If this is an index, the access method
used (B-tree, Bitmap, hash, etc.)

relfilenode oid Name of the on-disk file of this
relation; 0 if none.

reltablespace oid pg_tablespace.oid The tablespace in which this relation
is stored. If zero, the database’s
default tablespace is implied. (Not
meaningful if the relation has no
on-disk file.)

relpages int4 Size of the on-disk representation of
this table in pages (of 32K each).
This is only an estimate used by the
planner. It is updated by VACUUM,
ANALYZE, and a few DDL
commands.

reltuples float4 Number of rows in the table. This is
only an estimate used by the planner.
It is updated by VACUUM, ANALYZE,
and a few DDL commands.

reltoastrelid oid pg_class.oid OID of the TOAST table associated
with this table, 0 if none. The TOAST
table stores large attributes “out of
line” in a secondary table.

reltoastidxid oid pg_class.oid For a TOAST table, the OID of its
index. 0 if not a TOAST table.

relaosegidxid oid Deprecated in Greenplum Database
3.4.

relaosegrelid oid Deprecated in Greenplum Database
3.4.
pg_class 379

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
relhasindex boolean True if this is a table and it has (or
recently had) any indexes. This is set
by CREATE INDEX, but not cleared
immediately by DROP INDEX.
VACUUM will clear if it finds the table
has no indexes.

relisshared boolean True if this table is shared across all
databases in the system. Only
certain system catalog tables are
shared.

relkind char The type of object
r = heap or append-only table, i =
index, S = sequence, v = view, c =
composite type, t = TOAST value, o
= internal append-only segment files
and EOFs, c = composite type, u =
uncataloged temporary heap table

relstorage char The storage mode of a table
a= append-only, h = heap, v =
virtual, x= external table.

relnatts int2 Number of user columns in the
relation (system columns not
counted). There must be this many
corresponding entries in pg_attribute.

relchecks int2 Number of check constraints on the
table.

reltriggers int2 Number of triggers on the table.

relukeys int2 Unused

relfkeys int2 Unused

relrefs int2 Unused

relhasoids boolean True if an OID is generated for each
row of the relation.

relhaspkey boolean True if the table has (or once had) a
primary key.

relhasrules boolean True if table has rules.

relhassubclass boolean True if table has (or once had) any
inheritance children.

Table 3.18 pg_catalog.pg_class

column type references description
pg_class 380

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
relfrozenxid xid All transaction IDs before this one
have been replaced with a
permanent (frozen) transaction ID in
this table. This is used to track
whether the table needs to be
vacuumed in order to prevent
transaction ID wraparound or to allow
pg_clog to be shrunk. Zero
(InvalidTransactionId) if the
relation is not a table.

relacl aclitem[] Access privileges assigned by
GRANT and REVOKE.

reloptions text[] Access-method-specific options, as
“keyword=value” strings.

Table 3.18 pg_catalog.pg_class

column type references description
pg_class 381

pg_compression 382

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_compression
The pg_compression system catalog table describes the compression methods available..

Table 3.19 pg_catalog.pg_compression

column type modifers storage description

not null plain Name of the compression

not null plain Name of compression constructor

not null plain Name of compression destructor

not null plain Name of the compressor

not null plain Name of the decompressor

not null plain Name of the compression validator

not null plain oid from pg_authid

compname name

compconstructor regproc

compdestructor regproc

compcompressor regproc

compdecompressor regproc

compvalidator regproc

compowner oid

pg_constraint 383

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_constraint
The pg_constraint system catalog table stores check, primary key, unique, and foreign key constraints
on tables. Column constraints are not treated specially. Every column constraint is equivalent to some
table constraint. Not-null constraints are represented in the pg_attribute catalog. Check constraints on
domains are stored here, too.

Table 3.20 pg_catalog.pg_constraint

column type references description

Constraint name (not necessarily
unique!)

pg_namespace.oid The OID of the namespace (schema)
that contains this constraint.

c = check constraint, f = foreign key
constraint, p = primary key
constraint, u = unique constraint.

Is the constraint deferrable?

Is the constraint deferred by default?

pg_class.oid The table this constraint is on; 0 if not
a table constraint.

pg_type.oid The domain this constraint is on; 0 if
not a domain constraint.

pg_class.oid If a foreign key, the referenced table;
else 0.

Foreign key update action code.

Foreign key deletion action code.

Foreign key match type.

pg_attribute.attnum If a table constraint, list of columns
which the constraint constrains.

pg_attribute.attnum If a foreign key, list of the referenced
columns.

If a check constraint, an internal
representation of the expression.

If a check constraint, a
human-readable representation of
the expression. This is not updated
when referenced objects change; for
example, it won’t track renaming of
columns. Rather than relying on this
field, it is best to use
pg_get_constraintdef() to
extract the definition of a check
constraint.

conname name

connamespace oid

contype char

condeferrable boolean

condeferred boolean

conrelid oid

contypid oid

confrelid oid

confupdtype char

confdeltype char

confmatchtype char

conkey int2[]

confkey int2[]

conbin text

consrc text

pg_conversion 384

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_conversion
The pg_conversion system catalog table describes the available encoding conversion procedures as
defined by CREATE CONVERSION.

Table 3.21 pg_catalog.pg_conversion

column type references description

Conversion name (unique within a
namespace).

pg_namespace.oid The OID of the namespace (schema)
that contains this conversion.

pg_authid.oid Owner of the conversion.

Source encoding ID.

Destination encoding ID.

pg_proc.oid Conversion procedure.

True if this is the default conversion.

conname name

connamespace oid

conowner oid

conforencoding int4

contoencoding int4

conproc regproc

condefault boolean

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
pg_database
The pg_database system catalog table stores information about the available databases. Databases are
created with the CREATE DATABASE SQL command. Unlike most system catalogs, pg_database is
shared across all databases in the system. There is only one copy of pg_database per system, not one
per database.

Table 3.22 pg_catalog.pg_database

column type references description

datname name Database name.

datdba oid pg_authid.oid Owner of the database, usually the
user who created it.

encoding int4 Character encoding for this
database.
pg_encoding_to_char() can
translate this number to the encoding
name.

datistemplate boolean If true then this database can be
used in the TEMPLATE clause of
CREATE DATABASE to create a new
database as a clone of this one.

datallowconn boolean If false then no one can connect to
this database. This is used to protect
the template0 database from being
altered.

datconnlimit int4 Sets the maximum number of
concurrent connections that can be
made to this database. -1 means no
limit.

datlastsysoid oid Last system OID in the database;
useful particularly to
pg_dump/gp_dump.

datfrozenxid xid All transaction IDs before this one
have been replaced with a
permanent (frozen) transaction ID in
this database. This is used to track
whether the database needs to be
vacuumed in order to prevent
transaction ID wraparound or to allow
pg_clog to be shrunk. It is the
minimum of the per-table
pg_class.relfrozenxid values.

dattablespace oid pg_tablespace.oid The default tablespace for the
database. Within this database, all
tables for which
pg_class.reltablespace is zero will be
stored in this tablespace. All
non-shared system catalogs will also
be there.
pg_database 385

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
datconfig text[] Session defaults for user-settable
server configuration parameters.

datacl aclitem[] Database access privileges as given
by GRANT and REVOKE.

Table 3.22 pg_catalog.pg_database

column type references description
pg_database 386

pg_depend 387

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_depend
The pg_depend system catalog table records the dependency relationships between database objects.
This information allows DROP commands to find which other objects must be dropped by DROP
CASCADE or prevent dropping in the DROP RESTRICT case. See also pg_shdepend, which performs a
similar function for dependencies involving objects that are shared across a Greenplum system.

In all cases, a pg_depend entry indicates that the referenced object may not be dropped without also
dropping the dependent object. However, there are several subflavors identified by deptype:

• DEPENDENCY_NORMAL (n) — A normal relationship between separately-created objects.
The dependent object may be dropped without affecting the referenced object. The referenced
object may only be dropped by specifying CASCADE, in which case the dependent object is
dropped, too. Example: a table column has a normal dependency on its data type.

• DEPENDENCY_AUTO (a) — The dependent object can be dropped separately from the
referenced object, and should be automatically dropped (regardless of RESTRICT or CASCADE
mode) if the referenced object is dropped. Example: a named constraint on a table is made
autodependent on the table, so that it will go away if the table is dropped.

• DEPENDENCY_INTERNAL (i) — The dependent object was created as part of creation of the
referenced object, and is really just a part of its internal implementation. A DROP of the dependent
object will be disallowed outright (we’ll tell the user to issue a DROP against the referenced object,
instead). A DROP of the referenced object will be propagated through to drop the dependent object
whether CASCADE is specified or not. Example: a trigger that’s created to enforce a foreign-key
constraint is made internally dependent on the constraint’s pg_constraint entry.

• DEPENDENCY_PIN (p) — There is no dependent object; this type of entry is a signal that the
system itself depends on the referenced object, and so that object must never be deleted. Entries of
this type are created only by system initialization. The columns for the dependent object contain
zeroes.

Table 3.23 pg_catalog.pg_depend

column type references description

pg_class.oid The OID of the system catalog the
dependent object is in.

any OID column The OID of the specific dependent
object.

For a table column, this is the column
number. For all other object types,
this column is zero.

pg_class.oid The OID of the system catalog the
referenced object is in.

any OID column The OID of the specific referenced
object.

For a table column, this is the
referenced column number. For all
other object types, this column is
zero.

A code defining the specific
semantics of this dependency
relationship.

classid oid

objid oid

objsubid int4

refclassid oid

refobjid oid

refobjsubid int4

deptype char

pg_description 388

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_description
The pg_description system catalog table stores optional descriptions (comments) for each database
object. Descriptions can be manipulated with the COMMENT command and viewed with psql’s \d
meta-commands. Descriptions of many built-in system objects are provided in the initial contents of
pg_description. See also pg_shdescription, which performs a similar function for descriptions
involving objects that are shared across a Greenplum system.

Table 3.24 pg_catalog.pg_description

column type references description

any OID column The OID of the object this description
pertains to.

pg_class.oid The OID of the system catalog this
object appears in

For a comment on a table column,
this is the column number. For all
other object types, this column is
zero.

Arbitrary text that serves as the
description of this object.

objoid oid

classoid oid

objsubid int4

description text

pg_exttable 389

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_exttable
The pg_exttable system catalog table is used to track external tables and web tables created by the
CREATE EXTERNAL TABLE command.

Table 3.25 pg_catalog.pg_exttable

column type references description

pg_class.oid The OID of this external table.

The URI location(s) of the external
table files.

Format of the external table files: t
for text, or c for csv.

Formatting options of the external
table files, such as the field delimiter,
null string, escape character, etc.

The OS command to execute when
the external table is accessed.

The per segment reject limit for rows
with errors, after which the load will
fail.

Type of reject limit threshold: r for
number of rows.

pg_class.oid The object id of the error table where
format errors will be logged.

The client encoding.

0 for readable external tables, 1 for
writable external tables.

reloid oid

location text[]

fmttype char

fmtopts text

command text

rejectlimit integer

rejectlimittype char

fmterrtbl oid

encoding text

writable boolean

pg_filespace 390

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_filespace
The pg_filespace table contains information about the filespaces created in a Greenplum Database
system. Every system contains a default filespace, pg_system, which is a collection of all the data
directory locations created at system initialization time.

A tablespace requires a file system location to store its database files. In Greenplum Database, the
master and each segment (primary and mirror) needs its own distinct storage location. This collection
of file system locations for all components in a Greenplum system is referred to as a filespace.

Table 3.26 pg_catalog.pg_filespace

column type references description

The name of the filespace.

pg_roles.oid The object id of the role that
created the filespace.

fsname name

fsowner oid

pg_filespace_entry 391

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_filespace_entry
A tablespace requires a file system location to store its database files. In Greenplum Database, the
master and each segment (primary and mirror) needs its own distinct storage location. This collection
of file system locations for all components in a Greenplum system is referred to as a filespace. The
pg_filespace_entry table contains information about the collection of file system locations across a
Greenplum Database system that comprise a Greenplum Database filespace.

Table 3.27 pg_catalog.pg_filespace_entry

column type references description

pg_filespace.oid Object id of the filespace.

gp_segment_config
uration.dbid

Segment id.

File system location for this
segment id.

fsefsoid OID

fsedbid integer

fselocation text

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
pg_index
The pg_index system catalog table contains part of the information about indexes. The rest is mostly in
pg_class.

Table 3.28 pg_catalog.pg_index

column type references description

indexrelid oid pg_class.oid The OID of the pg_class entry for this
index.

indrelid oid pg_class.oid The OID of the pg_class entry for the
table this index is for.

indnatts int2 The number of columns in the index
(duplicates pg_class.relnatts).

indisunique boolean If true, this is a unique index.

indisprimary boolean If true, this index represents the
primary key of the table. (indisunique
should always be true when this is
true.)

indisclustered boolean If true, the table was last clustered on
this index via the CLUSTER
command.

indisvalid boolean If true, the index is currently valid for
queries. False means the index is
possibly incomplete: it must still be
modified by INSERT/UPDATE
operations, but it cannot safely be
used for queries.

indkey int2vector pg_attribute.attnum This is an array of indnatts values
that indicate which table columns this
index indexes. For example a value
of 1 3 would mean that the first and
the third table columns make up the
index key. A zero in this array
indicates that the corresponding
index attribute is an expression over
the table columns, rather than a
simple column reference.

indclass oidvector pg_opclass.oid For each column in the index key this
contains the OID of the operator
class to use.
pg_index 392

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
indexprs text Expression trees (in
nodeToString() representation)
for index attributes that are not
simple column references. This is a
list with one element for each zero
entry in indkey. NULL if all index
attributes are simple references.

indpred text Expression tree (in
nodeToString() representation)
for partial index predicate. NULL if
not a partial index.

Table 3.28 pg_catalog.pg_index

column type references description
pg_index 393

pg_inherits 394

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_inherits
The pg_inherits system catalog table records information about table inheritance hierarchies. There is
one entry for each direct child table in the database. (Indirect inheritance can be determined by
following chains of entries.) In Greenplum Database, inheritance relationships are created by both the
INHERITS clause (standalone inheritance) and the PARTITION BY clause (partitioned child table
inheritance) of CREATE TABLE.

Table 3.29 pg_catalog.pg_inherits

column type references description

pg_class.oid The OID of the child table.

pg_class.oid The OID of the parent table.

If there is more than one direct
parent for a child table (multiple
inheritance), this number tells the
order in which the inherited columns
are to be arranged. The count starts
at 1.

inhrelid oid

inhparent oid

inhseqno int4

pg_language 395

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_language
The pg_language system catalog table registers languages in which you can write functions or stored
procedures. It is populated by CREATE LANGUAGE.

Table 3.30 pg_catalog.pg_language

column type references description

Name of the language.

This is false for internal languages
(such as SQL) and true for
user-defined languages. Currently,
pg_dump still uses this to determine
which languages need to be
dumped, but this may be replaced by
a different mechanism in the future.

True if this is a trusted language,
which means that it is believed not to
grant access to anything outside the
normal SQL execution environment.
Only superusers may create
functions in untrusted languages.

pg_proc.oid For noninternal languages this
references the language handler,
which is a special function that is
responsible for executing all
functions that are written in the
particular language.

pg_proc.oid This references a language validator
function that is responsible for
checking the syntax and validity of
new functions when they are created.
Zero if no validator is provided.

Access privileges for the language.

lanname name

lanispl boolean

lanpltrusted boolean

lanplcallfoid oid

lanvalidator oid

lanacl aclitem[]

pg_largeobject 396

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_largeobject
The pg_largeobject system catalog table holds the data making up ‘large objects’. A large object is
identified by an OID assigned when it is created. Each large object is broken into segments or ‘pages’
small enough to be conveniently stored as rows in pg_largeobject. The amount of data per page is
defined to be LOBLKSIZE (which is currently BLCKSZ/4, or typically 8K).

Each row of pg_largeobject holds data for one page of a large object, beginning at byte offset (pageno
* LOBLKSIZE) within the object. The implementation allows sparse storage: pages may be missing,
and may be shorter than LOBLKSIZE bytes even if they are not the last page of the object. Missing
regions within a large object read as zeroes.

Table 3.31 pg_catalog.pg_largeobject

column type references description

Identifier of the large object that
includes this page.

Page number of this page within its
large object (counting from zero).

Actual data stored in the large object.
This will never be more than
LOBLKSIZE bytes and may be less.

loid oid

pageno int4

data bytea

pg_listener 397

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_listener
The pg_listener system catalog table supports the LISTEN and NOTIFY commands. A listener creates
an entry in pg_listener for each notification name it is listening for. A notifier scans and updates each
matching entry to show that a notification has occurred. The notifier also sends a signal (using the PID
recorded in the table) to awaken the listener from sleep.

This table is not currently used in Greenplum Database.

Table 3.32 pg_catalog.pg_listener

column type references description

Notify condition name. (The name
need not match any actual relation in
the database.

PID of the server process that
created this entry.

Zero if no event is pending for this
listener. If an event is pending, the
PID of the server process that sent
the notification.

relname name

listenerpid int4

notification int4

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
pg_locks
The view pg_locks provides access to information about the locks held by open transactions within
Greenplum Database.

pg_locks contains one row per active lockable object, requested lock mode, and relevant transaction.
Thus, the same lockable object may appear many times, if multiple transactions are holding or waiting
for locks on it. However, an object that currently has no locks on it will not appear at all.

There are several distinct types of lockable objects: whole relations (such as tables), individual pages
of relations, individual tuples of relations, transaction IDs, and general database objects. Also, the right
to extend a relation is represented as a separate lockable object.

Table 3.33 pg_catalog.pg_locks

column type references description

locktype text Type of the lockable object:
relation, extend, page, tuple,
transactionid, object,
userlock, resource queue, or
advisory

database oid pg_database.oid OID of the database in which the
object exists, zero if the object is a
shared object, or NULL if the object
is a transaction ID

relation oid pg_class.oid OID of the relation, or NULL if the
object is not a relation or part of a
relation

page integer Page number within the relation, or
NULL if the object is not a tuple or
relation page

tuple smallint Tuple number within the page, or
NULL if the object is not a tuple

transactionid xid ID of a transaction, or NULL if the
object is not a transaction ID

classid oid pg_class.oid OID of the system catalog containing
the object, or NULL if the object is
not a general database object

objid oid any OID column OID of the object within its system
catalog, or NULL if the object is not a
general database object

objsubid smallint For a table column, this is the column
number (the classid and objid refer to
the table itself). For all other object
types, this column is zero. NULL if
the object is not a general database
object

transaction xid ID of the transaction that is holding or
awaiting this lock
pg_locks 398

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
pid integer Process ID of the server process
holding or awaiting this lock. NULL if
the lock is held by a prepared
transaction

mode text Name of the lock mode held or
desired by this process

granted boolean True if lock is held, false if lock is
awaited

mppsessionid integer The id of the client session
associated with this lock.

mppiswriter boolean Is the lock held by a writer process?

gp_segment_id integer The Greenplum segment id (dbid)
where the lock is held.

Table 3.33 pg_catalog.pg_locks

column type references description
pg_locks 399

pg_opclass 400

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_opclass
The pg_opclass system catalog table defines index access method operator classes. Each operator class
defines semantics for index columns of a particular data type and a particular index access method.
Note that there can be multiple operator classes for a given data type/access method combination, thus
supporting multiple behaviors. The majority of the information defining an operator class is actually
not in its pg_opclass row, but in the associated rows in pg_amop and pg_amproc. Those rows are
considered to be part of the operator class definition — this is not unlike the way that a relation is
defined by a single pg_class row plus associated rows in pg_attribute and other tables.

Table 3.34 pg_catalog.pg_opclass

column type references description

pg_am.oid Index access method operator class
is for.

Name of this operator class

pg_namespace.oid Namespace of this operator class

pg_authid.oid Owner of the operator class

pg_type.oid Data type that the operator class
indexes.

True if this operator class is the
default for the data type opcintype.

pg_type.oid Type of data stored in index, or zero
if same as opcintype.

opcamid oid

opcname name

opcnamespace oid

opcowner oid

opcintype oid

opcdefault boolean

opckeytype oid

pg_namespace 401

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_namespace
The pg_namespace system catalog table stores namespaces. A namespace is the structure underlying
SQL schemas: each namespace can have a separate collection of relations, types, etc. without name
conflicts.

Table 3.35 pg_catalog.pg_namespace

column type references description

Name of the namespace

pg_authid.oid Owner of the namespace

Access privileges as given by GRANT
and REVOKE.

nspname name

nspowner oid

nspacl aclitem[]

pg_operator 402

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_operator
The pg_operator system catalog table stores information about operators, both built-in and those
defined by CREATE OPERATOR. Unused column contain zeroes. For example, oprleft is zero for a
prefix operator.

Table 3.36 pg_catalog.pg_operator

column type references description

Name of the operator.

pg_namespace.oid The OID of the namespace that
contains this operator.

pg_authid.oid Owner of the operator.

b = infix (both), l = prefix (left), r =
postfix (right)

This operator supports hash joins.

pg_type.oid Type of the left operand.

pg_type.oid Type of the right operand.

pg_type.oid Type of the result.

pg_operator.oid Commutator of this operator, if any.

pg_operator.oid Negator of this operator, if any.

pg_operator.oid If this operator supports merge joins,
the operator that sorts the type of the
left-hand operand (L<L).

pg_operator.oid f this operator supports merge joins,
the operator that sorts the type of the
right-hand operand (R<R).

pg_operator.oid If this operator supports merge joins,
the less-than operator that compares
the left and right operand types
(L<R).

pg_operator.oid If this operator supports merge joins,
the greater-than operator that
compares the left and right operand
types (L>R).

pg_proc.oid Function that implements this
operator.

pg_proc.oid Restriction selectivity estimation
function for this operator.

pg_proc.oid Join selectivity estimation function for
this operator.

oprname name

oprnamespace oid

oprowner oid

oprkind char

oprcanhash boolean

oprleft oid

oprright oid

oprresult oid

oprcom oid

oprnegate

oprlsortop oid

oprrsortop I oid

oprltcmpop oid

oprgtcmpop oid

oprcode regproc

oprrest regproc

oprjoin regproc

pg_partition 403

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_partition
The pg_partition system catalog table is used to track partitioned tables and their inheritance level
relationships. Each row of pg_partition represents either the level of a partitioned table in the partition
hierarchy, or a subpartition template description. The value of the attribute paristemplate determines
what a particular row represents.

Table 3.37 pg_catalog.pg_partition

column type references description

pg_class.oid The object identifier of the table.

The partition type - R for range or L
for list.

The partition level of this row: 0 for
the top-level parent table, 1 for the
first level under the parent table, 2 for
the second level, and so on.

Whether or not this row represents a
subpartition template definition (true)
or an actual partitioning level (false).

pg_attribute.oid The number of attributes that define
this level.

An array of the attribute numbers (as
in pg_attribute.attnum) of the
attributes that participate in defining
this level.

pg_opclass.oid The operator class identifier(s) of the
partition columns.

parrelid oid

parkind char

parlevel smallint

paristemplate boolean

parnatts smallint

paratts smallint()

parclass oidvector

pg_partition_columns 404

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_partition_columns
The pg_partition_columns system view is used to show the partition key columns of a partitioned
table.

Table 3.38 pg_catalog.pg_partition_columns

column type references description

The name of the schema the
partitioned table is in.

The table name of the top-level
parent table.

The name of the partition key
column.

The level of this subpartition in the
hierarchy.

For list partitions you can have a
composite (multi-column) partition
key. This shows the position of the
column in a composite key.

schemaname name

tablename name

columnname name

partitionlevel smallint

position_in_partition_key integer

pg_partition_encoding 405

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_partition_encoding
The pg_partition_encoding system catalog table describes the available column compression options
for a partition template.

Table 3.39 pg_catalog.pg_attribute_encoding

column type modifers storage description

not null plain

not null plain

extended

parencoid oid

parencattnum snallint

parencattoptions text []

pg_partition_rule 406

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_partition_rule
The pg_partition_rule system catalog table is used to track partitioned tables, their check constraints,
and data containment rules. Each row of pg_partition_rule represents either a leaf partition (the bottom
level partitions that contain data), or a branch partition (a top or mid-level partition that is used to
define the partition hierarchy, but does not contain any data).

Table 3.40 pg_catalog.pg_partition_rule

column type references description

pg_partition.oid Row identifier of the partitioning level
(from pg_partition) to which this
partition belongs. In the case of a
branch partition, the corresponding
table (identified by parchildrelid) is an
empty container table. In case of a
leaf partition, the table contains the
rows for that partition containment
rule.

pg_class.oid The table identifier of the partition
(child table).

pg_partition_rule.pa
roid

The row identifier of the rule
associated with the parent table of
this partition.

The given name of this partition.

Whether or not this partition is a
default partition.

For range partitioned tables, the rank
of this partition on this level of the
partition hierarchy.

For range partitioned tables, whether
or not the starting value is inclusive.

For range partitioned tables, whether
or not the ending value is inclusive.

For range partitioned tables, the
starting value of the range.

For range partitioned tables, the
ending value of the range.

For range partitioned tables, the
interval value of the EVERY clause.

For list partitioned tables, the list of
values assigned to this partition.

An array describing the storage
characteristics of the particular
partition.

paroid oid

parchildrelid oid

parparentrule oid

parname name

parisdefault boolean

parruleord smallint

parrangestartincl boolean

parrangeendincl boolean

parrangestart text

parrangeend text

parrangeevery text

parlistvalues text

parreloptions text

pg_partition_templates 407

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_partition_templates
The pg_partition_templates system view is used to show the subpartitions that were created using a
subpartition template.

Table 3.41 pg_catalog.pg_partition_templates

column type references description

The name of the schema the
partitioned table is in.

The table name of the top-level
parent table.

The name of the subpartition (this is
the name to use if referring to the
partition in an ALTER TABLE
command). NULL if the partition was
not given a name at create time or
generated by an EVERY clause.

The type of subpartition (range or
list).

The level of this subpartition in the
hierarchy.

For range partitions, the rank of the
partition compared to other partitions
of the same level.

The rule order position of this
subpartition.

For list partitions, the list value(s)
associated with this subpartition.

For range partitions, the start value of
this subpartition.

T if the start value is included in this
subpartition. F if it is excluded.

For range partitions, the end value of
this subpartition.

T if the end value is included in this
subpartition. F if it is excluded.

The EVERY clause (interval) of this
subpartition.

T if this is a default subpartition,
otherwise F.

The entire partition specification for
this subpartition.

schemaname name

tablename name

partitionname name

partitiontype text

partitionlevel smallint

partitionrank bigint

partitionposition smallint

partitionlistvalues text

partitionrangestart text

partitionstartinclusive boolean

partitionrangeend text

partitionendinclusive boolean

partitioneveryclause text

partitionisdefault boolean

partitionboundary text

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
pg_partitions
The pg_partitions system view is used to show the structure of a partitioned table.

Table 3.42 pg_catalog.pg_partitions

column type references description

schemaname name The name of the schema the
partitioned table is in.

tablename name The name of the top-level parent
table.

partitiontablename name The relation name of the partitioned
table (this is the table name to use if
accessing the partition directly).

partitionname name The name of the partition (this is the
name to use if referring to the
partition in an ALTER TABLE
command). NULL if the partition was
not given a name at create time or
generated by an EVERY clause.

parentpartitiontablename name The relation name of the parent table
one level up from this partition.

parentpartitionname name The given name of the parent table
one level up from this partition.

partitiontype text The type of partition (range or list).

partitionlevel smallint The level of this partition in the
hierarchy.

partitionrank bigint For range partitions, the rank of the
partition compared to other partitions
of the same level.

partitionposition smallint The rule order position of this
partition.

partitionlistvalues text For list partitions, the list value(s)
associated with this partition.

partitionrangestart text For range partitions, the start value of
this partition.

partitionstartinclusive boolean T if the start value is included in this
partition. F if it is excluded.

partitionrangeend text For range partitions, the end value of
this partition.

partitionendinclusive boolean T if the end value is included in this
partition. F if it is excluded.

partitioneveryclause text The EVERY clause (interval) of this
partition.
pg_partitions 408

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
partitionisdefault boolean T if this is a default partition,
otherwise F.

partitionboundary text The entire partition specification for
this partition.

Table 3.42 pg_catalog.pg_partitions

column type references description
pg_partitions 409

pg_pltemplate 410

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_pltemplate
The pg_pltemplate system catalog table stores template information for procedural languages. A
template for a language allows the language to be created in a particular database by a simple CREATE
LANGUAGE command, with no need to specify implementation details. Unlike most system catalogs,
pg_pltemplate is shared across all databases of Greenplum system: there is only one copy of
pg_pltemplate per system, not one per database. This allows the information to be accessible in each
database as it is needed.

There are not currently any commands that manipulate procedural language templates; to change the
built-in information, a superuser must modify the table using ordinary INSERT, DELETE, or UPDATE
commands.

Table 3.43 pg_catalog.pg_pltemplate

column type references description

Name of the language this template
is for

True if language is considered
trusted

Name of call handler function

Name of validator function, or NULL
if none

Path of shared library that
implements language

Access privileges for template (not
yet implemented).

tmplname name

tmpltrusted boolean

tmplhandler text

tmplvalidator text

tmpllibrary text

tmplacl aclitem[]

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
pg_proc
The pg_proc system catalog table stores information about functions (or procedures), both built-in
functions and those defined by CREATE FUNCTION. The table contains data for aggregate and window
functions as well as plain functions. If proisagg is true, there should be a matching row in
pg_aggregate. If proiswin is true, there should be a matching row in pg_window.

For compiled functions, both built-in and dynamically loaded, prosrc contains the function’s
C-language name (link symbol). For all other currently-known language types, prosrc contains the
function’s source text. probin is unused except for dynamically-loaded C functions, for which it gives
the name of the shared library file containing the function.

Table 3.44 pg_catalog.pg_proc

column type references description

proname name Name of the function.

pronamespace oid pg_namespace.oid The OID of the namespace that
contains this function.

proowner oid pg_authid.oid Owner of the function.

prolang oid pg_language.oid Implementation language or call
interface of this function.

proisagg boolean Function is an aggregate function.

prosecdef boolean Function is a security definer (for
example, a ‘setuid’ function).

proisstrict boolean Function returns NULL if any call
argument is NULL. In that case the
function will not actually be called at
all. Functions that are not strict must
be prepared to handle NULL inputs.

proretset boolean Function returns a set (multiple
values of the specified data type).

provolatile char Tells whether the function’s result
depends only on its input arguments,
or is affected by outside factors. i =
immutable (always delivers the same
result for the same inputs), s = stable
(results (for fixed inputs) do not
change within a scan), or v = volatile
(results may change at any time or
functions with side-effects).

pronargs int2 Number of arguments.

prorettype oid pg_type.oid Data type of the return value.

proiswin boolean Function is neither an aggregate nor
a scalar function, but a pure window
function.
pg_proc 411

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
proargtypes oidvector pg_type.oid An array with the data types of the
function arguments. This includes
only input arguments (including
INOUT arguments), and thus
represents the call signature of the
function.

proallargtypes oid[] pg_type.oid An array with the data types of the
function arguments. This includes all
arguments (including OUT and
INOUT arguments); however, if all
the arguments are IN arguments,
this field will be null. Note that
subscripting is 1-based, whereas for
historical reasons proargtypes is
subscripted from 0.

proargmodes char[] An array with the modes of the
function arguments: i = IN, o = OUT ,
b = INOUT. If all the arguments are
IN arguments, this field will be null.
Note that subscripts correspond to
positions of proallargtypes not
proargtypes.

proargnames text[] An array with the names of the
function arguments. Arguments
without a name are set to empty
strings in the array. If none of the
arguments have a name, this field
will be null. Note that subscripts
correspond to positions of
proallargtypes not proargtypes.

prosrc text This tells the function handler how to
invoke the function. It might be the
actual source code of the function for
interpreted languages, a link symbol,
a file name, or just about anything
else, depending on the
implementation language/call
convention.

probin bytea Additional information about how to
invoke the function. Again, the
interpretation is language-specific.

proacl aclitem[] Access privileges for the function as
given by GRANT/REVOKE.

Table 3.44 pg_catalog.pg_proc

column type references description
pg_proc 412

pg_resourcetype 413

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_resourcetype
The pg_resourcetype system catalog table contains information about the extended attributes that can
be assigned to Greenplum Database resource queues. Each row details an attribute and inherent
qualities such as its default setting, whether it is required, and the value to disable it (when allowed).

This table is populated only on the master. This table is defined in the pg_global tablespace, meaning it
is globally shared across all databases in the system.

Table 3.45 pg_catalog.pg_resourcetype

column type references description

The resource type ID.

The name of the resource type.

Whether the resource type is
required for a valid resource queue.

Whether the resource type has a
default value. When true, the default
value is specified in
reshasdefaultsetting.

Whether the type can be removed or
disabled. When true, the default
value is specified in
resdisabledsetting.

Default setting for the resource type,
when applicable.

The value that disables this resource
type (when allowed).

restypid smallint

resname name

resrequired boolean

reshasdefault boolean

rescandisable boolean

resdefaultsetting text

resdisabledsetting text

pg_resqueue 414

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_resqueue
The pg_resqueue system catalog table contains information about Greenplum Database resource
queues, which are used for the workload management feature. This table is populated only on the
master. This table is defined in the pg_global tablespace, meaning it is globally shared across all
databases in the system.

Table 3.46 pg_catalog.pg_resqueue

column type references description

The name of the resource queue.

The active query threshold of the
resource queue.

The query cost threshold of the
resource queue.

Allows queries that exceed the cost
threshold to run when the system is
idle.

The query cost limit of what is
considered a ‘small query’. Queries
with a cost under this limit will not be
queued and run immediately.

rsqname name

rsqcountlimit real

rsqcostlimit real

rsqovercommit boolean

rsqignorecostlimit real

pg_resqueue_attributes 415

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_resqueue_attributes
The pg_resqueue_attributes view allows administrators to see the attributes set for a resource queue,
such as its active statement limit, query cost limits, and priority.

Table 3.47 pg_catalog.pg_resqueue_attributes

column type references description

pg_resqueue.rsqname The name of the resource queue.

The name of the resource queue
attribute.

The current value of a resource
queue attribute.

System assigned resource type id.

rsqname name

resname text

ressetting text

restypid integer

pg_resqueuecapability 416

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_resqueuecapability
The pg_resqueuecapability system catalog table contains information about the extended attributes, or
capabilities, of existing Greenplum Database resource queues. Only resource queues that have been
assigned an extended capability, such as a priority setting, are recorded in this table. This table is
joined to the pg_resqueue table by resource queue object ID, and to the pg_resourcetype table by
resource type ID (restypid).

This table is populated only on the master. This table is defined in the pg_global tablespace, meaning it
is globally shared across all databases in the system.

Table 3.48 pg_catalog.pg_resqueuecapability

column type references description

The object ID of the associated
resource queue.

The resource type, derived from the
pg_resourcetype system table.

The specific value set for the
capability referenced in this record.
Depending on the actual resource
type, this value may have different
data types.

rsqueueid oid pg_resqueue.oid

restypid smallint pg_resourcetype.res
typeid

ressetting opaque type

pg_rewrite 417

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_rewrite
The pg_rewrite system catalog table stores rewrite rules for tables and views. pg_class.relhasrules
must be true if a table has any rules in this catalog.

Table 3.49 pg_catalog.pg_rewrite

column type references description

Rule name.

pg_class.oid The table this rule is for.

The column this rule is for (currently,
always zero to indicate the whole
table).

Event type that the rule is for: 1 =
SELECT, 2 = UPDATE, 3 = INSERT,
4 = DELETE.

True if the rule is an INSTEAD rule.

Expression tree (in the form of a
nodeToString() representation)
for the rule’s qualifying condition.

Query tree (in the form of a
nodeToString() representation)
for the rule’s action.

rulename name

ev_class oid

ev_attr int2

ev_type char

is_instead boolean

ev_qual text

ev_action text

pg_roles 418

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_roles
The view pg_roles provides access to information about database roles. This is simply a publicly
readable view of pg_authid that blanks out the password field. This view explicitly exposes the OID
column of the underlying table, since that is needed to do joins to other catalogs.

Table 3.50 pg_catalog.pg_roles

column type references description

Role name

Role has superuser privileges

Role automatically inherits privileges
of roles it is a member of

Role may create more roles

Role may create databases

Role may update system catalogs
directly. (Even a superuser may not
do this unless this column is true.)

Role may log in. That is, this role can
be given as the initial session
authorization identifier

For roles that can log in, this sets
maximum number of concurrent
connections this role can make. -1
means no limit

Not the password (always reads as
********)

Password expiry time (only used for
password authentication); NULL if no
expiration

Session defaults for run-time
configuration variables

pg_resqueue.oid Object ID of the resource queue this
role is assigned to.

pg_authid.oid Object ID of role

Role may create readable external
tables that use the gpfdist protocol.

Role may create readable external
tables that use the gpfdist protocol.

Role may create writable external
tables that use the gpfdist protocol.

rolname name

rolsuper bool

rolinherit bool

rolcreaterole bool

rolcreatedb bool

rolcatupdate bool

rolcanlogin bool

rolconnlimit int4

rolpassword text

rolvaliduntil timestamptz

rolconfig text[]

 rolresqueue oid

oid oid

rolcreaterextgpfd bool

rolcreaterexthttp bool

rolcreatewextgpfd bool

pg_shdepend 419

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_shdepend
The pg_shdepend system catalog table records the dependency relationships between database objects
and shared objects, such as roles. This information allows Greenplum Database to ensure that those
objects are unreferenced before attempting to delete them. See also pg_depend, which performs a
similar function for dependencies involving objects within a single database. Unlike most system
catalogs, pg_shdepend is shared across all databases of Greenplum system: there is only one copy of
pg_shdepend per system, not one per database.

In all cases, a pg_shdepend entry indicates that the referenced object may not be dropped without also
dropping the dependent object. However, there are several subflavors identified by deptype:

• SHARED_DEPENDENCY_OWNER (o) — The referenced object (which must be a role) is the
owner of the dependent object.

• SHARED_DEPENDENCY_ACL (a) — The referenced object (which must be a role) is
mentioned in the ACL (access control list) of the dependent object.

• SHARED_DEPENDENCY_PIN (p) — There is no dependent object; this type of entry is a
signal that the system itself depends on the referenced object, and so that object must never be
deleted. Entries of this type are created only by system initialization. The columns for the
dependent object contain zeroes.

Table 3.51 pg_catalog.pg_shdepend

column type references description

pg_database.oid The OID of the database the
dependent object is in, or zero for a
shared object.

pg_class.oid The OID of the system catalog the
dependent object is in.

any OID column The OID of the specific dependent
object.

For a table column, this is the column
number. For all other object types,
this column is zero.

pg_class.oid The OID of the system catalog the
referenced object is in (must be a
shared catalog).

any OID column The OID of the specific referenced
object.

For a table column, this is the
referenced column number. For all
other object types, this column is
zero.

A code defining the specific
semantics of this dependency
relationship.

dbid oid

classid oid

objid oid

objsubid int4

refclassid oid

refobjid oid

refobjsubid int4

deptype char

pg_shdescription 420

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_shdescription
The pg_shdescription system catalog table stores optional descriptions (comments) for shared database
objects. Descriptions can be manipulated with the COMMENT command and viewed with psql’s \d
meta-commands. See also pg_description, which performs a similar function for descriptions
involving objects within a single database. Unlike most system catalogs, pg_shdescription is shared
across all databases of a Greenplum system: there is only one copy of pg_shdescription per system, not
one per database.

Table 3.52 pg_catalog.pg_shdescription

column type references description

any OID column The OID of the object this description
pertains to.

pg_class.oid The OID of the system catalog this
object appears in

Arbitrary text that serves as the
description of this object.

objoid oid

classoid oid

description text

pg_stat_activity 421

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_stat_activity
The view pg_stat_activity shows one row per server process and details about it associated user
session and query. The columns that report data on the current query are available unless the parameter
stats_command_string has been turned off. Furthermore, these columns are only visible if the user
examining the view is a superuser or the same as the user owning the process being reported on.

Table 3.53 pg_catalog.pg_stat_activity

column type references description

pg_database.oid Database OID

Database name

Process ID of the server process

Session ID

pg_authid.oid Role OID

Role name

Current query that process is running

True if waiting on a lock, false if not
waiting

Time query began execution

Time backend process was started

Client address

Client port

Client application name

Transaction start time

datid oid

datname name

procpid integer

sess_id integer

usesysid oid

usename name

current_query text

waiting boolean

query_start timestampz

backend_start timestampz

client_addr inet

client_port integer

application_name text

xact_start timestampz

pg_stat_last_operation 422

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_stat_last_operation
The pg_stat_last_operation table contains metadata tracking information about database objects
(tables, views, etc.).

Table 3.54 pg_catalog.pg_stat_last_operation

column type references description

pg_class.oid OID of the system catalog
containing the object.

any OID column OID of the object within its system
catalog.

The action that was taken on the
object.

pg_authid.oid A foreign key to pg_authid.oid.

The name of the role that
performed the operation on this
object.

The type of object operated on or
the subclass of operation
performed.

The timestamp of the operation.
This is the same timestamp that is
written to the Greenplum
Database server log files in case
you need to look up more detailed
information about the operation in
the logs.

classid oid

objid oid

staactionname name

stasysid oid

stausename name

stasubtype text

statime timestamp with timezone

pg_stat_last_shoperation 423

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_stat_last_shoperation
The pg_stat_last_shoperation table contains metadata tracking information about global objects (roles,
tablespaces, etc.)

Table 3.55 pg_catalog.pg_stat_last_shoperation

column type references description

pg_class.oid OID of the system catalog
containing the object.

any OID column OID of the object within its system
catalog.

The action that was taken on the
object.

The name of the role that
performed the operation on this
object.

The type of object operated on or
the subclass of operation
performed.

The timestamp of the operation.
This is the same timestamp that
is written to the Greenplum
Database server log files in case
you need to look up more detailed
information about the operation in
the logs.

.

classid oid

objid oid

staactionname name

stasysid oid

stausename name

stasubtype text

statime timestamp with timezone

pg_stat_operations 424

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_stat_operations
The view pg_stat_operations shows details about the last operation performed on a database object
(such as a table, index, view or database) or a global object (such as a role).

Table 3.56 pg_catalog.pg_stat_operations

column type references description

The name of the system table in the
pg_catalog schema where the record
about this object is stored
(pg_class=relations,
pg_database=databases,
pg_namespace=schemas,
pg_authid=roles)

The name of the object.

The OID of the object.

The name of the schema where the
object resides.

The status of the role who performed
the last operation on the object
(CURRENT=a currently active role in
the system, DROPPED=a role that
no longer exists in the system,
CHANGED=a role name that exists
in the system, but has changed since
the last operation was performed).

The name of the role that performed
the operation on this object.

The action that was taken on the
object.

The type of object operated on or the
subclass of operation performed.

The timestamp of the operation. This
is the same timestamp that is written
to the Greenplum Database server
log files in case you need to look up
more detailed information about the
operation in the logs.

classname text

objname name

objid oid

schemaname name

usestatus text

usename name

actionname name

subtype text

statime timestampz

pg_stat_partition_operations 425

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_stat_partition_operations
The view pg_stat_partition_operations shows details about the last operation performed on a
partitioned table.

Table 3.57 pg_catalog.pg_stat_partition_operations

column type references description

The name of the system table in the
pg_catalog schema where the record
about this object is stored (always
pg_class for tables and partitions).

The name of the object.

The OID of the object.

The name of the schema where the
object resides.

The status of the role who performed
the last operation on the object
(CURRENT=a currently active role in
the system, DROPPED=a role that
no longer exists in the system,
CHANGED=a role name that exists
in the system, but its definition has
changed since the last operation was
performed).

The name of the role that performed
the operation on this object.

The action that was taken on the
object.

The type of object operated on or the
subclass of operation performed.

The timestamp of the operation. This
is the same timestamp that is written
to the Greenplum Database server
log files in case you need to look up
more detailed information about the
operation in the logs.

The level of this partition in the
hierarchy.

The relation name of the parent table
one level up from this partition.

The name of the schema where the
parent table resides.

The OID of the parent table one level
up from this partition.

classname text

objname name

objid oid

schemaname name

usestatus text

usename name

actionname name

subtype text

statime timestampz

partitionlevel smallint

parenttablename name

parentschemaname name

parent_relid oid

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
pg_statistic
The pg_statistic system catalog table stores statistical data about the contents of the database. Entries
are created by ANALYZE and subsequently used by the query planner. There is one entry for each table
column that has been analyzed. Note that all the statistical data is inherently approximate, even
assuming that it is up-to-date.

pg_statistic also stores statistical data about the values of index expressions. These are described as if
they were actual data columns; in particular, starelid references the index. No entry is made for an
ordinary non-expression index column, however, since it would be redundant with the entry for the
underlying table column.

Since different kinds of statistics may be appropriate for different kinds of data, pg_statistic is
designed not to assume very much about what sort of statistics it stores. Only extremely general
statistics (such as nullness) are given dedicated columns in pg_statistic. Everything else is stored in
slots, which are groups of associated columns whose content is identified by a code number in one of
the slot’s columns.

pg_statistic should not be readable by the public, since even statistical information about a table’s
contents may be considered sensitive (for example: minimum and maximum values of a salary
column). pg_stats is a publicly readable view on pg_statistic that only exposes information about those
tables that are readable by the current user.

Table 3.58 pg_catalog.pg_statistic

column type references description

starelid oid pg_class.oid The table or index that the described
column belongs to.

staattnum int2 pg_attribute.attnum The number of the described column.

stanullfrac float4 The fraction of the column’s entries
that are null.

stawidth int4 The average stored width, in bytes,
of nonnull entries.

stadistinct float4 The number of distinct nonnull data
values in the column. A value greater
than zero is the actual number of
distinct values. A value less than
zero is the negative of a fraction of
the number of rows in the table (for
example, a column in which values
appear about twice on the average
could be represented by stadistinct =
-0.5). A zero value means the
number of distinct values is
unknown.

stakindN int2 A code number indicating the kind of
statistics stored in the Nth slot of the
pg_statistic row.
pg_statistic 426

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
staopN oid pg_operator.oid An operator used to derive the
statistics stored in the Nth slot. For
example, a histogram slot would
show the < operator that defines the
sort order of the data.

stanumbersN float4[] Numerical statistics of the
appropriate kind for the Nth slot, or
NULL if the slot kind does not involve
numerical values.

stavaluesN anyarray Column data values of the
appropriate kind for the Nth slot, or
NULL if the slot kind does not store
any data values. Each array’s
element values are actually of the
specific column’s data type, so there
is no way to define these columns'
type more specifically than anyarray.

Table 3.58 pg_catalog.pg_statistic

column type references description
pg_statistic 427

pg_stat_resqueues 428

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_stat_resqueues
The pg_stat_resqueues view allows administrators to view metrics about a resource queue’s workload
over time. To allow statistics to be collected for this view, you must enable the stats_queue_level
server configuration parameter on the Greenplum Database master instance. Enabling the collection of
these metrics does incur a small performance penalty, as each statement submitted through a resource
queue must be logged in the system catalog tables.

Table 3.59 pg_catalog.pg_stat_resqueues

column type references description

The OID of the resource queue.

The name of the resource queue.

Number of queries submitted for
execution from this resource queue.

Number of queries submitted to this
resource queue that had to wait
before they could execute.

Total elapsed execution time for
statements submitted through this
resource queue.

Total elapsed time that statements
submitted through this resource
queue had to wait before they were
executed.

queueoid oid

queuename name

n_queries_exec bigint

n_queries_wait bigint

elapsed_exec bigint

elapsed_wait bigint

pg_tablespace 429

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_tablespace
The pg_tablespace system catalog table stores information about the available tablespaces. Tables can
be placed in particular tablespaces to aid administration of disk layout. Unlike most system catalogs,
pg_tablespace is shared across all databases of a Greenplum system: there is only one copy of
pg_tablespace per system, not one per database.

Table 3.60 pg_catalog.pg_tablespace

column type references description

Tablespace name.

pg_authid.oid Owner of the tablespace, usually the
user who created it.

Deprecated.

Tablespace access privileges.

Deprecated.

Deprecated.

pg_filespace.oid The object id of the filespace used by
this tablespace. A filespace defines
directory locations on the primary,
mirror and master segments.

spcname name

spcowner oid

spclocation text[]

spcacl aclitem[]

spcprilocations text[]

spcmrilocations text[]

spcfsoid oid

pg_trigger 430

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_trigger
The pg_trigger system catalog table stores triggers on tables.

Table 3.61 pg_catalog.pg_trigger

column type references description

pg_class.oid
Note that
Greenplum
Database does not
enforce referential
integrity.

The table this trigger is on.

Trigger name (must be unique
among triggers of same table).

pg_proc.oid
Note that
Greenplum
Database does not
enforce referential
integrity.

The function to be called.

Bit mask identifying trigger
conditions.

True if trigger is enabled.

True if trigger implements a
referential integrity constraint.

Referential integrity constraint name.

pg_class.oid
Note that
Greenplum
Database does not
enforce referential
integrity.

The table referenced by an
referential integrity constraint.

True if deferrable.

True if initially deferred.

Number of argument strings passed
to trigger function.

Currently unused.

Argument strings to pass to trigger,
each NULL-terminated.

tgrelid oid

tgname name

tgfoid oid

tgtype int2

tgenabled boolean

tgisconstraint boolean

tgconstrname name

tgconstrrelid oid

tgdeferrable boolean

tginitdeferred boolean

tgnargs int2

tgattr int2vector

tgargs bytea

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
pg_type
The pg_type system catalog table stores information about data types. Base types (scalar types) are
created with CREATE TYPE, and domains with CREATE DOMAIN. A composite type is automatically
created for each table in the database, to represent the row structure of the table. It is also possible to
create composite types with CREATE TYPE AS.

Table 3.62 pg_catalog.pg_type

column type references description

typname name Data type name.

typnamespace oid pg_namespace.oid The OID of the namespace that contains this
type.

typowner oid pg_authid.oid Owner of the type.

typlen int2 For a fixed-size type, typlen is the number of
bytes in the internal representation of the type.
But for a variable-length type, typlen is negative.
-1 indicates a ‘varlena’ type (one that has a
length word), -2 indicates a null-terminated C
string.

typbyval boolean Determines whether internal routines pass a
value of this type by value or by reference.
typbyval had better be false if typlen is not 1, 2,
or 4 (or 8 on machines where Datum is 8 bytes).
Variable-length types are always passed by
reference. Note that typbyval can be false even
if the length would allow pass-by-value; this is
currently true for type float4, for example.

typtype char b for a base type, c for a composite type, d for a
domain, or p for a pseudo-type.

typisdefined boolean True if the type is defined, false if this is a
placeholder entry for a not-yet-defined type.
When false, nothing except the type name,
namespace, and OID can be relied on.

typdelim char Character that separates two values of this type
when parsing array input. Note that the delimiter
is associated with the array element data type,
not the array data type.

typrelid oid pg_class.oid If this is a composite type, then this column
points to the pg_class entry that defines the
corresponding table. (For a free-standing
composite type, the pg_class entry does not
really represent a table, but it is needed anyway
for the type’s pg_attribute entries to link to.) Zero
for non-composite types.
pg_type 431

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
typelem oid pg_type.oid If not 0 then it identifies another row in pg_type.
The current type can then be subscripted like an
array yielding values of type typelem. A true
array type is variable length (typlen = -1), but
some fixed-length (typlen > 0) types also have
nonzero typelem, for example name and point.
If a fixed-length type has a typelem then its
internal representation must be some number of
values of the typelem data type with no other
data. Variable-length array types have a header
defined by the array subroutines.

typinput regproc pg_proc.oid Input conversion function (text format).

typoutput regproc pg_proc.oid Output conversion function (text format).

typreceive regproc pg_proc.oid Input conversion function (binary format), or 0 if
none.

typsend regproc pg_proc.oid Output conversion function (binary format), or 0
if none.

typanalyze regproc pg_proc.oid Custom ANALYZE function, or 0 to use the
standard function.

typalign char The alignment required when storing a value of
this type. It applies to storage on disk as well as
most representations of the value inside
Greenplum Database. When multiple values are
stored consecutively, such as in the
representation of a complete row on disk,
padding is inserted before a datum of this type
so that it begins on the specified boundary. The
alignment reference is the beginning of the first
datum in the sequence. Possible values are:
c = char alignment (no alignment needed).
s = short alignment (2 bytes on most machines).
i = int alignment (4 bytes on most machines).
d = double alignment (8 bytes on many
machines, but not all).

typstorage char For varlena types (those with typlen = -1) tells if
the type is prepared for toasting and what the
default strategy for attributes of this type should
be. Possible values are:
p: Value must always be stored plain.
e: Value can be stored in a secondary relation (if
relation has one, see pg_class.reltoastrelid).
m: Value can be stored compressed inline.
x: Value can be stored compressed inline or
stored in secondary storage.
Note that m columns can also be moved out to
secondary storage, but only as a last resort (e
and x columns are moved first).

typnotnull boolean Represents a not-null constraint on a type. Used
for domains only.

Table 3.62 pg_catalog.pg_type

column type references description
pg_type 432

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
typbasetype oid pg_type.oid Identifies the type that a domain is based on.
Zero if this type is not a domain.

typtypmod int4 Domains use typtypmod to record the typmod to
be applied to their base type (-1 if base type
does not use a typmod). -1 if this type is not a
domain.

typndims int4 The number of array dimensions for a domain
that is an array (if typbasetype is an array type;
the domain’s typelem will match the base type’s
typelem). Zero for types other than array
domains.

typdefaultbin text If not null, it is the nodeToString()
representation of a default expression for the
type. This is only used for domains.

typdefault text Null if the type has no associated default value.
If not null, typdefault must contain a
human-readable version of the default
expression represented by typdefaultbin. If
typdefaultbin is null and typdefault is not, then
typdefault is the external representation of the
type’s default value, which may be fed to the
type’s input converter to produce a constant.

Table 3.62 pg_catalog.pg_type

column type references description
pg_type 433

pg_type_encoding 434

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_type_encoding
The pg_type_encoding system catalog table contains the column storage type information.

Table 3.63 pg_catalog.pg_type_encoding

column type modifers storage description

not null plain Foreign key to pg_attribute

extended The actual options

typeid oid

typoptions text []

pg_user_mapping 435

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference

pg_user_mapping
The pg_user_mapping catalog stores the mappings from local users to remote users. You must have
administrator privileges to view this catalog.

Table 3.1 pg_catalog.pg_user_mapping

column type references description

pg_authid.oid OID of the local role being mapped, 0 if the user
mapping is public

pg_foreign_server.oid The OID of the foreign server that contains this
mapping

User mapping specific options, as "keyword=value"
strings.

umuser oid

umserver oid

umoptions text []

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
pg_window
The pg_window table stores information about window functions. Window functions are often used to
compose complex OLAP (online analytical processing) queries. Window functions are applied to
partitioned result sets within the scope of a single query expression. A window partition is a subset of
rows returned by a query, as defined in a special OVER() clause. Typical window functions are rank,
dense_rank, and row_number. Each entry in pg_window is an extension of an entry in pg_proc. The
pg_proc entry carries the window function’s name, input and output data types, and other information
that is similar to ordinary functions.

Table 3.2 pg_catalog.pg_window

column type references description

winfnoid regproc pg_proc.oid The OID in pg_proc of the window
function.

winrequireorder boolean The window function requires its
window specification to have an
ORDER BY clause.

winallowframe boolean The window function permits its
window specification to have a ROWS
or RANGE framing clause.

winpeercount boolean The peer group row count is required
to compute this window function, so
the Window node implementation
must ‘look ahead’ as necessary to
make this available in its internal
state.

wincount boolean The partition row count is required to
compute this window function.

winfunc regproc pg_proc.oid The OID in pg_proc of a function to
compute the value of an
immediate-type window function.

winprefunc regproc pg_proc.oid The OID in pg_proc of a preliminary
window function to compute the
partial value of a deferred-type
window function.

winpretype oid pg_type.oid The OID in pg_type of the
preliminary window function’s result
type.
pg_window 436

Greenplum Database Reference Guide 4.2– Chapter 3: System Catalog Reference
winfinfunc regproc pg_proc.oid The OID in pg_proc of a function to
compute the final value of a
deferred-type window function from
the partition row count and the result
of winprefunc.

winkind char A character indicating membership of
the window function in a class of
related functions:
w - ordinary window functions
n - NTILE functions
f - FIRST_VALUE functions
l - LAST_VALUE functions
g - LAG functions
d - LEAD functions

Table 3.2 pg_catalog.pg_window

column type references description
pg_window 437

Greenplum Database Reference Guide 4.2– Chapter 4: Greenplum Environment Variables
4. Greenplum Environment Variables

This reference lists and describes the environment variables to set for Greenplum
Database. Set these in your user’s startup shell profile (such as ~/.bashrc or
~/.bash_profile), or in /etc/profile if you want to set them for all users.

Required Environment Variables

Note: GPHOME, PATH and LD_LIBRARY_PATH can be set by sourcing the
greenplum_path.sh file from your Greenplum Database installation directory.

GPHOME

This is the installed location of your Greenplum Database software. For example:

GPHOME=/usr/local/greenplum-db-4.1.x.x

export GPHOME

PATH

Your PATH environment variable should point to the location of the Greenplum
Database bin directory. Solaris users must also add /usr/sfw/bin and
/opt/sfw/bin to their PATH. For example:

PATH=$GPHOME/bin:$PATH

PATH=$GPHOME/bin:/usr/local/bin:/usr/sbin:/usr/sfw/bin:/opt/sfw/b
in:$PATH

export PATH

LD_LIBRARY_PATH

The LD_LIBRARY_PATH environment variable should point to the location of the
Greenplum Database/PostgreSQL library files. For Solaris, this also points to the
GNU compiler and readline library files as well (readline libraries may be required for
Python support on Solaris). For example:

LD_LIBRARY_PATH=$GPHOME/lib

LD_LIBRARY_PATH=$GPHOME/lib:/usr/sfw/lib

export LD_LIBRARY_PATH

MASTER_DATA_DIRECTORY

This should point to the directory created by the gpinitsystem utility in the master
data directory location. For example:

MASTER_DATA_DIRECTORY=/data/master/gpseg-1

export MASTER_DATA_DIRECTORY
Required Environment Variables 438

Greenplum Database Reference Guide 4.2– Chapter 4: Greenplum Environment Variables
Optional Environment Variables
The following are standard PostgreSQL environment variables, which are also
recognized in Greenplum Database. You may want to add the connection-related
environment variables to your profile for convenience, so you do not have to type so
many options on the command line for client connections. Note that these
environment variables should be set on the Greenplum Database master host only.

PGAPPNAME

The name of the application that is usually set by an application when it connects to
the server. This name is displayed in the activity view and in log entries. The
PGAPPNAME environmental variable behaves the same as the application_name
connection parameter. The default value for application_name is psql. The name
cannot be longer than 63 characters.

PGDATABASE

The name of the default database to use when connecting.

PGHOST

The Greenplum Database master host name.

PGHOSTADDR

The numeric IP address of the master host. This can be set instead of or in addition to
PGHOST to avoid DNS lookup overhead.

PGPASSWORD

The password used if the server demands password authentication. Use of this
environment variable is not recommended for security reasons (some operating
systems allow non-root users to see process environment variables via ps). Instead
consider using the ~/.pgpass file.

PGPASSFILE

The name of the password file to use for lookups. If not set, it defaults to ~/.pgpass.
See the section about The Password File in the PostgreSQL documentation for more
information.

PGOPTIONS

Sets additional configuration parameters for the Greenplum Database master server.

PGPORT

The port number of the Greenplum Database server on the master host. The default
port is 5432.

PGUSER

The Greenplum Database user name used to connect.

PGDATESTYLE

Sets the default style of date/time representation for a session. (Equivalent to SET
datestyle TO)
Optional Environment Variables 439

http://www.postgresql.org/docs/8.2/static/libpq-pgpass.html

Greenplum Database Reference Guide 4.2– Chapter 4: Greenplum Environment Variables
PGTZ

Sets the default time zone for a session. (Equivalent to SET timezone TO)

PGCLIENTENCODING

Sets the default client character set encoding for a session. (Equivalent to SET
client_encoding TO)
Optional Environment Variables 440

Greenplum Database Reference Guide 4.2 – Chapter 5: The gp_toolkit Administrative Schema
5. The gp_toolkit Administrative Schema

Greenplum provides an administrative schema called gp_toolkit that you can use to
query the system catalogs, log files, and operating environment for system status
information. The gp_toolkit schema contains a number of views that you can access
using SQL commands. The gp_toolkit schema is accessible to all database users,
although some objects may require superuser permissions. For convenience, you may
want to add the gp_toolkit schema to your schema search path. For example:

=> ALTER ROLE myrole SET search_path TO myschema,gp_toolkit;

This documentation describes the most useful views in gp_toolkit. You may notice
other objects (views, functions, and external tables) within the gp_toolkit schema that
are not described in this documentation (these are supporting objects to the views
described in this section).

Checking for Tables that Need Routine Maintenance
The following views can help identify tables that need routine table maintenance
(VACUUM and/or ANALYZE).

• gp_bloat_diag
• gp_stats_missing
The VACUUM or VACUUM FULL command reclaims disk space occupied by deleted or
obsolete rows. Because of the MVCC transaction concurrency model used in
Greenplum Database, data rows that are deleted or updated still occupy physical space
on disk even though they are not visible to any new transactions. Expired rows
increase table size on disk and eventually slow down scans of the table.

The ANALYZE command collects column-level statistics needed by the query planner.
Greenplum Database uses a cost-based query planner that relies on database statistics.
Accurate statistics allow the query planner to better estimate selectivity and the
number of rows retrieved by a query operation in order to choose the most efficient
query plan.
Checking for Tables that Need Routine Maintenance 441

Greenplum Database Reference Guide 4.2 – Chapter 5: The gp_toolkit Administrative Schema
gp_bloat_diag

This view shows tables that have bloat (the actual number of pages on disk exceeds
the expected number of pages given the table statistics). Tables that are bloated require
a VACUUM or a VACUUM FULL in order to reclaim disk space occupied by deleted or
obsolete rows. This view is accessible to all users, however non-superusers will only
be able to see the tables that they have permission to access.

Table 5.1 gp_bloat_diag view

Column Description

bdirelid Table object id.

bdinspname Schema name.

bdirelname Table name.

bdirelpages Actual number of pages on disk.

bdiexppages Expected number of pages given the table data.

bdidiag Bloat diagnostic message.

gp_stats_missing

This view shows tables that do not have statistics and therefore may require an
ANALYZE be run on the table.

Table 5.2 gp_stats_missing view

Column Description

smischema Schema name.

smitable Table name.

smisize Does this table have statistics? False if the table does not have row
count and row sizing statistics recorded in the system catalog, which
may indicate that the table needs to be analyzed. This will also be
false if the table does not contain any rows. For example, the parent
tables of partitioned tables are always empty and will always return a
false result.

smicols Number of columns in the table.

smirecs Number of rows in the table.

Checking for Locks
When a transaction accesses a relation (such as a table), it acquires a lock. Depending
on the type of lock acquired, subsequent transactions may have to wait before they can
access the same relation. For more information on the types of locks, see the
Greenplum Database Database Administrator Guide. Greenplum Database resource
queues (used for workload management) also use locks to control the admission of
queries into the system.
Checking for Locks 442

Greenplum Database Reference Guide 4.2 – Chapter 5: The gp_toolkit Administrative Schema
The gp_locks_* family of views can help diagnose queries and sessions that are
waiting to access an object due to a lock.

• gp_locks_on_relation
• gp_locks_on_resqueue

gp_locks_on_relation

This view shows any locks currently being held on a relation, and the associated
session information about the query associated with the lock. For more information on
the types of locks, see the Greenplum Database Database Administrator Guide. This
view is accessible to all users, however non-superusers will only be able to see the
locks for relations that they have permission to access.

Table 5.3 gp_locks_on_relation view

Column Description

lorlocktype Type of the lockable object: relation, extend, page, tuple,
transactionid, object, userlock, resource queue, or
advisory

lordatabase Object ID of the database in which the object exists, zero if the object
is a shared object.

lorrelname The name of the relation.

lorrelation The object ID of the relation.

lortransaction The transaction ID that is affected by the lock.

lorpid Process ID of the server process holding or awaiting this lock. NULL
if the lock is held by a prepared transaction.

lormode Name of the lock mode held or desired by this process.

lorgranted Displays whether the lock is granted (true) or not granted (false).

lorcurrentquery The current query in the session.

gp_locks_on_resqueue

This view shows any locks currently being held on a resource queue, and the
associated session information about the query associated with the lock. This view is
accessible to all users, however non-superusers will only be able to see the locks
associated with their own sessions.

Table 5.4 gp_locks_on_resqueue view

Column Description

lorusename Name of the user executing the session.

lorrsqname The resource queue name.

lorlocktype Type of the lockable object: resource queue

lorobjid The ID of the locked transaction.

lortransaction The ID of the transaction that is affected by the lock.
Checking for Locks 443

Greenplum Database Reference Guide 4.2 – Chapter 5: The gp_toolkit Administrative Schema
Viewing Greenplum Database Server Log Files
Each component of a Greenplum Database system (master, standby master, primary
segments, and mirror segments) keeps its own server log files. The gp_log_* family of
views allows you to issue SQL queries against the server log files to find particular
entries of interest. The use of these views require superuser permissions.

• gp_log_command_timings
• gp_log_database
• gp_log_master_concise
• gp_log_system

gp_log_command_timings

This view uses an external table to read the log files on the master and report the
execution time of SQL commands executed in a database session. The use of this view
requires superuser permissions.

Table 5.5 gp_log_command_timings view

Column Description

logsession The session identifier (prefixed with "con").

logcmdcount The command number within a session (prefixed with "cmd").

logdatabase The name of the database.

loguser The name of the database user.

logpid The process id (prefixed with "p").

logtimemin The time of the first log message for this command.

logtimemax The time of the last log message for this command.

logduration Statement duration from start to end time.

lorpid The process ID of the transaction that is affected by the lock.

lormode The name of the lock mode held or desired by this process.

lorgranted Displays whether the lock is granted (true) or not granted (false).

lorwaiting Displays whether or not the session is waiting.

Table 5.4 gp_locks_on_resqueue view

Column Description
Viewing Greenplum Database Server Log Files 444

Greenplum Database Reference Guide 4.2 – Chapter 5: The gp_toolkit Administrative Schema
gp_log_database

This view uses an external table to read the server log files of the entire Greenplum
system (master, segments, and mirrors) and lists log entries associated with the current
database. Associated log entries can be identified by the session id (logsession) and
command id (logcmdcount). The use of this view requires superuser permissions.

Table 5.6 gp_log_database view

Column Description

logtime The timestamp of the log message.

loguser The name of the database user.

logdatabase The name of the database.

logpid The associated process id (prefixed with "p").

logthread The associated thread count (prefixed with "th").

loghost The segment or master host name.

logport The segment or master port.

logsessiontime Time session connection was opened.

logtransaction Global transaction id.

logsession The session identifier (prefixed with "con").

logcmdcount The command number within a session (prefixed with "cmd").

logsegment The segment content identifier (prefixed with "seg" for primary or
"mir" for mirror. The master always has a content id of -1).

logslice The slice id (portion of the query plan being executed).

logdistxact Distributed transaction id.

loglocalxact Local transaction id.

logsubxact Subtransaction id.

logseverity LOG, ERROR, FATAL, PANIC, DEBUG1 or DEBUG2.

logstate SQL state code associated with the log message.

logmessage Log or error message text.

logdetail Detail message text associated with an error message.

loghint Hint message text associated with an error message.

logquery The internally-generated query text.

logquerypos The cursor index into the internally-generated query text.

logcontext The context in which this message gets generated.

logdebug Query string with full detail for debugging.

logcursorpos The cursor index into the query string.

logfunction The function in which this message is generated.

logfile The log file in which this message is generated.
Viewing Greenplum Database Server Log Files 445

Greenplum Database Reference Guide 4.2 – Chapter 5: The gp_toolkit Administrative Schema
gp_log_master_concise

This view uses an external table to read a subset of the log fields from the master log
file. The use of this view requires superuser permissions.

Table 5.7 gp_log_master_concise view

Column Description

logtime The timestamp of the log message.

logdatabase The name of the database.

logsession The session identifier (prefixed with "con").

logcmdcount The command number within a session (prefixed with "cmd").

logmessage Log or error message text.

gp_log_system

This view uses an external table to read the server log files of the entire Greenplum
system (master, segments, and mirrors) and lists all log entries. Associated log entries
can be identified by the session id (logsession) and command id (logcmdcount). The
use of this view requires superuser permissions.

logline The line in the log file in which this message is generated.

logstack Full text of the stack trace associated with this message.

Table 5.8 gp_log_system view

Column Description

logtime The timestamp of the log message.

loguser The name of the database user.

logdatabase The name of the database.

logpid The associated process id (prefixed with "p").

logthread The associated thread count (prefixed with "th").

loghost The segment or master host name.

logport The segment or master port.

logsessiontime Time session connection was opened.

logtransaction Global transaction id.

logsession The session identifier (prefixed with "con").

logcmdcount The command number within a session (prefixed with "cmd").

logsegment The segment content identifier (prefixed with "seg" for primary or
"mir" for mirror. The master always has a content id of -1).

Table 5.6 gp_log_database view

Column Description
Viewing Greenplum Database Server Log Files 446

Greenplum Database Reference Guide 4.2 – Chapter 5: The gp_toolkit Administrative Schema
Checking Server Configuration Files
Each component of a Greenplum Database system (master, standby master, primary
segments, and mirror segments) has its own server configuration file
(postgresql.conf). The following gp_toolkit objects can be used to check
parameter settings across all primary postgresql.conf files in the system:

• gp_param_setting('parameter_name')
• gp_param_settings_seg_value_diffs

logslice The slice id (portion of the query plan being executed).

logdistxact Distributed transaction id.

loglocalxact Local transaction id.

logsubxact Subtransaction id.

logseverity LOG, ERROR, FATAL, PANIC, DEBUG1 or DEBUG2.

logstate SQL state code associated with the log message.

logmessage Log or error message text.

logdetail Detail message text associated with an error message.

loghint Hint message text associated with an error message.

logquery The internally-generated query text.

logquerypos The cursor index into the internally-generated query text.

logcontext The context in which this message gets generated.

logdebug Query string with full detail for debugging.

logcursorpos The cursor index into the query string.

logfunction The function in which this message is generated.

logfile The log file in which this message is generated.

logline The line in the log file in which this message is generated.

logstack Full text of the stack trace associated with this message.

Table 5.8 gp_log_system view

Column Description
Checking Server Configuration Files 447

Greenplum Database Reference Guide 4.2 – Chapter 5: The gp_toolkit Administrative Schema
gp_param_setting('parameter_name')

This function takes the name of a server configuration parameter and returns the
postgresql.conf value for the master and each active segment. This function is
accessible to all users.

Table 5.9 gp_param_setting('parameter_name') function

Column Description

paramsegment The segment content id (only active segments are shown). The
master content id is always -1.

paramname The name of the parameter.

paramvalue The value of the parameter.

Example:

SELECT * FROM gp_param_setting('max_connections');

gp_param_settings_seg_value_diffs

Server configuration parameters that are classified as local parameters (meaning each
segment gets the parameter value from its own postgresql.conf file), should be set
identically on all segments. This view shows local parameter settings that are
inconsistent. Parameters that are supposed to have different values (such as port) are
not included. This view is accessible to all users.

Table 5.10 gp_param_settings_seg_value_diffs view

Column Description

psdname The name of the parameter.

psdvalue The value of the parameter.

psdcount The number of segments that have this value.

Checking for Failed Segments
The gp_pgdatabase_invalid view can be used to check for down segments.

gp_pgdatabase_invalid

This view shows information about segments that are marked as down in the system
catalog. This view is accessible to all users.

Table 5.11 gp_pgdatabase_invalid view

Column Description

pgdbidbid The segment dbid. Every segment has a unique dbid.

pgdbiisprimary Is the segment currently acting as the primary (active) segment? (t or f)
Checking for Failed Segments 448

Greenplum Database Reference Guide 4.2 – Chapter 5: The gp_toolkit Administrative Schema
Checking Resource Queue Activity and Status
The purpose of resource queues is to limit the number of active queries in the system
at any given time in order to avoid exhausting system resources such as memory,
CPU, and disk I/O. All database users are assigned to a resource queue, and every
statement submitted by a user is first evaluated against the resource queue limits
before it can run. The gp_resq_* family of views can be used to check the status of
statements currently submitted to the system through their respective resource queue.
Note that statements issued by superusers are exempt from resource queuing.

• gp_resq_activity
• gp_resq_activity_by_queue
• gp_resq_priority_statement
• gp_resq_role
• gp_resqueue_status

gp_resq_activity

For the resource queues that have active workload, this view shows one row for each
active statement submitted through a resource queue. This view is accessible to all
users.

Table 5.12 gp_resq_activity view

Column Description

resqprocpid Process ID assigned to this statement (on the master).

resqrole User name.

resqoid Resource queue object id.

resqname Resource queue name.

resqstart Time statement was issued to the system.

resqstatus Status of statement: running, waiting or cancelled.

pgdbicontent The content id of this segment. A primary and mirror will have the same
content id.

pgdbivalid Is this segment up and valid? (t or f)

pgdbidefinedprimary Was this segment assigned the role of primary at system initialization time?
(t or f)

Table 5.11 gp_pgdatabase_invalid view

Column Description
Checking Resource Queue Activity and Status 449

Greenplum Database Reference Guide 4.2 – Chapter 5: The gp_toolkit Administrative Schema
gp_resq_activity_by_queue

For the resource queues that have active workload, this view shows a summary of
queue activity. This view is accessible to all users.

Table 5.13 gp_resq_activity_by_queue Column

Column Description

resqoid Resource queue object id.

resqname Resource queue name.

resqlast Time of the last statement issued to the queue.

resqstatus Status of last statement: running, waiting or cancelled.

resqtotal Total statements in this queue.

gp_resq_priority_statement

This view shows the resource queue priority, session ID, and other information for all
statements currently running in the Greenplum Database system. This view is
accessible to all users.

Table 5.14 gp_resq_priority_statement view

Column Description

rqpdatname The database name that the session is connected to.

rqpusename The user who issued the statement.

rqpsession The session ID.

rqpcommand The number of the statement within this session (the command id and
session id uniquely identify a statement).

rqppriority The resource queue priority for this statement (MAX, HIGH,
MEDIUM, LOW).

rqpweight An integer value associated with the priority of this statement.

rqpquery The query text of the statement.

gp_resq_role

This view shows the resource queues associated with a role. This view is accessible to
all users.

Table 5.15 gp_resq_role view

Column Description

rrrolname Role (user) name.

rrrsqname The resource queue name assigned to this role. If a role has not been
explicitly assigned to a resource queue, it will be in the default
resource queue (pg_default).
Checking Resource Queue Activity and Status 450

Greenplum Database Reference Guide 4.2 – Chapter 5: The gp_toolkit Administrative Schema
gp_resqueue_status

This view allows administrators to see status and activity for a workload management
resource queue. It shows how many queries are waiting to run and how many queries
are currently active in the system from a particular resource queue.

Table 5.16 gp_resqueue_status view

Column Description

The ID of the resource queue.

The name of the resource queue.

The active query threshold of the resource queue.
A value of -1 means no limit.

The number of active query slots currently being
used in the resource queue.

The query cost threshold of the resource queue. A
value of -1 means no limit.

The total cost of all statements currently in the
resource queue.

The memory limit for the resource queue.

The total memory used by all statements currently
in the resource queue.

The number of statements currently waiting in the
resource queue.

The number of statements currently running on the
system from this resource queue.

Viewing Users and Groups (Roles)
It is frequently convenient to group users (roles) together to ease management of
object privileges: that way, privileges can be granted to, or revoked from, a group as a
whole. In Greenplum Database this is done by creating a role that represents the
group, and then granting membership in the group role to individual user roles.

The gp_roles_assigned view can be used to see all of the roles in the system, and their
assigned members (if the role is also a group role).

queueid

rsqname

rsqcountlimit

rsqcountvalue

rsqcostlimit

rsqcostvalue

rsqmemorylimit

rsqmemoryvalue

rsqwaiters

rsqholders
Viewing Users and Groups (Roles) 451

Greenplum Database Reference Guide 4.2 – Chapter 5: The gp_toolkit Administrative Schema
gp_roles_assigned

This view shows all of the roles in the system, and their assigned members (if the role
is also a group role). This view is accessible to all users.

Table 5.17 gp_roles_assigned view

Column Description

raroleid The role object ID. If this role has members (users), it is considered
a group role.

rarolename The role (user or group) name.

ramemberid The role object ID of the role that is a member of this role.

ramembername Name of the role that is a member of this role.

Checking Database Object Sizes and Disk Space
The gp_size_* family of views can be used to determine the disk space usage for a
distributed Greenplum database, schema, table, or index. The following views
calculate the total size of an object across all primary segments (mirrors are not
included in the size calculations).

• gp_size_of_all_table_indexes
• gp_size_of_database
• gp_size_of_index
• gp_size_of_partition_and_indexes_disk
• gp_size_of_schema_disk
• gp_size_of_table_and_indexes_disk
• gp_size_of_table_and_indexes_licensing
• gp_size_of_table_disk
• gp_size_of_table_uncompressed
• gp_disk_free
The table and index sizing views list the relation by object ID (not by name). To check
the size of a table or index by name, you must look up the relation name (relname) in
the pg_class table. For example:

SELECT relname as name, sotdsize as size, sotdtoastsize as
toast, sotdadditionalsize as other

FROM gp_size_of_table_disk as sotd, pg_class

WHERE sotd.sotdoid=pg_class.oid ORDER BY relname;
Checking Database Object Sizes and Disk Space 452

Greenplum Database Reference Guide 4.2 – Chapter 5: The gp_toolkit Administrative Schema
gp_size_of_all_table_indexes

This view shows the total size of all indexes for a table. This view is accessible to all
users, however non-superusers will only be able to see relations that they have
permission to access.

Table 5.18 gp_size_of_all_table_indexes view

Column Description

soatioid The object ID of the table

soatisize The total size of all table indexes in bytes

soatischemaname The schema name

soatitablename The table name

gp_size_of_database

This view shows the total size of a database. This view is accessible to all users,
however non-superusers will only be able to see databases that they have permission
to access.

Table 5.19 gp_size_of_database view

Column Description

sodddatname The name of the database

sodddatsize The size of the database in bytes

gp_size_of_index

This view shows the total size of an index. This view is accessible to all users,
however non-superusers will only be able to see relations that they have permission to
access.

Table 5.20 gp_size_of_index view

Column Description

soioid The object ID of the index

soitableoid The object ID of the table to which the index belongs

soisize The size of the index in bytes

soiindexschemaname The name of the index schema

soiindexname The name of the index

soitableschemaname The name of the table schema

soitablename The name of the table
Checking Database Object Sizes and Disk Space 453

Greenplum Database Reference Guide 4.2 – Chapter 5: The gp_toolkit Administrative Schema
gp_size_of_partition_and_indexes_disk

This view shows the size on disk of partitioned child tables and their indexes. This
view is accessible to all users, however non-superusers will only be able to see
relations that they have permission to access..

Table 5.21 gp_size_of_partition_and_indexes_disk view

Column Description

sopaidparentoid The object ID of the parent table

sopaidpartitionoid The object ID of the partition table

sopaidpartitiontablesize The partition table size in bytes

sopaidpartitionindexessize The total size of all indexes on this partition

Sopaidparentschemaname The name of the parent schema

Sopaidparenttablename The name of the parent table

Sopaidpartitionschemaname The name of the partition schema

sopaidpartitiontablename The name of the partition table

gp_size_of_schema_disk

This view shows schema sizes for the schemas in the current database. This view is
accessible to all users, however non-superusers will only be able to see schemas that
they have permission to access.

Table 5.22 gp_size_of_schema_disk view

Column Description

sosdnsp The name of the schema

sosdschematablesize The total size of tables in the schema in bytes

sosdschemaidxsize The total size of indexes in the schema in bytes

gp_size_of_table_and_indexes_disk

This view shows the size on disk of tables and their indexes. This view is accessible to
all users, however non-superusers will only be able to see relations that they have
permission to access.

Table 5.23 gp_size_of_table_and_indexes_disk view

Column Description

sotaidoid The object ID of the parent table

sotaidtablesize The disk size of the table

sotaididxsize The total size of all indexes on the table

sotaidschemaname The name of the schema

sotaidtablename The name of the table

Checking Database Object Sizes and Disk Space 454

Greenplum Database Reference Guide 4.2 – Chapter 5: The gp_toolkit Administrative Schema
gp_size_of_table_and_indexes_licensing

This view shows the total size of tables and their indexes for licensing purposes. The
use of this view requires superuser permissions.

Table 5.24 gp_size_of_table_and_indexes_licensing view

Column Description

sotailoid The object ID of the table

sotailtablesizedisk The total disk size of the table

sotailtablesizeuncompressed If the table is a compressed append-only table,
shows the uncompressed table size in bytes.

sotailindexessize The total size of all indexes in the table

sotailschemaname The schema name

sotailtablename The table name

gp_size_of_table_disk

This view shows the size of a table on disk. This view is accessible to all users,
however non-superusers will only be able to see tables that they have permission to
access

Table 5.25 gp_size_of_table_disk view

Column Description

sotdoid The object ID of the table

sotdsize The total size of the table in bytes (main relation, plus oversized
(toast) attributes, plus additional storage objects for AO tables).

sotdtoastsize The size of the TOAST table (oversized attribute storage), if there is
one.

sotdadditionalsize Reflects the segment and block directory table sizes for append-only
(AO) tables.

sotdschemaname The schema name

sotdtablename The table name

gp_size_of_table_uncompressed

This view shows the uncompressed table size for append-only (AO) tables. Otherwise,
the table size on disk is shown. The use of this view requires superuser permissions.

Table 5.26 gp_size_of_table_uncompressed view

Column Description

sotuoid The object ID of the table

sotusize The uncomressed size of the table in bytes if it is a compressed AO
table. Otherwise, the table size on disk.
Checking Database Object Sizes and Disk Space 455

Greenplum Database Reference Guide 4.2 – Chapter 5: The gp_toolkit Administrative Schema
gp_disk_free

This external table runs the df (disk free) command on the active segment hosts and
reports back the results. Inactive mirrors are not included in the calculation. The use of
this external table requires superuser permissions.

Table 5.27 gp_disk_free external table

Column Description

dfsegment The content id of the segment (only active segments are
shown)

dfhostname The hostname of the segment host

dfdevice The device name

dfspace Free disk space in the segment file system in kilobytes

Checking for Uneven Data Distribution
All tables in Greenplum Database are distributed, meaning their data is divided across
all of the segments in the system. If the data is not distributed evenly, then query
processing performance may suffer. The following views can help diagnose if a table
has uneven data distribution:

• gp_skew_coefficients
• gp_skew_idle_fractions

gp_skew_coefficients

This view shows data distribution skew by calculating the coefficient of variation
(CV) for the data stored on each segment. This view is accessible to all users, however
non-superusers will only be able to see tables that they have permission to access

Table 5.28 gp_skew_coefficients view

Column Description

skcoid The object id of the table.

skcnamespace The namespace where the table is defined.

skcrelname The table name.

skccoeff The coefficient of variation (CV) is calculated as the standard
deviation divided by the average. It takes into account both the
average and variability around the average of a data series. The
lower the value, the better. Higher values indicate greater data skew.

sotuschemaname The schema name

sotutablename The table name

Table 5.26 gp_size_of_table_uncompressed view

Column Description
Checking for Uneven Data Distribution 456

Greenplum Database Reference Guide 4.2 – Chapter 5: The gp_toolkit Administrative Schema
gp_skew_idle_fractions

This view shows data distribution skew by calculating the percentage of the system
that is idle during a table scan, which is an indicator of processing data skew. This
view is accessible to all users, however non-superusers will only be able to see tables
that they have permission to access

Table 5.29 gp_skew_idle_fractions view

Column Description

sifoid The object id of the table.

sifnamespace The namespace where the table is defined.

sifrelname The table name.

siffraction The percentage of the system that is idle during a table scan, which is
an indicator of uneven data distribution or query processing skew. For
example, a value of 0.1 indicates 10% skew, a value of 0.5 indicates
50% skew, and so on. Tables that have more than 10% skew should
have their distribution policies evaluated.
Checking for Uneven Data Distribution 457

Greenplum Database Reference Guide 4.2– Chapter 6: Greenplum Database Data Types
6. Greenplum Database Data Types

Greenplum Database has a rich set of native data types available to users. Users may
also define new data types using the CREATE TYPE command. This reference shows
all of the built-in data types. In addition to the types listed here, there are also some
internally used data types, such as oid (object identifier), but those are not documented
in this guide.

The following data types are specified by SQL: bit, bit varying, boolean, character
varying, varchar, character, char, date, double precision, integer, interval, numeric,
decimal, real, smallint, time (with or without time zone), and timestamp (with or
without time zone).

Each data type has an external representation determined by its input and output
functions. Many of the built-in types have obvious external formats. However, several
types are either unique to PostgreSQL (and Greenplum Database), such as geometric
paths, or have several possibilities for formats, such as the date and time types. Some
of the input and output functions are not invertible. That is, the result of an output
function may lose accuracy when compared to the original input.

Table 6.1 Greenplum Database Built-in Data Types

Name1 Alias Size Range Description

bigint int8 8 bytes -9223372036854775808
to
9223372036854775807

large range integer

bigserial serial8 8 bytes 1 to
9223372036854775807

large autoincrementing integer

bit [(n)] n bits bit string constant fixed-length bit string

bit varying [(n)] varbit actual
number of
bits

bit string constant variable-length bit string

boolean bool 1 byte true/false, t/f, yes/no,
y/n, 1/0

logical boolean (true/false)

box 32 bytes ((x1,y1),(x2,y2)) rectangular box in the plane - not
allowed in distribution key
columns.

bytea 1 byte +
binary
string

sequence of octets variable-length binary string

character [(n)] char [(n)] 1 byte + n strings up to n
characters in length

fixed-length, blank padded

character varying [(n)] varchar [(n)] 1 byte +
string size

strings up to n
characters in length

variable-length with limit

cidr 12 or 24
bytes

IPv4 and IPv6 networks
Greenplum Data Types 458

http://www.postgresql.org/docs/8.2/static/sql-syntax.html#SQL-SYNTAX-BIT-STRINGS
http://www.postgresql.org/docs/8.2/static/sql-syntax.html#SQL-SYNTAX-BIT-STRINGS
http://www.postgresql.org/docs/8.2/static/datatype-binary.html#DATATYPE-BINARY-SQLESC

Greenplum Database Reference Guide 4.2– Chapter 6: Greenplum Database Data Types
circle 24 bytes <(x,y),r> (center and
radius)

circle in the plane - not allowed in
distribution key columns.

date 4 bytes 4713 BC - 294,277 AD calendar date (year, month, day)

decimal [(p, s)] numeric [(p, s)] variable no limit user-specified precision, exact

double precision float8
float

8 bytes 15 decimal digits
precision

variable-precision, inexact

inet 12 or 24
bytes

IPv4 and IPv6 hosts and
networks

integer int, int4 4 bytes -2147483648 to
+2147483647

usual choice for integer

interval [(p)] 12 bytes -178000000 years -
178000000 years

time span

lseg 32 bytes ((x1,y1),(x2,y2)) line segment in the plane - not
allowed in distribution key
columns.

macaddr 6 bytes MAC addresses

money 4 bytes -21474836.48 to
+21474836.47

currency amount

path 16+16n
bytes

[(x1,y1),...] geometric path in the plane - not
allowed in distribution key
columns.

point 16 bytes (x,y) geometric point in the plane - not
allowed in distribution key
columns.

polygon 40+16n
bytes

((x1,y1),...) closed geometric path in the
plane - not allowed in distribution
key columns.

real float4 4 bytes 6 decimal digits
precision

variable-precision, inexact

serial serial4 4 bytes 1 to 2147483647 autoincrementing integer

smallint int2 2 bytes -32768 to +32767 small range integer

text 1 byte +
string size

strings of any length variable unlimited length

time [(p)] [without
time zone]

8 bytes 00:00:00[.000000] -
24:00:00[.000000]

time of day only

time [(p)] with time
zone

timetz 12 bytes 00:00:00+1359 -
24:00:00-1359

time of day only, with time zone

timestamp [(p)] [
without time zone]

8 bytes 4713 BC - 294,277 AD both date and time

Table 6.1 Greenplum Database Built-in Data Types

Name1 Alias Size Range Description
Greenplum Data Types 459

Greenplum Database Reference Guide 4.2– Chapter 6: Greenplum Database Data Types
timestamp [(p)] with
time zone

timestamptz 8 bytes 4713 BC - 294,277 AD both date and time, with time
zone

xml 1 byte +
xml size

xml of any length variable unlimited length

1. For variable length data types (such as char, varchar, text, xml, etc.) if the data is greater than or equal to 127 bytes, the storage
overhead is 4 bytes instead of 1.

Table 6.1 Greenplum Database Built-in Data Types

Name1 Alias Size Range Description
Greenplum Data Types 460

Greenplum Database Reference Guide 4.2– Chapter 7: Character Set Support
7. Character Set Support

The character set support in Greenplum Database allows you to store text in a variety
of character sets, including single-byte character sets such as the ISO 8859 series and
multiple-byte character sets such as EUC (Extended Unix Code), UTF-8, and Mule
internal code. All supported character sets can be used transparently by clients, but a
few are not supported for use within the server (that is, as a server-side encoding). The
default character set is selected while initializing your Greenplum Database array
using gpinitsystem. It can be overridden when you create a database, so you can
have multiple databases each with a different character set.

Table 7.1 Greenplum Database Character Sets1

Name Description Language Server? Bytes/Char Aliases

BIG5 Big Five Traditional Chinese No 1-2 WIN950,
Windows950

EUC_CN Extended UNIX Code-CN Simplified Chinese Yes 1-3

EUC_JP Extended UNIX Code-JP Japanese Yes 1-3

EUC_KR Extended UNIX Code-KR Korean Yes 1-3

EUC_TW Extended UNIX Code-TW Traditional Chinese,
Taiwanese

Yes 1-3

GB18030 National Standard Chinese No 1-2

GBK Extended National Standard Simplified Chinese No 1-2 WIN936,
Windows936

ISO_8859_5 ISO 8859-5, ECMA 113 Latin/Cyrillic Yes 1

ISO_8859_6 ISO 8859-6, ECMA 114 Latin/Arabic Yes 1

ISO_8859_7 ISO 8859-7, ECMA 118 Latin/Greek Yes 1

ISO_8859_8 ISO 8859-8, ECMA 121 Latin/Hebrew Yes 1

JOHAB JOHA Korean (Hangul) Yes 1-3

KOI8 KOI8-R(U) Cyrillic Yes 1 KOI8R

LATIN1 ISO 8859-1, ECMA 94 Western European Yes 1 ISO88591

LATIN2 ISO 8859-2, ECMA 94 Central European Yes 1 ISO88592

LATIN3 ISO 8859-3, ECMA 94 South European Yes 1 ISO88593

LATIN4 ISO 8859-4, ECMA 94 North European Yes 1 ISO88594

LATIN5 ISO 8859-9, ECMA 128 Turkish Yes 1 ISO88599

LATIN6 ISO 8859-10, ECMA 144 Nordic Yes 1 ISO885910

LATIN7 ISO 8859-13 Baltic Yes 1 ISO885913

LATIN8 ISO 8859-14 Celtic Yes 1 ISO885914

LATIN9 ISO 8859-15 LATIN1 with Euro
and accents

Yes 1 ISO885915
461

Greenplum Database Reference Guide 4.2– Chapter 7: Character Set Support
Setting the Character Set
gpinitsystem defines the default character set for a Greenplum Database system by
reading the setting of the ENCODING parameter in the gp_init_config file at
initialization time. The default character set is UNICODE or UTF8.

You can create a database with a different character set besides what is used as the
system-wide default. For example:

=> CREATE DATABASE korean WITH ENCODING 'EUC_KR';

Important: Although you can specify any encoding you want for a database, it is
unwise to choose an encoding that is not what is expected by the locale you have
selected. The LC_COLLATE and LC_CTYPE settings imply a particular encoding, and
locale-dependent operations (such as sorting) are likely to misinterpret data that is in
an incompatible encoding.

LATIN10 ISO 8859-16, ASRO SR 14111 Romanian Yes 1 ISO885916

MULE_INTERNAL Mule internal code Multilingual Emacs Yes 1-4

SJIS Shift JIS Japanese No 1-2 Mskanji, ShiftJIS,
WIN932,
Windows932

SQL_ASCII unspecified2 any No 1

UHC Unified Hangul Code Korean No 1-2 WIN949,
Windows949

UTF8 Unicode, 8-bit all Yes 1-4 Unicode

WIN866 Windows CP866 Cyrillic Yes 1 ALT

WIN874 Windows CP874 Thai Yes 1

WIN1250 Windows CP1250 Central European Yes 1

WIN1251 Windows CP1251 Cyrillic Yes 1 WIN

WIN1252 Windows CP1252 Western European Yes 1

WIN1253 Windows CP1253 Greek Yes 1

WIN1254 Windows CP1254 Turkish Yes 1

WIN1255 Windows CP1255 Hebrew Yes 1

WIN1256 Windows CP1256 Arabic Yes 1

WIN1257 Windows CP1257 Baltic Yes 1

WIN1258 Windows CP1258 Vietnamese Yes 1 ABC, TCVN,
TCVN5712,
VSCII

1. Not all APIs support all the listed character sets. For example, the JDBC driver does not support MULE_INTERNAL, LATIN6,
LATIN8, and LATIN10.

2. The SQL_ASCII setting behaves considerably differently from the other settings. Byte values 0-127 are interpreted according to
the ASCII standard, while byte values 128-255 are taken as uninterpreted characters. If you are working with any non-ASCII
data, it is unwise to use the SQL_ASCII setting as a client encoding. SQL_ASCII is not supported as a server encoding.

Table 7.1 Greenplum Database Character Sets1

Name Description Language Server? Bytes/Char Aliases
462

Greenplum Database Reference Guide 4.2– Chapter 7: Character Set Support
Since these locale settings are frozen by gpinitsystem, the apparent flexibility to
use different encodings in different databases is more theoretical than real.

One way to use multiple encodings safely is to set the locale to C or POSIX during
initialization time, thus disabling any real locale awareness.

Character Set Conversion Between Server and Client
Greenplum Database supports automatic character set conversion between server and
client for certain character set combinations. The conversion information is stored in
the master pg_conversion system catalog table. Greenplum Database comes with
some predefined conversions or you can create a new conversion using the SQL
command CREATE CONVERSION.

Table 7.2 Client/Server Character Set Conversions

Server Character Set Available Client Character Sets

BIG5 not supported as a server encoding

EUC_CN EUC_CN, MULE_INTERNAL, UTF8

EUC_JP EUC_JP, MULE_INTERNAL, SJIS, UTF8

EUC_KR EUC_KR, MULE_INTERNAL, UTF8

EUC_TW EUC_TW, BIG5, MULE_INTERNAL, UTF8

GB18030 not supported as a server encoding

GBK not supported as a server encoding

ISO_8859_5 ISO_8859_5, KOI8, MULE_INTERNAL, UTF8, WIN866,
WIN1251

ISO_8859_6 ISO_8859_6, UTF8

ISO_8859_7 ISO_8859_7, UTF8

ISO_8859_8 ISO_8859_8, UTF8

JOHAB JOHAB, UTF8

KOI8 KOI8, ISO_8859_5, MULE_INTERNAL, UTF8, WIN866,
WIN1251

LATIN1 LATIN1, MULE_INTERNAL, UTF8

LATIN2 LATIN2, MULE_INTERNAL, UTF8, WIN1250

LATIN3 LATIN3, MULE_INTERNAL, UTF8

LATIN4 LATIN4, MULE_INTERNAL, UTF8

LATIN5 LATIN5, UTF8

LATIN6 LATIN6, UTF8

LATIN7 LATIN7, UTF8

LATIN8 LATIN8, UTF8

LATIN9 LATIN9, UTF8

LATIN10 LATIN10, UTF8
463

Greenplum Database Reference Guide 4.2– Chapter 7: Character Set Support
To enable automatic character set conversion, you have to tell Greenplum Database
the character set (encoding) you would like to use in the client. There are several ways
to accomplish this:

• Using the \encoding command in psql, which allows you to change client
encoding on the fly.

• Using SET client_encoding TO. Setting the client encoding can be done with
this SQL command:
=> SET CLIENT_ENCODING TO 'value';

To query the current client encoding:
=> SHOW client_encoding;

To return to the default encoding:
=> RESET client_encoding;

• Using the PGCLIENTENCODING environment variable. When PGCLIENTENCODING
is defined in the client’s environment, that client encoding is automatically
selected when a connection to the server is made. (This can subsequently be
overridden using any of the other methods mentioned above.)

MULE_INTERNAL MULE_INTERNAL, BIG5, EUC_CN, EUC_JP, EUC_KR,
EUC_TW, ISO_8859_5, KOI8, LATIN1 to LATIN4, SJIS,
WIN866, WIN1250, WIN1251

SJIS not supported as a server encoding

SQL_ASCII not supported as a server encoding

UHC not supported as a server encoding

UTF8 all supported encodings

WIN866 WIN866

ISO_8859_5 KOI8, MULE_INTERNAL, UTF8, WIN1251

WIN874 WIN874, UTF8

WIN1250 WIN1250, LATIN2, MULE_INTERNAL, UTF8

WIN1251 WIN1251, ISO_8859_5, KOI8, MULE_INTERNAL, UTF8,
WIN866

WIN1252 WIN1252, UTF8

WIN1253 WIN1253, UTF8

WIN1254 WIN1254, UTF8

WIN1255 WIN1255, UTF8

WIN1256 WIN1256, UTF8

WIN1257 WIN1257, UTF8

WIN1258 WIN1258, UTF8

Table 7.2 Client/Server Character Set Conversions

Server Character Set Available Client Character Sets
464

Greenplum Database Reference Guide 4.2– Chapter 7: Character Set Support
• Setting the configuration parameter client_encoding. If client_encoding is
set in the master postgresql.conf file, that client encoding is automatically
selected when a connection to Greenplum Database is made. (This can
subsequently be overridden using any of the other methods mentioned above.)

If the conversion of a particular character is not possible — suppose you chose
EUC_JP for the server and LATIN1 for the client, then some Japanese characters do not
have a representation in LATIN1 — then an error is reported.

If the client character set is defined as SQL_ASCII, encoding conversion is disabled,
regardless of the server’s character set. The use of SQL_ASCII is unwise unless you
are working with all-ASCII data. SQL_ASCII is not supported as a server encoding.
465

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
8. Server Configuration Parameters

There are many configuration parameters that affect the behavior of the Greenplum Database system. Many of these
configuration parameters have the same names, settings, and behaviors as in a regular PostgreSQL database system.

Parameter Types and Values

All parameter names are case-insensitive. Every parameter takes a value of one of four types: Boolean, integer,
floating point, or string. Boolean values may be written as ON, OFF, TRUE, FALSE, YES, NO, 1, 0 (all
case-insensitive).

Some settings specify a memory size or time value. Each of these has an implicit unit, which is either kilobytes,
blocks (typically eight kilobytes), milliseconds, seconds, or minutes. Valid memory size units are kB (kilobytes), MB
(megabytes), and GB (gigabytes). Valid time units are ms (milliseconds), s (seconds), min (minutes), h (hours), and d
(days). Note that the multiplier for memory units is 1024, not 1000. A valid time expression contains a number and
a unit. When specifying a memory or time unit using the SET command, enclose the value in quotes. For example:

SET work_mem TO '200MB';

Note: There is no space between the value and the unit names.

Setting Parameters

Many of the configuration parameters have limitations on who can change them and where or when they can be set.
For example, to change certain parameters, you must be a Greenplum Database superuser. Other parameters require
a restart of the system for the changes to take effect. A parameter that is classified as session can be set at the system
level (in the postgresql.conf file), at the database-level (using ALTER DATABASE), at the role-level (using ALTER
ROLE), or at the session-level (using SET). System parameters can only be set in the postgresql.conf file.

In Greenplum Database, the master and each segment instance has its own postgresql.conf file (located in their
respective data directories). Some parameters are considered local parameters, meaning that each segment instance
looks to its own postgresql.conf file to get the value of that parameter. You must set local parameters on every
instance in the system (master and segments). Others parameters are considered master parameters. Master
parameters need only be set at the master instance.

Table 8.1 Settable Classifications

Set Classification Description

master or local A master parameter only needs to be set in the postgresql.conf file of the Greenplum
master instance. The value for this parameter is then either passed to (or ignored by) the
segments at run time.
A local parameter must be set in the postgresql.conf file of the master AND each segment
instance. Each segment instance looks to its own configuration to get the value for the
parameter. Local parameters always requires a system restart for changes to take effect.

session or system Session parameters can be changed on the fly within a database session, and can have a
hierarchy of settings: at the system level (postgresql.conf), at the database level (ALTER
DATABASE...SET), at the role level (ALTER ROLE...SET), or at the session level (SET). If the
parameter is set at multiple levels, then the most granular setting takes precedence (for
example, session overrides role, role overrides database, and database overrides system).
A system parameter can only be changed via the postgresql.conf file(s).
466

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters

restart or reload When changing parameter values in the postgrsql.conf file(s), some require a restart of
Greenplum Database for the change to take effect. Other parameter values can be refreshed by
just reloading the server configuration file (using gpstop -u), and do not require stopping the
system.

superuser These session parameters can only be set by a database superuser. Regular database users
cannot set this parameter.

read only These parameters are not settable by database users or superusers. The current value of the
parameter can be shown but not altered.

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications

add_missing_from Boolean off Automatically adds missing table
references to FROM clauses. Present for
compatibility with releases of PostgreSQL
prior to 8.1, where this behavior was
allowed by default.

master
session
reload

application_name string Sets the application name for a client
session. For example, if connecting via
psql, this will be set to psql. Setting an
application name allows it to be reported
in log messages and statistics views.

master
session
reload

array_nulls Boolean on This controls whether the array input
parser recognizes unquoted NULL as
specifying a null array element. By
default, this is on, allowing array values
containing null values to be entered.
Greenplum Database versions before 3.0
did not support null values in arrays, and
therefore would treat NULL as specifying
a normal array element with the string
value ‘NULL’.

master
session
reload

authentication_timeout Any valid time
expression
(number and
unit)

1min Maximum time to complete client
authentication. This prevents hung clients
from occupying a connection indefinitely.

local
system
restart

backslash_quote on (allow \'
always)
off (reject
always)
safe_encoding
(allow only if
client encoding
does not allow
ASCII \ within a
multibyte
character)

safe_enco
ding

This controls whether a quote mark can
be represented by \' in a string literal. The
preferred, SQL-standard way to represent
a quote mark is by doubling it ('') but
PostgreSQL has historically also
accepted \'. However, use of \' creates
security risks because in some client
character set encodings, there are
multibyte characters in which the last byte
is numerically equivalent to ASCII \.

master
session
reload

Table 8.1 Settable Classifications

Set Classification Description
add_missing_from 467

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
block_size number of
bytes

32768 Reports the size of a disk block. read only

bonjour_name string unset Specifies the Bonjour broadcast name. By
default, the computer name is used,
specified as an empty string. This option
is ignored if the server was not compiled
with Bonjour support.

master
system
restart

check_function_bodies Boolean on When set to off, disables validation of the
function body string during CREATE
FUNCTION. Disabling validation is
occasionally useful to avoid problems
such as forward references when
restoring function definitions from a
dump.

master
session
reload

client_encoding character set UTF8 Sets the client-side encoding (character
set). The default is to use the same as the
database encoding. See Supported
Character Sets in the PostgreSQL
documentation.

master
session
reload

client_min_messages DEBUG5
DEBUG4
DEBUG3
DEBUG2
DEBUG1
LOG
NOTICE
WARNING
ERROR
FATAL
PANIC

NOTICE Controls which message levels are sent
to the client. Each level includes all the
levels that follow it. The later the level, the
fewer messages are sent.

master
session
reload

cpu_index_tuple_cost floating point 0.005 Sets the planner’s estimate of the cost of
processing each index row during an
index scan. This is measured as a
fraction of the cost of a sequential page
fetch.

master
session
reload

cpu_operator_cost floating point 0.0025 Sets the planner’s estimate of the cost of
processing each operator in a WHERE
clause. This is measured as a fraction of
the cost of a sequential page fetch.

master
session
reload

cpu_tuple_cost floating point 0.01 Sets the planner’s estimate of the cost of
processing each row during a query. This
is measured as a fraction of the cost of a
sequential page fetch.

master
session
reload

cursor_tuple_fraction integer 1 Tells the query planner how many rows
are expected to be fetched in a cursor
query, thereby allowing the planner to use
this information to optimize the query
plan. The default of 1 means all rows will
be fetched.

master
session
reload

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
block_size 468

http://www.postgresql.org/docs/8.1/static/multibyte.html#MULTIBYTE-CHARSET-SUPPORTED
http://www.postgresql.org/docs/8.1/static/multibyte.html#MULTIBYTE-CHARSET-SUPPORTED

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
custom_variable_classes comma-separa
ted list of class
names

unset Specifies one or several class names to
be used for custom variables. A custom
variable is a variable not normally known
to the server but used by some add-on
module. Such variables must have names
consisting of a class name, a dot, and a
variable name.

local
system
restart

DateStyle <format>,
<date style>
where
<format> is
ISO, Postgres,
SQL, or
German and
<date style> is
DMY, MDY, or
YMD.

ISO, MDY Sets the display format for date and time
values, as well as the rules for
interpreting ambiguous date input values.
This variable contains two independent
components: the output format
specification and the input/output
specification for year/month/day ordering.

master
session
reload

db_user_namespace Boolean off This enables per-database user names. If
on, you should create users as
username@dbname. To create ordinary
global users, simply append @ when
specifying the user name in the client.

local
system
restart

deadlock_timeout Any valid time
expression
(number and
unit)

1s The time to wait on a lock before
checking to see if there is a deadlock
condition. On a heavily loaded server you
might want to raise this value. Ideally the
setting should exceed your typical
transaction time, so as to improve the
odds that a lock will be released before
the waiter decides to check for deadlock.

local
system
restart

debug_assertions Boolean off Turns on various assertion checks. local
system
restart

debug_pretty_print Boolean off Indents debug output to produce a more
readable but much longer output format.
client_min_messages or
log_min_messages must be DEBUG1 or
lower.

master
session
reload

debug_print_parse Boolean off For each executed query, prints the
resulting parse tree.
client_min_messages or
log_min_messages must be DEBUG1 or
lower.

master
session
reload

debug_print_plan Boolean off For each executed query, prints the
Greenplum parallel query execution plan.
client_min_messages or
log_min_messages must be DEBUG1 or
lower.

master
session
reload

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
custom_variable_classes 469

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
debug_print_prelim_plan Boolean off For each executed query, prints the
preliminary query plan.
client_min_messages or
log_min_messages must be DEBUG1 or
lower.

master
session
reload

debug_print_rewritten Boolean off For each executed query, prints the query
rewriter output. client_min_messages or
log_min_messages must be DEBUG1 or
lower.

master
session
reload

debug_print_slice_table Boolean off For each executed query, prints the
Greenplum query slice plan.
client_min_messages or
log_min_messages must be DEBUG1 or
lower.

master
session
reload

default_statistics_target integer > 0 25 Sets the default statistics target for table
columns that have not had a
column-specific target set via ALTER
TABLE SET STATISTICS. Larger values
increase the time needed to do
ANALYZE, but may improve the quality of
the planner’s estimates.

master
session
reload

default_tablespace name of a
tablespace

unset The default tablespace in which to create
objects (tables and indexes) when a
CREATE command does not explicitly
specify a tablespace.

master
session
reload

default_transaction_isolation read
committed
read
uncommitted
repeatable
read
serializable

read
committed

Controls the default isolation level of each
new transaction.

master
session
reload

default_transaction_read_only Boolean off Controls the default read-only status of
each new transaction. A read-only SQL
transaction cannot alter non-temporary
tables.

master
session
reload

dynamic_library_path a list of
absolute
directory paths
separated by
colons

$libdir If a dynamically loadable module needs
to be opened and the file name specified
in the CREATE FUNCTION or LOAD
command does not have a directory
component (i.e. the name does not
contain a slash), the system will search
this path for the required file. The
compiled-in PostgreSQL package library
directory is substituted for $libdir. This is
where the modules provided by the
standard PostgreSQL distribution are
installed.

local
system
restart

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
debug_print_prelim_plan 470

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
effective_cache_size floating point 512MB Sets the planner’s assumption about the
effective size of the disk cache that is
available to a single query. This is
factored into estimates of the cost of
using an index; a higher value makes it
more likely index scans will be used, a
lower value makes it more likely
sequential scans will be used. This
parameter has no effect on the size of
shared memory allocated by a
Greenplum server instance, nor does it
reserve kernel disk cache; it is used only
for estimation purposes.

master
session
reload

enable_bitmapscan Boolean on Enables or disables the query planner’s
use of bitmap-scan plan types. Note that
this is different than a Bitmap Index Scan.
A Bitmap Scan means that indexes will be
dynamically converted to bitmaps in
memory when appropriate, giving faster
index performance on complex queries
against very large tables. It is used when
there are multiple predicates on different
indexed columns. Each bitmap per
column can be compared to create a final
list of selected tuples.

master
session
reload

enable_groupagg Boolean on Enables or disables the query planner’s
use of group aggregation plan types.

master
session
reload

enable_hashagg Boolean on Enables or disables the query planner’s
use of hash aggregation plan types.

master
session
reload

enable_hashjoin Boolean on Enables or disables the query planner’s
use of hash-join plan types.

master
session
reload

enable_indexscan Boolean on Enables or disables the query planner’s
use of index-scan plan types.

master
session
reload

enable_mergejoin Boolean off Enables or disables the query planner’s
use of merge-join plan types. Merge join
is based on the idea of sorting the left-
and right-hand tables into order and then
scanning them in parallel. So, both data
types must be capable of being fully
ordered, and the join operator must be
one that can only succeed for pairs of
values that fall at the ‘same place’ in the
sort order. In practice this means that the
join operator must behave like equality.

master
session
reload

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
effective_cache_size 471

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
enable_nestloop Boolean off Enables or disables the query planner’s
use of nested-loop join plans. It's not
possible to suppress nested-loop joins
entirely, but turning this variable off
discourages the planner from using one if
there are other methods available.

master
session
reload

enable_seqscan Boolean on Enables or disables the query planner’s
use of sequential scan plan types. It's not
possible to suppress sequential scans
entirely, but turning this variable off
discourages the planner from using one if
there are other methods available.

master
session
reload

enable_sort Boolean on Enables or disables the query planner’s
use of explicit sort steps. It's not possible
to suppress explicit sorts entirely, but
turning this variable off discourages the
planner from using one if there are other
methods available.

master
session
reload

enable_tidscan Boolean on Enables or disables the query planner’s
use of tuple identifier (TID) scan plan
types.

master
session
reload

escape_string_warning Boolean on When on, a warning is issued if a
backslash (\) appears in an ordinary
string literal ('...' syntax). Escape string
syntax (E'...') should be used for escapes,
because in future versions, ordinary
strings will have the SQL
standard-conforming behavior of treating
backslashes literally.

master
session
reload

explain_pretty_print Boolean on Determines whether EXPLAIN
VERBOSE uses the indented or
non-indented format for displaying
detailed query-tree dumps.

master
session
reload

extra_float_digits integer 0 Adjusts the number of digits displayed for
floating-point values, including float4,
float8, and geometric data types. The
parameter value is added to the standard
number of digits. The value can be set as
high as 2, to include partially-significant
digits; this is especially useful for dumping
float data that needs to be restored
exactly. Or it can be set negative to
suppress unwanted digits.

master
session
reload

from_collapse_limit 1-n 20 The planner will merge sub-queries into
upper queries if the resulting FROM list
would have no more than this many
items. Smaller values reduce planning
time but may yield inferior query plans.

master
session
reload

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
enable_nestloop 472

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
gp_adjust_selectivity_for_outerjo
ins

Boolean on Enables the selectivity of NULL tests over
outer joins.

master
session
reload

gp_analyze_relative_error floating point <
1.0

0.25 Sets the estimated acceptable error in the
cardinality of the table — a value of 0.5 is
supposed to be equivalent to an
acceptable error of 50% (this is the
default value used in PostgreSQL). If the
statistics collected during ANALYZE are
not producing good estimates of
cardinality for a particular table attribute,
decreasing the relative error fraction
(accepting less error) tells the system to
sample more rows.

master
session
reload

gp_autostats_mode none
on_change
on_no_stats

on_no_
stats

Specifies the mode for triggering
automatic statistics collection with
ANALYZE. The on_no_stats option
triggers statistics collection for CREATE
TABLE AS SELECT, INSERT, or COPY
operations on any table that has no
existing statistics.
The on_change option triggers statistics
collection only when the number of rows
affected meets or exceeds the threshold
defined by
gp_autostats_on_change_
threshold. Operations that can trigger
automatic statistics collection with
on_change are:
CREATE TABLE AS SELECT

UPDATE

DELETE

INSERT

COPY

Default is on_no_stats.

master
session
reload

gp_autostats_on_change_thresh
old

integer 21474836
47

Specifies the threshold for automatic
statistics collection when
gp_autostats_mode is set to
on_change. When a triggering table
operation affects a number of rows
exceeding this threshold, ANALYZE is
added and statistics are collected for the
table.

master
session
reload

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
gp_adjust_selectivity_for_outerjoins 473

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
gp_cached_segworkers_threshold integer > 0 5 When a user starts a session with
Greenplum Database and issues a query,
the system creates groups or ‘gangs’ of
worker processes on each segment to do
the work. After the work is done, the
segment worker processes are destroyed
except for a cached number which is set
by this parameter. A lower setting
conserves system resources on the
segment hosts, but a higher setting may
improve performance for power-users
that want to issue many complex queries
in a row.

master
session
reload

gp_command_count integer > 0 1 Shows how many commands the master
has received from the client. Note that a
single SQLcommand might actually
involve more than one command
internally, so the counter may increment
by more than one for a single query. This
counter also is shared by all of the
segment processes working on the
command.

read only

gp_connectemc_mode on, off, local,
remote

on Controls the ConnectEMC event logging
and dial-home capabilities of Greenplum
Command Center on the EMC
Greenplum Data Computing Appliance
(DCA). ConnectEMC must be installed in
order to generate events. Allowed values
are:
• on (the default) - log events to the

gpperfmon database and send
dial-home notifications to EMC Support

• off - turns off ConnectEMC event
logging and dial-home capabilities

• local - log events to the gpperfmon
database only

• remote - sends dial-home notifications
to EMC Support (does not log events to
the gpperfmon database)

master
system
restart
superuser

gp_connections_per_thread integer 64 A value larger than or equal to the
number of primary segments means that
each slice in a query plan will get its own
thread when dispatching to the segments.
A value of 0 indicates that the dispatcher
should use a single thread when
dispatching all query plan slices to a
segment. Lower values will use more
threads, which utilizes more resources on
the master. Typically, the default does not
need to be changed unless there is a
known throughput performance problem.

master
session
reload

gp_content integer The local content id if a segment. read only

gp_dbid integer The local content dbid if a segment. read only

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
gp_cached_segworkers_threshold 474

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
gp_debug_linger Any valid time
expression
(number and
unit)

0 Number of seconds for a Greenplum
process to linger after a fatal internal
error.

master
session
reload

gp_dynamic_partition_pruning on/off on Enables plans that can dynamically
eliminate the scanning of partitions.

master
session
reload

gp_email_from string The email address used to send email
alerts, in the format of:
'username@domain.com'
or
'Name <username@domain.com>'

master
system
restart

gp_email_smtp_password string The password/passphrase used to
authenticate with the SMTP server.

master
system
restart

gp_email_smtp_server string The fully qualified domain name or IP
address and port of the SMTP server to
use to send the email alerts. Must be in
the format of:
smtp_servername.domain.com:por
t

master
system
restart

gp_email_smtp_userid string The user id used to authenticate with the
SMTP server.

master
system
restart

gp_email_to string A semi-colon (;) separated list of email
addresses to receive email alert
messages to in the format of:
'username@domain.com'
or
'Name <username@domain.com>'
If this parameter is not set, then email
alerts are disabled.

master
system
restart

gp_enable_adaptive_nestloop Boolean on Enables the query planner to use a new
type of join node called “Adaptive
Nestloop” at query execution time. This
causes the planner to favor a hash-join
over a nested-loop join if the number of
rows on the outer side of the join exceeds
a precalculated threshold. This parameter
improves performance of index
operations, which previously favored
slower nested-loop joins.

master
session
reload

gp_enable_agg_distinct Boolean on Enables or disables two-phase
aggregation to compute a single
distinct-qualified aggregate. This applies
only to subqueries that include a single
distinct-qualified aggregate function.

master
session
reload

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
gp_debug_linger 475

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
gp_enable_agg_distinct_pruning Boolean on Enables or disables three-phase
aggregation and join to compute
distinct-qualified aggregates. This applies
only to subqueries that include one or
more distinct-qualified aggregate
functions.

master
session
reload

gp_enable_direct_dispatch Boolean on Enables or disables the dispatching of
targeted query plans for queries that
access data on a single segment. When
on, queries that target rows on a single
segment will only have their query plan
dispatched to that segment (rather than to
all segments). This significantly reduces
the response time of qualifying queries as
there is no interconnect setup involved.
Direct dispatch does require more CPU
utilization on the master.

master
system
restart

gp_enable_fallback_plan Boolean on Allows use of disabled plan types when a
query would not be feasible without them.

master
session
reload

gp_enable_fast_sri Boolean on When set to on, the query planner plans
single row inserts so that they are sent
directly to the correct segment instance
(no motion operation required). This
significantly improves performance of
single-row-insert statements.

master
session
reload

gp_enable_gpperfmon Boolean off Enables or disables the data collection
agents of Greenplum Command Center.

local
system
restart

gp_enable_groupext_distinct_gat
her

Boolean on Enables or disables gathering data to a
single node to compute distinct-qualified
aggregates on grouping extension
queries. When this parameter and
gp_enable_groupext_distinct_pr
uning are both enabled, the planner
uses the cheaper plan.

master
session
reload

gp_enable_groupext_distinct_pru
ning

Boolean on Enables or disables three-phase
aggregation and join to compute
distinct-qualified aggregates on grouping
extension queries. Usually, enabling this
parameter generates a cheaper query
plan that the planner will use in
preference to existing plan.

master
session
reload

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
gp_enable_agg_distinct_pruning 476

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
gp_enable_multiphase_agg Boolean on Enables or disables the query planner’s
use of two or three-stage parallel
aggregation plans. This approach applies
to any subquery with aggregation. If
gp_enable_multiphase_agg is off,
then gp_enable_agg_distinct and
gp_enable_agg_distinct_pruning
are disabled.

master
session
reload

gp_enable_predicate_propagatio
n

Boolean on When enabled, the query planner applies
query predicates to both table
expressions in cases where the tables are
joined on their distribution key column(s).
Filtering both tables prior to doing the join
(when possible) is more efficient.

master
session
reload

gp_enable_preunique Boolean on Enables two-phase duplicate removal for
SELECT DISTINCT queries (not SELECT
COUNT(DISTINCT)). When enabled, it
adds an extra SORT DISTINCT set of
plan nodes before motioning. In cases
where the distinct operation greatly
reduces the number of rows, this extra
SORT DISTINCT is much cheaper than
the cost of sending the rows across the
Interconnect.

master
session
reload

gp_enable_sequential_window_pl
ans

Boolean on If on, enables non-parallel (sequential)
query plans for queries containing
window function calls. If off, evaluates
compatible window functions in parallel
and rejoins the results. This is an
experimental parameter.

master
session
reload

gp_enable_sort_distinct Boolean on Enable duplicates to be removed while
sorting.

master
session
reload

gp_enable_sort_limit Boolean on Enable LIMIT operation to be performed
while sorting. Sorts more efficiently when
the plan requires the first limit_number of
rows at most.

master
session
reload

gp_external_enable_exec Boolean on Enables or disables the use of external
tables that execute OS commands or
scripts on the segment hosts (CREATE
EXTERNAL TABLE EXECUTE syntax).
Must be enabled if using the Command
Center or MapReduce features.

master
system
restart

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
gp_enable_multiphase_agg 477

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
gp_external_grant_privileges Boolean off In releases prior to 4.0, enables or
disables non-superusers to issue a
CREATE EXTERNAL [WEB] TABLE
command in cases where the LOCATION
clause specifies http or gpfdist. In
releases after 4.0, the ability to create an
external table can be granted to a role
using CREATE ROLE or ALTER ROLE.

master
system
restart

gp_external_max_segs integer 64 Sets the number of segments that will
scan external table data during an
external table operation, the purpose
being not to overload the system with
scanning data and take away resources
from other concurrent operations. This
only applies to external tables that use
the gpfdist:// protocol to access
external table data.

master
system
restart

gp_filerep_tcp_keepalives_count number of lost
keepalives

2 How many keepalives may be lost before
the connection is considered dead. A
value of 0 uses the system default. If
TCP_KEEPCNT is not supported, this
parameter must be 0.
Use this parameter for all connections
that are between a primary and mirror
segment. Use tcp_keepalives_count for
settings that are not between a primary
and mirror segment.

local
system
restart

gp_filerep_tcp_keepalives_idle number of
seconds

1 min Number of seconds between sending
keepalives on an otherwise idle
connection. A value of 0 uses the system
default. If TCP_KEEPIDLE is not
supported, this parameter must be 0.
Use this parameter for all connections
that are between a primary and mirror
segment. Use tcp_keepalives_idle for
settings that are not between a primary
and mirror segment.

local
system
restart

gp_filerep_tcp_keepalives_interv
al

number of
seconds

30 sec How many seconds to wait for a response
to a keepalive before retransmitting. A
value of 0 uses the system default. If
TCP_KEEPINTVL is not supported, this
parameter must be 0.
Use this parameter for all connections
that are between a primary and mirror
segment. Use tcp_keepalives_interval for
settings that are not between a primary
and mirror segment.

local
system
restart

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
gp_external_grant_privileges 478

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
gp_fts_probe_interval 10 seconds or
greater

1min Specifies the polling interval for the fault
detection process (ftsprobe). The
ftsprobe process will take
approximately this amount of time to
detect a segment failure.

master
system
restart

gp_fts_probe_threadcount 1 - 128 5 Specifies the number of ftsprobe
threads to create. This parameter should
be set to a value equal to or greater than
the number of segments per host.

master
system
restart

gp_fts_probe_timeout 10 seconds or
greater

10 secs Specifies the allowed timeout for the fault
detection process (ftsprobe) to
establish a connection to a segment
before declaring it down.

master
system
restart

gp_gpperfmon_send_interval Any valid time
expression
(number and
unit)

1sec Sets the frequency that the Greenplum
Database server processes send query
execution updates to the data collection
agent processes used by Command
Center. Query operations (iterators)
executed during this interval are sent
through UDP to the segment monitor
agents. If you find that an excessive
number of UDP packets are dropped
during long-running, complex queries,
you may consider increasing this value.

master
system
restart

gp_hadoop_home Valid directory
name

Value of
HADOOP_
HOME

The Hadoop home directory. This
parameter has the same value as the
required environmental variable
HADOOP_HOME.

local
session
reload

gp_hadoop_target_version gphd-1.1
gpmr-1.0
gpmr-1.2
cdh3u2

gphd-1.1 The installed version of Greenplum
Hadoop target.

local
session
reload

gp_hashjoin_tuples_per_bucket integer 5 Sets the target density of the hash table
used by HashJoin operations. A smaller
value will tend to produce larger hash
tables, which can increase join
performance.

master
session
reload

gp_idf_deduplicate integer Changes the strategy to compute and
process MEDIAN, and
PERCENTILE_DISC.

auto
none
force

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
gp_fts_probe_interval 479

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
gp_interconnect_hash_multiplier 2-25 2 Sets the size of the hash table used by
the UDP interconnect to track
connections. This number is multiplied by
the number of segments to determine the
number of buckets in the hash table.
Increasing the value may increase
interconnect performance for complex
multi-slice queries (while consuming
slightly more memory on the segment
hosts).

master
session
reload

gp_interconnect_queue_depth 1-2048 4 Sets the amount of data per-peer to be
queued by the UDP interconnect on
receivers (when data is received but no
space is available to receive it the data
will be dropped, and the transmitter will
need to resend it). Increasing the depth
from its default value will cause the
system to use more memory; but may
increase performance. It is reasonable for
this to be set between 1 and 10. Queries
with data skew potentially perform better
when this is increased. Increasing this
may radically increase the amount of
memory used by the system.

master
session
reload

gp_interconnect_setup_timeout Any valid time
expression
(number and
unit)

5min Time to wait for the Interconnect to
complete setup before it times out.

master
session
reload

gp_interconnect_type TCP
UDP

UDP Sets the networking protocol used for
Interconnect traffic. With the TCP
protocol, Greenplum Database has an
upper limit of 1000 segment instances -
less than that if the query workload
involves complex, multi-slice queries.
UDP allows for greater interconnect
scalability. Note that the Greenplum
software does the additional packet
verification and checking not performed
by UDP, so reliability and performance is
equivalent to TCP.

master
session
reload

gp_log_format csv
text

csv Specifies the format of the server log files.
If using gp_toolkit administrative schema,
the log files must be in csv format.

local
system
restart

gp_max_csv_line_length number of
bytes

1048576 The maximum length of a line in a CSV
formatted file that will be imported into the
system. The default is 1MB (1048576
bytes). Maximum allowed is 4MB
(4194184 bytes). The default may need to
be increased if using the gp_toolkit
administrative schema to read
Greenplum Database log files.

local
system
restart

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
gp_interconnect_hash_multiplier 480

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
gp_max_databases integer 16 The maximum number of databases
allowed in a Greenplum Database
system.

master
system
restart

gp_max_filespaces integer 8 The maximum number of filespaces
allowed in a Greenplum Database
system.

master
system
restart

gp_max_local_distributed_cache integer 1024 Sets the number of local to distributed
transactions to cache. Higher settings
may improve performance.

local
system
restart

gp_max_packet_size 512-65536 8192 Sets the size (in bytes) of messages sent
by the UDP interconnect, and sets the
tuple-serialization chunk size for both the
UDP and TCP interconnect.

master
system
restart

gp_max_tablespaces integer 16 The maximum number of tablespaces
allowed in a Greenplum Database
system.

master
system
restart

gp_motion_cost_per_row floating point 0 Sets the query planner cost estimate for a
Motion operator to transfer a row from
one segment to another, measured as a
fraction of the cost of a sequential page
fetch. If 0, then the value used is two
times the value of cpu_tuple_cost.

master
session
reload

gp_num_contents_in_cluster - - The number of primary segments in the
Greenplum Database system.

read only

gp_reject_percent_threshold 1-n 300 For single row error handling on COPY
and external table SELECTs, sets the
number of rows processed before
SEGMENT REJECT LIMIT n PERCENT
starts calculating.

master
session
reload

gp_reraise_signal Boolean on If enabled, will attempt to dump core if a
fatal server error occurs.

master
session
reload

gp_resqueue_memory_policy none, auto,
eager_free

eager_fre
e

Enables Greenplum memory
management features. When set to none,
memory management is the same as in
Greenplum Database releases prior to
4.1. When set to auto, query memory
usage is controlled by statement_mem
and resource queue memory limits.

local
system
restart/reload

gp_resqueue_priority Boolean on Enables or disables query prioritization.
When this parameter is disabled, existing
priority settings are not evaluated at
query run time.

local
system
restart

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
gp_max_databases 481

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
gp_resqueue_priority_cpucores_
per_segment

0.1 - 32.0 segments
= 4
master =
24

Specifies the number of CPU units per
segment. In a configuration where one
segment is configured per CPU core on a
host, this unit is 1.0 (default). If an 8-core
host is configured with four segments, the
value would be 2.0. A master host
typically only has one segment running
on it (the master instance), so the value
for the master should reflect the usage of
all available CPU cores. Incorrect settings
can result in CPU under-utilization. The
default values are appropriate for the
Greenplum Data Computing Appliance.

local
system
restart

gp_resqueue_priority_sweeper_i
nterval

500 - 15000
ms

1000 Specifies the interval at which the
sweeper process evaluates current CPU
usage. When a new statement becomes
active, its priority is evaluated and its CPU
share determined when the next interval
is reached.

local
system
restart

gp_role dispatch
execute
utility

The role of this server process — set to
dispatch for the master and execute for a
segment.

read only

gp_safefswritesize integer 0 Specifies a minimum size for safe write
operations to append-only tables in a
non-mature file system. When a number
of bytes greater than zero is specified, the
append-only writer adds padding data up
to that number in order to prevent data
corruption due to file system errors. Each
non-mature file system has a known safe
write size that must be specified here
when using Greenplum Database with
that type of file system. This is commonly
set to a multiple of the extent size of the
file system; for example, Linux ext3 is
4096 bytes, so a value of 32768 is
commonly used.

local
system
restart

gp_segment_connect_timeout Any valid time
expression
(number and
unit)

10min Time that the Greenplum interconnect will
try to connect to a segment instance over
the network before timing out. Controls
the network connection timeout between
master and primary segments, and
primary to mirror segment replication
processes.

local
system
reload

gp_segments_for_planner 0-n 0 Sets the number of primary segment
instances for the planner to assume in its
cost and size estimates. If 0, then the
value used is the actual number of
primary segments. This variable affects
the planner’s estimates of the number of
rows handled by each sending and
receiving process in Motion operators.

master
session
reload

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
gp_resqueue_priority_cpucores_per_segment 482

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
gp_session_id 1-n 14 A system assigned ID number for a client
session. Starts counting from 1 when the
master instance is first started.

read only

gp_set_proc_affinity Boolean off If enabled, when a Greenplum server
process (postmaster) is started it will bind
to a CPU.

master
system
restart

gp_set_read_only Boolean off Set to on to disable writes to the
database. Any in progress transactions
must finish before read-only mode takes
affect.

master
session
reload

gp_snmp_community SNMP
community
name

public Set to the community name you specified
for your environment.

master
system
reload

gp_snmp_monitor_address hostname:port The hostname:port of your network
monitor application. Typically, the port
number is 162. If there are multiple
monitor addresses, separate them with a
comma.

master
system
reload

gp_snmp_use_inform_or_trap inform
trap

trap Trap notifications are SNMP messages
sent from one application to another (for
example, between Greenplum Database
and a network monitoring application).
These messages are unacknowledged by
the monitoring application, but generate
less network overhead.
Inform notifications are the same as trap
messages, except that the application
sends an acknowledgement to the
application that generated the alert.

master
system
reload

gp_statistics_pullup_from_child_
partition

Boolean on Enables the query planner to utilize
statistics from child tables when planning
queries on the parent table.

master
session
reload

gp_statistics_use_fkeys Boolean off When enabled, allows the optimizer to
use foreign key information stored in the
system catalog to optimize joins between
foreign keys and primary keys.

master
session
reload

gp_vmem_idle_resource_timeout Any valid time
expression
(number and
unit)

18s If a database session is idle for longer
than the time specified, the session will
free system resources (such as shared
memory), but remain connected to the
database. This allows more concurrent
connections to the database at one time.

master
system
restart

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
gp_session_id 483

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
gp_vmem_protect_limit integer 8192 Sets the amount of memory (in number of
MBs) that all postgres processes of an
active segment instance can consume. To
prevent over allocation of memory, set to:
(X * physical_memory) /
primary_segments
Where X is a value between 1.0 and 1.5.
X=1 offers the best system performance.
X=1.5 may cause more swapping on the
system, but less queries will be cancelled.
For example, on a segment host with
16GB physical memory and 4 primary
segment instances the calculation would
be:
(1 * 16) / 4 = 4GB
4 * 1024 = 4096MB
If a query causes this limit to be
exceeded, memory will not be allocated
and the query will fail. Note that this is a
local parameter and must be set for every
segment in the system (primary and
mirrors).

local
system
restart

gp_vmem_protect_segworker_ca
che_limit

number of
megabytes

500 If a query executor process consumes
more than this configured amount, then
the process will not be cached for use in
subsequent queries after the process
completes. Systems with lots of
connections or idle processes may want
to reduce this number to free more
memory on the segments. Note that this
is a local parameter and must be set for
every segment.

local
system
restart

gp_workfile_checksumming Boolean on Adds a checksum value to each block of
a work file (or spill file) used by HashAgg
and HashJoin query operators. This
adds an additional safeguard from faulty
OS disk drivers writing corrupted blocks
to disk. When a checksum operation fails,
the query will cancel and rollback rather
than potentially writing bad data to disk.

master
session
reload

gp_workfile_compress_algorithm none
zlib

none When a hash aggregation or hash join
operation spills to disk during query
processing, specifies the compression
algorithm to use on the spill files. If using
zlib, it must be in your $PATH on all
segments.

master
session
reload

gpperfmon_port integer 8888 Sets the port on which all data collection
agents (for Command Center)
communicate with the master.

master
system
restart

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
gp_vmem_protect_limit 484

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
integer_datetimes Boolean on Reports whether PostgreSQL was built
with support for 64-bit-integer dates and
times.

read only

IntervalStyle postgres
postgres_verb
ose
sql_standard
iso_8601

postgres Sets the display format for interval values.
The value sql_standard produces output
matching SQL standard interval literals.
The value postgres produces output
matching PostgreSQL releases prior to
8.4 when the DateStyle parameter was
set to ISO. The value postgres_verbose
produces output matching Greenplum
releases prior to 3.3 when the DateStyle
parameter was set to non-ISO output.
The value iso_8601 will produce output
matching the time interval format with
designators defined in section 4.4.3.2 of
ISO 8601. See the PostgreSQL 8.4
documentation for more information.

master
session
reload

join_collapse_limit 1-n 20 The planner will rewrite explicit inner
JOIN constructs into lists of FROM items
whenever a list of no more than this many
items in total would result. By default, this
variable is set the same as
from_collapse_limit, which is appropriate
for most uses. Setting it to 1 prevents any
reordering of inner JOINs. Setting this
variable to a value between 1 and
from_collapse_limit might be useful to
trade off planning time against the quality
of the chosen plan (higher values
produce better plans).

master
session
reload

krb_caseins_users Boolean off Sets whether Kerberos user names
should be treated case-insensitively. The
default is case sensitive (off).

master
system
restart

krb_server_keyfile path and file
name

unset Sets the location of the Kerberos server
key file.

master
system
restart

krb_srvname service name postgres Sets the Kerberos service name. master
system
restart

lc_collate <system
dependent>

Reports the locale in which sorting of
textual data is done. The value is
determined when the Greenplum
Database array is initialized.

read only

lc_ctype <system
dependent>

Reports the locale that determines
character classifications. The value is
determined when the Greenplum
Database array is initialized.

read only

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
integer_datetimes 485

http://www.postgresql.org/docs/8.4/static/datatype-datetime.html
http://www.postgresql.org/docs/8.4/static/datatype-datetime.html

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
lc_messages <system
dependent>

Sets the language in which messages are
displayed. The locales available depends
on what was installed with your operating
system - use locale -a to list available
locales. The default value is inherited
from the execution environment of the
server. On some systems, this locale
category does not exist. Setting this
variable will still work, but there will be no
effect. Also, there is a chance that no
translated messages for the desired
language exist. In that case you will
continue to see the English messages.

local
system
restart

lc_monetary <system
dependent>

Sets the locale to use for formatting
monetary amounts, for example with the
to_char family of functions. The locales
available depends on what was installed
with your operating system - use locale -a
to list available locales. The default value
is inherited from the execution
environment of the server.

local
system
restart

lc_numeric <system
dependent>

Sets the locale to use for formatting
numbers, for example with the to_char
family of functions. The locales available
depends on what was installed with your
operating system - use locale -a to list
available locales. The default value is
inherited from the execution environment
of the server.

local
system
restart

lc_time <system
dependent>

This parameter currently does nothing,
but may in the future.

local
system
restart

listen_addresses localhost,
host names,
IP addresses,
* (all available
IP interfaces)

* Specifies the TCP/IP address(es) on
which the server is to listen for
connections from client applications - a
comma-separated list of host names
and/or numeric IP addresses. The special
entry * corresponds to all available IP
interfaces. If the list is empty, only
UNIX-domain sockets can connect.

master
system
restart

local_preload_libraries Comma separated list of shared library
files to preload at the start of a client
session.

local
system
restart

log_autostats Boolean on Logs information about automatic
ANALYZE operations related to
gp_autostats_mode and
gp_autostats_on_change_threshold.

master
session
reload
superuser

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
lc_messages 486

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
log_connections Boolean off This outputs a line to the server log
detailing each successful connection.
Some client programs, like psql, attempt
to connect twice while determining if a
password is required, so duplicate
“connection received” messages do not
always indicate a problem.

local
system
restart

log_disconnections Boolean off This outputs a line in the server log at
termination of a client session, and
includes the duration of the session.

local
system
restart

log_dispatch_stats Boolean off When set to “on,” this parameter adds a
log message with verbose information
about the dispatch of the statement.

local
system
restart

log_duration Boolean off Causes the duration of every completed
statement which satisfies log_statement
to be logged.

master
session
reload
superuser

log_error_verbosity TERSE
DEFAULT
VERBOSE

DEFAULT Controls the amount of detail written in
the server log for each message that is
logged.

master
session
reload
superuser

log_executor_stats Boolean off For each query, write performance
statistics of the query executor to the
server log. This is a crude profiling
instrument. Cannot be enabled together
with log_statement_stats.

local
system
restart

log_hostname Boolean off By default, connection log messages only
show the IP address of the connecting
host. Turning on this option causes
logging of the host name as well. Note
that depending on your host name
resolution setup this might impose a
non-negligible performance penalty.

local
system
restart

log_min_duration_statement number of
milliseconds,
0, -1

-1 Logs the statement and its duration on a
single log line if its duration is greater than
or equal to the specified number of
milliseconds. Setting this to 0 will print all
statements and their durations. -1
disables the feature. For example, if you
set it to 250 then all SQL statements that
run 250ms or longer will be logged.
Enabling this option can be useful in
tracking down unoptimized queries in
your applications.

master
session
reload
superuser

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
log_connections 487

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
log_min_error_statement DEBUG5
DEBUG4
DEBUG3
DEBUG2,
DEBUG1
INFO
NOTICE
WARNING
ERROR
FATAL
PANIC

ERROR Controls whether or not the SQL
statement that causes an error condition
will also be recorded in the server log. All
SQL statements that cause an error of the
specified level or higher are logged. The
default is PANIC (effectively turning this
feature off for normal use). Enabling this
option can be helpful in tracking down the
source of any errors that appear in the
server log.

master
session
reload
superuser

log_min_messages DEBUG5
DEBUG4
DEBUG3
DEBUG2
DEBUG1
INFO
NOTICE
WARNING
ERROR
LOG
FATAL
PANIC

NOTICE Controls which message levels are
written to the server log. Each level
includes all the levels that follow it. The
later the level, the fewer messages are
sent to the log.

master
session
reload
superuser

log_parser_stats Boolean off For each query, write performance
statistics of the query parser to the server
log. This is a crude profiling instrument.
Cannot be enabled together with
log_statement_stats.

master
session
reload
superuser

log_planner_stats Boolean off For each query, write performance
statistics of the query planner to the
server log. This is a crude profiling
instrument. Cannot be enabled together
with log_statement_stats.

master
session
reload
superuser

log_rotation_age Any valid time
expression
(number and
unit)

1d Determines the maximum lifetime of an
individual log file. After this time has
elapsed, a new log file will be created. Set
to zero to disable time-based creation of
new log files.

local
system
restart

log_rotation_size number of
kilobytes

0 Determines the maximum size of an
individual log file. After this many
kilobytes have been emitted into a log file,
a new log file will be created. Set to zero
to disable size-based creation of new log
files.

local
system
restart

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
log_min_error_statement 488

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
log_statement NONE
DDL
MOD
ALL

ALL Controls which SQL statements are
logged. DDL logs all data definition
commands like CREATE, ALTER, and
DROP commands. MOD logs all DDL
statements, plus INSERT, UPDATE,
DELETE, TRUNCATE, and COPY
FROM. PREPARE and EXPLAIN
ANALYZE statements are also logged if
their contained command is of an
appropriate type.

master
session
reload
superuser

log_statement_stats Boolean off For each query, write total performance
statistics of the query parser, planner, and
executor to the server log. This is a crude
profiling instrument.

master
session
reload
superuser

log_timezone string unknown Sets the time zone used for timestamps
written in the log. Unlike TimeZone, this
value is system-wide, so that all sessions
will report timestamps consistently. The
default is unknown, which means to use
whatever the system environment
specifies as the time zone.

local
system
restart

log_truncate_on_rotation Boolean off Truncates (overwrites), rather than
appends to, any existing log file of the
same name. Truncation will occur only
when a new file is being opened due to
time-based rotation. For example, using
this setting in combination with a
log_filename such as gpseg#-%H.log
would result in generating twenty-four
hourly log files and then cyclically
overwriting them. When off, pre-existing
files will be appended to in all cases.

local
system
restart

max_appendonly_tables 2048 10000 Sets the maximum number of
append-only relations that can be written
to or loaded concurrently. Append-only
table partitions and subpartitions are
considered as unique tables against this
limit. Increasing the limit will allocate more
shared memory at server start.

master
system
restart

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
log_statement 489

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
max_connections 10-n 250 on
master
750 on
segments

The maximum number of concurrent
connections to the database server. In a
Greenplum Database system, user client
connections go through the Greenplum
master instance only. Segment instances
should allow 5-10 times the amount as
the master. When you increase this
parameter, max_prepared_transactions
must be increased as well. For more
information about limiting concurrent
connections, see the Greenplum
Database Database Administrator Guide.
Increasing this parameter may cause
Greenplum Database to request more
shared memory.

local
system
restart

max_files_per_process integer 1000 Sets the maximum number of
simultaneously open files allowed to each
server subprocess. If the kernel is
enforcing a safe per-process limit, you
don’t need to worry about this setting.
Some platforms such as BSD, the kernel
will allow individual processes to open
many more files than the system can
really support.

local
system
restart

max_fsm_pages integer > 16 *
max_fsm_relati
ons

200000 Sets the maximum number of disk pages
for which free space will be tracked in the
shared free-space map. Six bytes of
shared memory are consumed for each
page slot.

local
system
restart

max_fsm_relations integer 1000 Sets the maximum number of relations for
which free space will be tracked in the
shared memory free-space map. Should
be set to a value larger than the total
number of:
tables + indexes + system tables.
It costs about 60 bytes of memory for
each relation per segment instance. It is
better to allow some room for overhead
and set too high rather than too low.

local
system
restart

max_function_args integer 100 Reports the maximum number of function
arguments.

read only

max_identifier_length integer 63 Reports the maximum identifier length. read only

max_index_keys integer 32 Reports the maximum number of index
keys.

read only

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
max_connections 490

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
max_locks_per_transaction integer 64 The shared lock table is created with
room to describe locks on
max_locks_per_transaction *
(max_connections +
max_prepared_transactions) objects, so
no more than this many distinct objects
can be locked at any one time. This is not
a hard limit on the number of locks taken
by any one transaction, but rather a
maximum average value. You might need
to raise this value if you have clients that
touch many different tables in a single
transaction.

local
system
restart

max_prepared_transactions integer 250 on
master
250 on
segments

Sets the maximum number of
transactions that can be in the prepared
state simultaneously. Greenplum uses
prepared transactions internally to ensure
data integrity across the segments. This
value must be at least as large as the
value of max_connections on the master.
Segment instances should be set to the
same value as the master.

local
system
restart

max_resource_portals_per_trans
action

integer 64 Sets the maximum number of
simultaneously open user-declared
cursors allowed per transaction. Note that
an open cursor will hold an active query
slot in a resource queue. Used for
workload management.

master
system
restart

max_resource_queues integer 8 Sets the maximum number of resource
queues that can be created in a
Greenplum Database system. Note that
resource queues are system-wide (as are
roles) so they apply to all databases in the
system.

master
system
restart

max_stack_depth number of
kilobytes

2MB Specifies the maximum safe depth of the
server’s execution stack. The ideal setting
for this parameter is the actual stack size
limit enforced by the kernel (as set by
ulimit -s or local equivalent), less a safety
margin of a megabyte or so. Setting the
parameter higher than the actual kernel
limit will mean that a runaway recursive
function can crash an individual backend
process.

local
system
restart

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
max_locks_per_transaction 491

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
max_statement_mem number of
kilobytes

2000MB Sets the maximum memory limit for a
query. Helps avoid out-of-memory errors
on a segment host during query
processing as a result of setting
statement_mem too high. When
gp_resqueue_memory_policy=auto,
statement_mem and resource queue
memory limits control query memory
usage. Taking into account the
configuration of a single segment host,
calculate this setting as follows:
(seghost_physical_memory) /
(average_number_concurrent_que
ries)

master
session
reload
superuser

password_encryption Boolean on When a password is specified in CREATE
USER or ALTER USER without writing
either ENCRYPTED or UNENCRYPTED,
this option determines whether the
password is to be encrypted.

master
session
reload

pljava_classpath string A colon (:) separated list of the jar files
containing the Java classes used in any
PL/Java functions. The jar files listed here
must also be installed on all Greenplum
hosts in the following location:
$GPHOME/lib/postgresql/java/

master
session
reload

pljava_statement_cache_size number of
kilobytes

10 Sets the size in KB of the JRE MRU (Most
Recently Used) cache for prepared
statements.

master
system
restart
superuser

pljava_release_lingering_savepoi
nts

Boolean true If true, lingering savepoints used in
PL/Java functions will be released on
function exit. If false, savepoints will be
rolled back.

master
system
restart
superuser

pljava_vmoptions string -Xmx64M Defines the startup options for the Java
VM.

master
system
restart
superuser

port any valid port
number

5432 The database listener port for a
Greenplum instance. The master and
each segment has its own port. Port
numbers for the Greenplum system must
also be changed in the
gp_segment_configuration catalog.
You must shut down your Greenplum
Database system before changing port
numbers.

local
system
restart

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
max_statement_mem 492

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
random_page_cost floating point 100 Sets the planner’s estimate of the cost of
a nonsequentially fetched disk page. This
is measured as a multiple of the cost of a
sequential page fetch. A higher value
makes it more likely a sequential scan will
be used, a lower value makes it more
likely an index scan will be used.

master
session
reload

regex_flavor advanced
extended
basic

advanced The ‘extended’ setting may be useful for
exact backwards compatibility with
pre-7.4 releases of PostgreSQL.

master
session
reload

resource_cleanup_gangs_on_wait Boolean on If a statement is submitted through a
resource queue, clean up any idle query
executor worker processes before taking
a lock on the resource queue.

master
system
restart

resource_select_only Boolean off Sets the types of queries managed by
resource queues. If set to on, then
SELECT, SELECT INTO, CREATE
TABLE AS SELECT, and DECLARE
CURSOR commands are evaluated. If set
to off INSERT, UPDATE, and DELETE
commands will be evaluated as well.

master
system
restart

search_path a comma-
separated list
of schema
names

$user,publ
ic

Specifies the order in which schemas are
searched when an object is referenced by
a simple name with no schema
component. When there are objects of
identical names in different schemas, the
one found first in the search path is used.
The system catalog schema, pg_catalog,
is always searched, whether it is
mentioned in the path or not. When
objects are created without specifying a
particular target schema, they will be
placed in the first schema listed in the
search path. The current effective value
of the search path can be examined via
the SQL function current_schemas().
current_schemas() shows how the
requests appearing in search_path were
resolved.

master
session
reload

seq_page_cost floating point 1 Sets the planner’s estimate of the cost of
a disk page fetch that is part of a series of
sequential fetches.

master
session
reload

server_encoding <system
dependent>

UTF8 Reports the database encoding
(character set). It is determined when the
Greenplum Database array is initialized.
Ordinarily, clients need only be concerned
with the value of client_encoding.

read only

server_version string 8.2.15 Reports the version of PostgreSQL that
this release of Greenplum Database is
based on.

read only

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
random_page_cost 493

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
server_version_num integer 80215 Reports the version of PostgreSQL that
this release of Greenplum Database is
based on as an integer.

read only

shared_buffers integer > 16K *
max_connectio
ns

125MB Sets the amount of memory a Greenplum
server instance uses for shared memory
buffers. This setting must be at least 128
kilobytes and at least 16 kilobytes times
max_connections.

local
system
restart

shared_preload_libraries A comma-separated list of shared
libraries that are to be preloaded at server
start. PostgreSQL procedural language
libraries can be preloaded in this way,
typically by using the syntax
'$libdir/plXXX' where XXX is pgsql, perl,
tcl, or python. By preloading a shared
library, the library startup time is avoided
when the library is first used. If a specified
library is not found, the server will fail to
start.

local
system
restart

ssl Boolean off Enables SSL connections. master
system
restart

ssl_ciphers string ALL Specifies a list of SSL ciphers that are
allowed to be used on secure
connections. See the openssl manual
page for a list of supported ciphers.

master
system
restart

standard_conforming_strings Boolean of Reports whether ordinary string literals
('...') treat backslashes literally, as
specified in the SQL standard. The value
is currently always off, indicating that
backslashes are treated as escapes. It is
planned that this will change to on in a
future release when string literal syntax
changes to meet the standard.
Applications may check this parameter to
determine how string literals will be
processed. The presence of this
parameter can also be taken as an
indication that the escape string syntax
(E'...') is supported.

read only

statement_mem number of
kilobytes

128MB Allocates segment host memory per
query. The amount of memory allocated
with this parameter cannot exceed
max_statement_mem or the memory limit
on the resource queue through which the
query was submitted.When
gp_resqueue_memory_policy=auto,
statement_mem and resource queue
memory limits control query memory
usage.

master
session
reload

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
server_version_num 494

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
statement_timeout number of
milliseconds

0 Abort any statement that takes over the
specified number of milliseconds. 0 turns
off the limitation.

master
session
reload

stats_queue_level Boolean off Collects resource queue statistics on
database activity.

master
session
reload

superuser_reserved_connections integer <
max_connectio
ns

3 Determines the number of connection
slots that are reserved for Greenplum
Database superusers.

local
system
restart

tcp_keepalives_count number of lost
keepalives

0 How many keepalives may be lost before
the connection is considered dead. A
value of 0 uses the system default. If
TCP_KEEPCNT is not supported, this
parameter must be 0.
Use this parameter for all connections
that are not between a primary and mirror
segment. Use
gp_filerep_tcp_keepalives_count for
settings that are between a primary and
mirror segment.

local
system
restart

tcp_keepalives_idle number of
seconds

0 Number of seconds between sending
keepalives on an otherwise idle
connection. A value of 0 uses the system
default. If TCP_KEEPIDLE is not
supported, this parameter must be 0.
Use this parameter for all connections
that are not between a primary and mirror
segment. Use
gp_filerep_tcp_keepalives_idle for
settings that are between a primary and
mirror segment.

local
system
restart

tcp_keepalives_interval number of
seconds

0 How many seconds to wait for a response
to a keepalive before retransmitting. A
value of 0 uses the system default. If
TCP_KEEPINTVL is not supported, this
parameter must be 0.
Use this parameter for all connections
that are not between a primary and mirror
segment. Use
gp_filerep_tcp_keepalives_interval for
settings that are between a primary and
mirror segment.

local
system
restart

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
statement_timeout 495

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
temp_buffers integer 1024 Sets the maximum number of temporary
buffers used by each database session.
These are session-local buffers used only
for access to temporary tables. The
setting can be changed within individual
sessions, but only up until the first use of
temporary tables within a session. The
cost of setting a large value in sessions
that do not actually need a lot of
temporary buffers is only a buffer
descriptor, or about 64 bytes, per
increment. However if a buffer is actually
used, an additional 8192 bytes will be
consumed.

master
session
reload

TimeZone time zone
abbreviation

Sets the time zone for displaying and
interpreting time stamps. The default is to
use whatever the system environment
specifies as the time zone. See
Date/Time Keywords in the PostgreSQL
documentation.

local
restart

timezone_abbreviations string Default Sets the collection of time zone
abbreviations that will be accepted by the
server for date time input. The default is
Default, which is a collection that works
in most of the world. Australia and
India, and other collections can be
defined for a particular installation.
Possible values are names of
configuration files stored in
/share/postgresql/timezonesets/ in
the installation directory.

master
session
reload

track_activities Boolean on Enables the collection of statistics on the
currently executing command of each
session, along with the time at which that
command began execution. When
enabled, this information is not visible to
all users, only to superusers and the user
owning the session. This data can be
accessed via the pg_stat_activity system
view.

master
session
reload

track_counts Boolean off Enables the collection of row and block
level statistics on database activity. If
enabled, the data that is produced can be
accessed via the pg_stat and pg_statio
family of system views.

local
system
restart

transaction_isolation read
committed
serializable

read
committed

Sets the current transaction’s isolation
level.

master
session
reload

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
temp_buffers 496

http://www.postgresql.org/docs/8.2/static/datetime-keywords.html

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
transaction_read_only Boolean off Sets the current transaction’s read-only
status.

master
session
reload

transform_null_equals Boolean off When on, expressions of the form expr =
NULL (or NULL = expr) are treated as
expr IS NULL, that is, they return true if
expr evaluates to the null value, and false
otherwise. The correct
SQL-spec-compliant behavior of expr =
NULL is to always return null (unknown).

master
session
reload

unix_socket_directory directory path unset Specifies the directory of the
UNIX-domain socket on which the server
is to listen for connections from client
applications.

local
system
restart

unix_socket_group UNIX group
name

unset Sets the owning group of the
UNIX-domain socket. By default this is an
empty string, which uses the default
group for the current user.

local
system
restart

unix_socket_permissions numeric UNIX
file permission
mode (as
accepted by
the chmod or
umask
commands)

511 Sets the access permissions of the
UNIX-domain socket. UNIX-domain
sockets use the usual UNIX file system
permission set. Note that for a
UNIX-domain socket, only write
permission matters.

local
system
restart

update_process_title Boolean on Enables updating of the process title
every time a new SQL command is
received by the server. The process title
is typically viewed by the ps command.

local
system
restart

vacuum_cost_delay milliseconds <
0 (in multiples
of 10)

0 The length of time that the process will
sleep when the cost limit has been
exceeded. 0 disables the cost-based
vacuum delay feature.

local
system
restart

vacuum_cost_limit integer > 0 200 The accumulated cost that will cause the
vacuuming process to sleep.

local
system
restart

vacuum_cost_page_dirty integer > 0 20 The estimated cost charged when
vacuum modifies a block that was
previously clean. It represents the extra
I/O required to flush the dirty block out to
disk again.

local
system
restart

vacuum_cost_page_hit integer > 0 1 The estimated cost for vacuuming a
buffer found in the shared buffer cache. It
represents the cost to lock the buffer pool,
lookup the shared hash table and scan
the content of the page.

local
system
restart

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
transaction_read_only 497

Greenplum Database Reference Guide 4.2– Chapter 8: Server Configuration Parameters
For more information about limiting concurrent connections, see the Greenplum Database Database Administrator
Guide.

vacuum_cost_page_miss integer > 0 10 The estimated cost for vacuuming a
buffer that has to be read from disk. This
represents the effort to lock the buffer
pool, lookup the shared hash table, read
the desired block in from the disk and
scan its content.

local
system
restart

vacuum_freeze_min_age integer
0-1000000000
00

10000000
0

Specifies the cutoff age (in transactions)
that VACUUM should use to decide
whether to replace transaction IDs with
FrozenXID while scanning a table.
VACUUM will limit the effective value to
half the value of
autovacuum_freeze_max_age, so that
there is not an unreasonably short time
between forced autovacuums.

local
system
restart

Table 8.2 Server Configuration Parameters

Parameter
Value
Range

Default Description
Set
Classifications
vacuum_cost_page_miss 498

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
9. Greenplum MapReduce Specification

This specification describes the document format and schema for defining Greenplum
MapReduce jobs.

MapReduce is a programming model developed by Google for processing and
generating large data sets on an array of commodity servers. Greenplum MapReduce
allows programmers who are familiar with the MapReduce model to write map and
reduce functions and submit them to the Greenplum Database parallel engine for
processing.

To enable Greenplum to process MapReduce functions, the define the functions in a
document, then pass the document to the Greenplum MapReduce program,
gpmapreduce, for execution by the Greenplum Database parallel engine. The
Greenplum Database system distributes the input data, executes the program across a
set of machines, handles machine failures, and manages the required inter-machine
communication.

See the Greenplum Database Utility Guide for information about gpmapreduce.

Greenplum MapReduce Document Format
This section explains some basics of the Greenplum MapReduce document format to
help you get started creating your own Greenplum MapReduce documents.
Greenplum uses the YAML 1.1 document format and then implements its own
schema for defining the various steps of a MapReduce job.

All Greenplum MapReduce files must first declare the version of the YAML
specification they are using. After that, three dashes (---) denote the start of a
document, and three dots (...) indicate the end of a document without starting a new
one. Comment lines are prefixed with a pound symbol (#). It is possible to declare
multiple Greenplum MapReduce documents in the same file:

%YAML 1.1

Begin Document 1

...

Begin Document 2

...

Within a Greenplum MapReduce document, there are three basic types of data
structures or nodes: scalars, sequences and mappings.
Greenplum MapReduce Document Format 499

http://en.wikipedia.org/wiki/MapReduce
http://yaml.org/spec/1.1/

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
A scalar is a basic string of text indented by a space. If you have a scalar input that
spans multiple lines, a preceding pipe (|) denotes a literal style, where all line breaks
are significant. Alternatively, a preceding angle bracket (>) folds a single line break
to a space for subsequent lines that have the same indentation level. If a string contains
characters that have reserved meaning, the string must be quoted or the special
character must be escaped with a backslash (\).

Read each new line literally

somekey: |

 this value contains two lines

 and each line is read literally

Treat each new line as a space

anotherkey: >

 this value contains two lines

 but is treated as one continuous line

This quoted string contains a special character

ThirdKey: "This is a string: not a mapping"

A sequence is a list with each entry in the list on its own line denoted by a dash and a
space (-). Alternatively, you can specify an inline sequence as a comma-separated
list within square brackets. A sequence provides a set of data and gives it an order.
When you load a list into the Greenplum MapReduce program, the order is kept.

list sequence

- this

- is

- a list

- with

- five scalar values

inline sequence

[this, is, a list, with, five scalar values]
Greenplum MapReduce Document Format 500

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
A mapping is used to pair up data values with indentifiers called keys. Mappings use a
colon and space (:) for each key: value pair, or can also be specified inline as a
comma-separated list within curly braces. The key is used as an index for retrieving
data from a mapping.

a mapping of items

title: War and Peace

author: Leo Tolstoy

date: 1865

same mapping written inline

{title: War and Peace, author: Leo Tolstoy, date: 1865}

Keys are used to associate meta information with each node and specify the expected
node type (scalar, sequence or mapping). See “Greenplum MapReduce Document
Schema” on page 502 for the keys expected by the Greenplum MapReduce program.

The Greenplum MapReduce program processes the nodes of a document in order and
uses indentation (spaces) to determine the document hierarchy and the relationships of
the nodes to one another. The use of white space is significant. White space should not
be used simply for formatting purposes, and tabs should not be used at all.
Greenplum MapReduce Document Format 501

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
Greenplum MapReduce Document Schema
Greenplum MapReduce uses the YAML document framework and implements its
own YAML schema. The basic structure of a Greenplum MapReduce document is:

%YAML 1.1

VERSION: 1.0.0.2

DATABASE: dbname

USER: db_username

HOST: master_hostname

PORT: master_port

DEFINE:

 - INPUT:

 NAME: input_name

 FILE:

 - hostname:/path/to/file

 SSL: true | false

 CERTIFICATES_PATH: /path/to/certificates

 GPFDIST:

 - hostname:port:/file_pattern

 TABLE: table_name

 QUERY: SELECT_statement

 EXEC: command_string

 COLUMNS:

 - field_name data_type

 FORMAT: TEXT | CSV

 DELIMITER: delimiter_character

 ESCAPE: escape_character

 NULL: null_string

 QUOTE: csv_quote_character

 ERROR_LIMIT: integer

 ENCODING: database_encoding
Greenplum MapReduce Document Schema 502

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
 - OUTPUT:

 NAME: output_name

 FILE: file_path_on_client

 TABLE: table_name

 KEYS:

 - column_name

 MODE: REPLACE | APPEND

 - MAP:

 NAME: function_name

 FUNCTION: function_definition

 LANGUAGE: perl | python | c

 LIBRARY: /path/filename.so

 PARAMETERS:

 - name type

 RETURNS:

 - name type

 OPTIMIZE: STRICT IMMUTABLE

 MODE: SINGLE | MULTI

 - TRANSITION | CONSOLIDATE | FINALIZE:

 NAME: function_name

 FUNCTION: function_definition

 LANGUAGE: perl | python | c

 LIBRARY: /path/filename.so

 PARAMETERS:

 - name type

 RETURNS:

 - name type

 OPTIMIZE: STRICT IMMUTABLE

 MODE: SINGLE | MULTI
Greenplum MapReduce Document Schema 503

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
VERSION

Required. The version of the Greenplum MapReduce YAML specification. Current
versions are 1.0.0.1.

DATABASE

Optional. Specifies which database in Greenplum to connect to. If not specified,
defaults to the default database or $PGDATABASE if set.

USER

Optional. Specifies which database role to use to connect. If not specified, defaults
to the current user or $PGUSER if set. You must be a Greenplum superuser to run
functions written in untrusted Python and Perl. Regular database users can run
functions written in trusted Perl. You also must be a database superuser to run
MapReduce jobs that contain FILE, GPFDIST or EXEC input types.

 - REDUCE:

 NAME: reduce_job_name

 TRANSITION: transition_function_name

 CONSOLIDATE: consolidate_function_name

 FINALIZE: finalize_function_name

 INITIALIZE: value

 KEYS:

 - key_name

 - TASK:

 NAME: task_name

 SOURCE: input_name

 MAP: map_function_name

 REDUCE: reduce_function_name

EXECUTE:

 - RUN:

 SOURCE: input_or_task_name

 TARGET: output_name

 MAP: map_function_name

 REDUCE: reduce_function_name

...
Greenplum MapReduce Document Schema 504

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
HOST

Optional. Specifies Greenplum master host name. If not specified, defaults to
localhost or $PGHOST if set.

PORT

Optional. Specifies Greenplum master port. If not specified, defaults to 5432 or
$PGPORT if set.

DEFINE

Required. A sequence of definitions for this MapReduce document. The DEFINE
section must have at least one INPUT definition.

INPUT

Required. Defines the input data. Every MapReduce document must have at least
one input defined. Multiple input definitions are allowed in a document, but each
input definition can specify only one of these access types:a file, a gpfdist file
distribution program, a table in the database, an SQL command, or an operating
system command. See the Greenplum Database Utility Guide for information
about gpfdist.

NAME

A name for this input. Names must be unique with regards to the names of
other objects in this MapReduce job (such as map function, task, reduce
function and output names). Also, names cannot conflict with existing objects
in the database (such as tables, functions or views).

FILE

A sequence of one or more input files in the format:
seghostname:/path/to/filename. You must be a Greenplum Database
superuser to run MapReduce jobs with FILE input. The file must reside on a
Greenplum segment host.

SSL

Optional. Specifies usage of SSL encryption.

CERTIFICATES_PATH

Required when SSL is true; otherwise, optional.The certificate path is
required. The location specified in certificate_path must contain the
following files:

• The server certificate file, server.crt
• The server private key file, server.key
• The trusted certificate authorities, root.crt

The root directory (/) cannot be specified in certificate_path.
Greenplum MapReduce Document Schema 505

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
GPFDIST

A sequence of one or more running gpfdist file distribution programs in the
format: hostname[:port]/file_pattern. You must be a Greenplum
Database superuser to run MapReduce jobs with GPFDIST input, unless the
server configuration parameter gp_external_grant_privileges is set to on.

TABLE

The name of an existing table in the database.

QUERY

An SQL SELECT command to run within the database.

EXEC

An operating system command to run on the Greenplum segment hosts. The
command is run by all segment instances in the system by default. For
example, if you have four segment instances per segment host, the command
will be run four times on each host. You must be a Greenplum Database
superuser to run MapReduce jobs with EXEC input and the server
configuration parameter gp_external_enable_exec is set to on.

COLUMNS

Optional. Columns are specified as: column_name [data_type]. If not
specified, the default is value text. The DELIMITER character is what
separates two data value fields (columns). A row is determined by a line feed
character (0x0a).

FORMAT

Optional. Specifies the format of the data - either delimited text (TEXT) or
comma separated values (CSV) format. If the data format is not specified,
defaults to TEXT.

DELIMITER

Optional for FILE, GPFDIST and EXEC inputs. Specifies a single character that
separates data values. The default is a tab character in TEXT mode, a comma
in CSV mode.The delimiter character must only appear between any two data
value fields. Do not place a delimiter at the beginning or end of a row.

ESCAPE

Optional for FILE, GPFDIST and EXEC inputs. Specifies the single character
that is used for C escape sequences (such as \n,\t,\100, and so on) and for
escaping data characters that might otherwise be taken as row or column
delimiters. Make sure to choose an escape character that is not used anywhere
in your actual column data. The default escape character is a \ (backslash) for
text-formatted files and a " (double quote) for csv-formatted files, however it
is possible to specify another character to represent an escape. It is also
Greenplum MapReduce Document Schema 506

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
possible to disable escaping by specifying the value 'OFF' as the escape
value. This is very useful for data such as text-formatted web log data that has
many embedded backslashes that are not intended to be escapes.

NULL

Optional for FILE, GPFDIST and EXEC inputs. Specifies the string that
represents a null value. The default is \N in TEXT format, and an empty value
with no quotations in CSV format. You might prefer an empty string even in
TEXT mode for cases where you do not want to distinguish nulls from empty
strings. Any input data item that matches this string will be considered a null
value.

QUOTE

Optional for FILE, GPFDIST and EXEC inputs. Specifies the quotation character
for CSV formatted files. The default is a double quote ("). In CSV formatted
files, data value fields must be enclosed in double quotes if they contain any
commas or embedded new lines. Fields that contain double quote characters
must be surrounded by double quotes, and the embedded double quotes must
each be represented by a pair of consecutive double quotes. It is important to
always open and close quotes correctly in order for data rows to be parsed
correctly.

ERROR_LIMIT

If the input rows have format errors they will be discarded provided that the
error limit count is not reached on any Greenplum segment instance during
input processing. If the error limit is not reached, all good rows will be
processed and any error rows discarded.

ENCODING

Character set encoding to use for the data. Specify a string constant (such as
'SQL_ASCII'), an integer encoding number, or DEFAULT to use the default
client encoding. See “Character Set Support” for more information.

OUTPUT

Optional. Defines where to output the formatted data of this MapReduce job. If
output is not defined, the default is STDOUT (standard output of the client). You
can send output to a file on the client host or to an existing table in the database.

NAME

A name for this output. The default output name is STDOUT. Names must be
unique with regards to the names of other objects in this MapReduce job
(such as map function, task, reduce function and input names). Also, names
cannot conflict with existing objects in the database (such as tables, functions
or views).
Greenplum MapReduce Document Schema 507

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
FILE

Specifies a file location on the MapReduce client machine to output data in
the format: /path/to/filename

TABLE

Specifies the name of a table in the database to output data. If this table does
not exist prior to running the MapReduce job, it will be created using the
distribution policy specified with KEYS.

KEYS

Optional for TABLE output. Specifies the column(s) to use as the Greenplum
Database distribution key. If the EXECUTE task contains a REDUCE definition,
then the REDUCE keys will be used as the table distribution key by default.
Otherwise, the first column of the table will be used as the distribution key.

MODE

Optional for TABLE output. If not specified, the default is to create the table if
it does not already exist, but error out if it does exist. Declaring APPEND adds
output data to an existing table (provided the table schema matches the output
format) without removing any existing data. Declaring REPLACE will drop the
table if it exists and then recreate it. Both APPEND and REPLACE will create a
new table if one does not exist.

MAP

Required. Each MAP function takes data structured in (key, value) pairs,
processes each pair, and generates zero or more output (key, value) pairs. The
Greenplum MapReduce framework then collects all pairs with the same key from
all output lists and groups them together. This output is then passed to the REDUCE
task, which is comprised of TRANSITION | CONSOLIDATE | FINALIZE functions.
There is one predefined MAP function named IDENTITY that returns (key, value)
pairs unchanged. Although (key, value) are the default parameters, you can
specify other prototypes as needed.

TRANSITION | CONSOLIDATE | FINALIZE

TRANSITION, CONSOLIDATE and FINALIZE are all component pieces of REDUCE.
A TRANSITION function is required. CONSOLIDATE and FINALIZE functions are
optional. By default, all take state as the first of their input PARAMETERS, but
other prototypes can be defined as well.

A TRANSITION function iterates through each value of a given key and
accumulates values in a state variable. When the transition function is called on
the first value of a key, the state is set to the value specified by INITIALIZE of a
REDUCE job (or the default state value for the data type). A transition takes two
arguments as input; the current state of the key reduction, and the next value,
which then produces a new state.
Greenplum MapReduce Document Schema 508

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
If a CONSOLIDATE function is specified, TRANSITION processing is performed at
the segment-level before redistributing the keys across the Greenplum
interconnect for final aggregation (two-phase aggregation). Only the resulting
state value for a given key is redistributed, resulting in lower interconnect
traffic and greater parallelism. CONSOLIDATE is handled like a TRANSITION,
except that instead of (state + value) => state, it is (state + state) =>
state.

If a FINALIZE function is specified, it takes the final state produced by
CONSOLIDATE (if present) or TRANSITION and does any final processing before
emitting the final result. TRANSITION and CONSOLIDATE functions cannot return
a set of values. If you need a REDUCE job to return a set, then a FINALIZE is
necessary to transform the final state into a set of output values.

NAME

Required. A name for the function. Names must be unique with regards to the
names of other objects in this MapReduce job (such as function, task, input
and output names). You can also specify the name of a function built-in to
Greenplum Database. If using a built-in function, do not supply LANGUAGE or
a FUNCTION body.

FUNCTION

Optional. Specifies the full body of the function using the specified
LANGUAGE. If FUNCTION is not specified, then a built-in database function
corresponding to NAME is used.

LANGUAGE

Required when FUNCTION is used. Specifies the implementation language
used to interpret the function. This release has language support for perl,
python and C. If calling a built-in database function, LANGUAGE should not be
specified.

LIBRARY

Required when LANGUAGE is C (not allowed for other language functions). To
use this attribute, VERSION must be 1.0.0.2. The specified library file must be
installed prior to running the MapReduce job, and it must exist in the same
file system location on all Greenplum hosts (master and segments).

PARAMETERS

Optional. Function input parameters. The default type is text.

MAP default - key text, value text

TRANSITION default - state text, value text

CONSOLIDATE default - state1 text, state2 text (must have exactly two
input parameters of the same data type)

FINALIZE default - state text (single parameter only)
Greenplum MapReduce Document Schema 509

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
RETURNS

Optional. The default return type is text.

MAP default - key text, value text

TRANSITION default - state text (single return value only)

CONSOLIDATE default - state text (single return value only)

FINALIZE default - value text

OPTIMIZE

Optional optimization parameters for the function:

STRICT - function is not affected by NULL values

IMMUTABLE - function will always return the same value for a given input

MODE

Optional. Specifies the number of rows returned by the function.

MULTI - returns 0 or more rows per input record. The return value of the
function must be an array of rows to return, or the function must be written as
an iterator using yield in Python or return_next in Perl. MULTI is the
default mode for MAP and FINALIZE functions.

SINGLE - returns exactly one row per input record. SINGLE is the only mode
supported for TRANSITION and CONSOLIDATE functions. When used with
MAP and FINALIZE functions, SINGLE mode can provide modest performance
improvement.

REDUCE

Required. A REDUCE definition names the TRANSITION | CONSOLIDATE |
FINALIZE functions that comprise the reduction of (key, value) pairs to the final
result set. There are also several predefined REDUCE jobs you can execute, which
all operate over a column named value:

IDENTITY - returns (key, value) pairs unchanged

SUM - calculates the sum of numeric data

AVG - calculates the average of numeric data

COUNT - calculates the count of input data

MIN - calculates minimum value of numeric data

MAX - calculates maximum value of numeric data

NAME

Required. The name of this REDUCE job. Names must be unique with regards
to the names of other objects in this MapReduce job (function, task, input and
output names). Also, names cannot conflict with existing objects in the
database (such as tables, functions or views).
Greenplum MapReduce Document Schema 510

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
TRANSITION

Required. The name of the TRANSITION function.

CONSOLIDATE

Optional. The name of the CONSOLIDATE function.

FINALIZE

Optional. The name of the FINALIZE function.

INITIALIZE

Optional for text and float data types. Required for all other data types.
The default value for text is '' . The default value for float is 0.0 . Sets the
initial state value of the TRANSITION function.

KEYS

Optional. Defaults to [key, *]. When using a multi-column reduce it may
be necessary to specify which columns are key columns and which columns
are value columns. By default, any input columns that are not passed to the
TRANSITION function are key columns, and a column named key is always a
key column even if it is passed to the TRANSITION function. The special
indicator * indicates all columns not passed to the TRANSITION function. If
this indicator is not present in the list of keys then any unmatched columns
are discarded.

TASK

Optional. A TASK defines a complete end-to-end INPUT/MAP/REDUCE stage within
a Greenplum MapReduce job pipeline. It is similar to EXECUTE except it is not
immediately executed. A task object can be called as INPUT to further processing
stages.

NAME

Required. The name of this task. Names must be unique with regards to the
names of other objects in this MapReduce job (such as map function, reduce
function, input and output names). Also, names cannot conflict with existing
objects in the database (such as tables, functions or views).

SOURCE

The name of an INPUT or another TASK.

MAP

Optional. The name of a MAP function. If not specified, defaults to IDENTITY.

REDUCE

Optional. The name of a REDUCE function. If not specified, defaults to
IDENTITY.
Greenplum MapReduce Document Schema 511

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
EXECUTE

Required. EXECUTE defines the final INPUT/MAP/REDUCE stage within a Greenplum
MapReduce job pipeline.

RUN

SOURCE

Required. The name of an INPUT or TASK.

TARGET

Optional. The name of an OUTPUT. The default output is STDOUT.

MAP

Optional. The name of a MAP function. If not specified, defaults to IDENTITY.

REDUCE

Optional. The name of a REDUCE function. Defaults to IDENTITY.
Greenplum MapReduce Document Schema 512

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
Example Greenplum MapReduce Document

This example MapReduce job processes documents and looks for keywords in them.

It takes two database tables as input:

- documents (doc_id integer, url text, data text)

- keywords (keyword_id integer, keyword text)#

The documents data is searched for occurences of keywords and returns results of

url, data and keyword (a keyword can be multiple words, such as "high performance
computing")

%YAML 1.1

VERSION: 1.0.0.1

Connect to Greenplum Database using this database and role

DATABASE: webdata

USER: jsmith

Begin definition section

DEFINE:

 # Declare the input, which selects all columns and rows from the

 # 'documents' and 'keywords' tables.

 - INPUT:

 NAME: doc

 TABLE: documents

 - INPUT:

 NAME: kw

 TABLE: keywords

Define the map functions to extract terms from documents and keyword

This example simply splits on white space, but it would be possible

to make use of a python library like nltk (the natural language toolkit)

to perform more complex tokenization and word stemming.
Example Greenplum MapReduce Document 513

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
 - MAP:

 NAME: doc_map

 LANGUAGE: python

 FUNCTION: |

 i = 0 # the index of a word within the document

 terms = {} # a hash of terms and their indexes within the document

 # Lower-case and split the text string on space

 for term in data.lower().split():

 i = i + 1 # increment i (the index)

 # Check for the term in the terms list:

 # if stem word already exists, append the i value to the array entry

 # corresponding to the term. This counts multiple occurances of the word.

 # If stem word does not exist, add it to the dictionary with position i.

 # For example:

 # data: "a computer is a machine that manipulates data"

 # "a" [1, 4]

 # "computer" [2]

 # "machine" [3]

 # …

 if term in terms:

 terms[term] += ','+str(i)

 else:

 terms[term] = str(i)

 # Return multiple lines for each document. Each line consists of

 # the doc_id, a term and the positions in the data where the term appeared.

 # For example:

 # (doc_id => 100, term => "a", [1,4]

 # (doc_id => 100, term => "computer", [2]

 # …

 for term in terms:

 yield([doc_id, term, terms[term]])

 OPTIMIZE: STRICT IMMUTABLE

 PARAMETERS:

 - doc_id integer

 - data text

 RETURNS:

 - doc_id integer
Example Greenplum MapReduce Document 514

 - term text

 - positions text

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
 # The map function for keywords is almost identical to the one for documents

 # but it also counts of the number of terms in the keyword.

 - MAP:

 NAME: kw_map

 LANGUAGE: python

 FUNCTION: |

 i = 0

 terms = {}

 for term in keyword.lower().split():

 i = i + 1

 if term in terms:

 terms[term] += ','+str(i)

 else:

 terms[term] = str(i)

 # output 4 values including i (the total count for term in terms):

 yield([keyword_id, i, term, terms[term]])

 OPTIMIZE: STRICT IMMUTABLE

 PARAMETERS:

 - keyword_id integer

 - keyword text

 RETURNS:

 - keyword_id integer

 - nterms integer

 - term text

 - positions text

A TASK is an object that defines an entire INPUT/MAP/REDUCE stage

within a Greenplum MapReduce pipeline. It is like EXECUTION, but it is

executed only when called as input to other processing stages.

Identify a task called 'doc_prep' which takes in the 'doc' INPUT defined earlier

and runs the 'doc_map' MAP function which returns doc_id, term, [term_position]

 - TASK:

 NAME: doc_prep

 SOURCE: doc

 MAP: doc_map
Example Greenplum MapReduce Document 515

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
Identify a task called 'kw_prep' which takes in the 'kw' INPUT defined earlier

and runs the kw_map MAP function which returns kw_id, term, [term_position]

 - TASK:

 NAME: kw_prep

 SOURCE: kw

 MAP: kw_map

One advantage of Greenplum MapReduce is that MapReduce tasks can be

used as input to SQL operations and SQL can be used to process a MapReduce task.

This INPUT defines a SQL query that joins the output of the 'doc_prep'

TASK to that of the 'kw_prep' TASK. Matching terms are output to the 'candidate'

list (any keyword that shares at least one term with the document).

 - INPUT:

 NAME: term_join

 QUERY: |

 SELECT doc.doc_id, kw.keyword_id, kw.term, kw.nterms,

 doc.positions as doc_positions,

 kw.positions as kw_positions

 FROM doc_prep doc INNER JOIN kw_prep kw ON (doc.term = kw.term)

In Greenplum MapReduce, a REDUCE function is comprised of one or more functions.

A REDUCE has an initial 'state' variable defined for each grouping key. that is

A TRANSITION function adjusts the state for every value in a key grouping.

If present, an optional CONSOLIDATE function combines multiple

'state' variables. This allows the TRANSITION function to be executed locally at

the segment-level and only redistribute the accumulated 'state' over

the network. If present, an optional FINALIZE function can be used to perform

final computation on a state and emit one or more rows of output from the state.

#

This REDUCE function is called 'term_reducer' with a TRANSITION function

called 'term_transition' and a FINALIZE function called 'term_finalizer'

- REDUCE:

 NAME: term_reducer

 TRANSITION: term_transition

 FINALIZE: term_finalizer
Example Greenplum MapReduce Document 516

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
- TRANSITION:

 NAME: term_transition

 LANGUAGE: python

 PARAMETERS:

 - state text

 - term text

 - nterms integer

 - doc_positions text

 - kw_positions text

 FUNCTION: |

 # 'state' has an initial value of '' and is a colon delimited set

 # of keyword positions. keyword positions are comma delimited sets of

 # integers. For example, '1,3,2:4:'

 # If there is an existing state, split it into the set of keyword positions

 # otherwise construct a set of 'nterms' keyword positions - all empty

 if state:

 kw_split = state.split(':')

 else:

 kw_split = []

 for i in range(0,nterms):

 kw_split.append('')

 # 'kw_positions' is a comma delimited field of integers indicating what

 # position a single term occurs within a given keyword.

 # Splitting based on ',' converts the string into a python list.

 # add doc_positions for the current term

 for kw_p in kw_positions.split(','):

 kw_split[int(kw_p)-1] = doc_positions

 # This section takes each element in the 'kw_split' array and strings

 # them together placing a ':' in between each element from the array.

 # For example: for the keyword "computer software computer hardware",

 # the 'kw_split' array matched up to the document data of

 # "in the business of computer software software engineers"

 # would look like: ['5', '6,7', '5', '']

 # and the outstate would look like: 5:6,7:5:

 outstate = kw_split[0]

 for s in kw_split[1:]:

 outstate = outstate + ':' + s

 return outstate
Example Greenplum MapReduce Document 517

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
 - FINALIZE:

 NAME: term_finalizer

 LANGUAGE: python

 RETURNS:

 - count integer

 MODE: MULTI

 FUNCTION: |

 if not state:

 return 0

 kw_split = state.split(':')

 # This function does the following:

 # 1) Splits 'kw_split' on ':'

 # for example, 1,5,7:2,8 creates '1,5,7' and '2,8'

 # 2) For each group of positions in 'kw_split', splits the set on ','

 # to create ['1','5','7'] from Set 0: 1,5,7 and

 # eventually ['2', '8'] from Set 1: 2,8

 # 3) Checks for empty strings

 # 4) Adjusts the split sets by subtracting the position of the set

 # in the 'kw_split' array

 # ['1','5','7'] - 0 from each element = ['1','5','7']

 # ['2', '8'] - 1 from each element = ['1', '7']

 # 5) Resulting arrays after subtracting the offset in step 4 are

 # intersected and their overlaping values kept:

 # ['1','5','7'].intersect['1', '7'] = [1,7]

 # 6) Determines the length of the intersection, which is the number of

 # times that an entire keyword (with all its pieces) matches in the

 # document data.

 previous = None

 for i in range(0,len(kw_split)):

 isplit = kw_split[i].split(',')

 if any(map(lambda(x): x == '', isplit)):

 return 0

 adjusted = set(map(lambda(x): int(x)-i, isplit))

 if (previous):

 previous = adjusted.intersection(previous)

 else:

 previous = adjusted

 # return the final count
Example Greenplum MapReduce Document 518

 if previous:

 return len(previous)

 return 0

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
 # Define the 'term_match' task which is then executed as part

 # of the 'final_output' query. It takes the INPUT 'term_join' defined

 # earlier and uses the REDUCE function 'term_reducer' defined earlier

 - TASK:

 NAME: term_match

 SOURCE: term_join

 REDUCE: term_reducer

 - INPUT:

 NAME: final_output

 QUERY: |

 SELECT doc.*, kw.*, tm.count

 FROM documents doc, keywords kw, term_match tm

 WHERE doc.doc_id = tm.doc_id

 AND kw.keyword_id = tm.keyword_id

 AND tm.count > 0

Execute this MapReduce job and send output to STDOUT

EXECUTE:

 - RUN:

 SOURCE: final_output

 TARGET: STDOUT
Example Greenplum MapReduce Document 519

Greenplum Database Reference Guide 4.2– Chapter 9: Greenplum MapReduce Specification
MapReduce Flow Diagram

The following diagram shows the job flow of the MapReduce job defined in the
example:
Example Greenplum MapReduce Document 520

Greenplum Database Reference Guide 4.2 – Chapter 10: Greenplum PostGIS Extension
10. Greenplum PostGIS Extension

• About PostGIS
• Greenplum PostGIS Extension
• Enabling PostGIS Support
• Usage

About PostGIS
PostGIS is a spatial database extension for PostgreSQL that allows GIS (Geographic
Information Systems) objects to be stored in the database. PostGIS includes support
for GiST-based R-Tree spatial indexes and functions for analysis and processing of
GIS objects.

Go to http://postgis.refractions.net/ for more information.

Greenplum PostGIS Extension
The Greenplum PostGIS extension is available from the EMC Download Center. You
can install it using the Greenplum Package Manager (gppkg). For details, see gppkg
in the Greenplum Database Utility Guide.

Greenplum PostGIS Limitations

The Greenplum PostGIS extension does not support the following:

• estimated_extent functions
• PostGIS long transaction support

Enabling PostGIS Support
You must enable PostGIS support for each database that requires its use. To enable the
support, run the enabler script, postgis.sql, in your target database as follows.

psql -f postgis.sql -d your_database

Your database is now spatially enabled.
About PostGIS 521

http://postgis.refractions.net/
https://emc.subscribenet.com

Greenplum Database Reference Guide 4.2 – Chapter 10: Greenplum PostGIS Extension
Usage

The following example SQL statements create non-OpenGIS tables and geometries.
CREATE TABLE geom_test (gid int4, geom geometry,name
varchar(25));

INSERT INTO geom_test (gid, geom, name)

 VALUES (1, 'POLYGON((0 0 0,0 5 0,5 5 0,5 0 0,0 0 0))', '3D
Square');

INSERT INTO geom_test (gid, geom, name)

 VALUES (2, 'LINESTRING(1 1 1,5 5 5,7 7 5)', '3D Line');

INSERT INTO geom_test (gid, geom, name)

 VALUES (3, 'MULTIPOINT(3 4,8 9)', '2D Aggregate Point');

SELECT * from geom_test WHERE geom && 'BOX3D(2 2 0,3 3
0)'::box3d;

The following example SQL statements create proper OpenGIS entries in the
SPATIAL_REF_SYS and GEOMETRY_COLUMNS tables and ensure that all geometries are
created with an SRID.

INSERT INTO SPATIAL_REF_SYS

 (SRID, AUTH_NAME, AUTH_SRID, SRTEXT) VALUES

 (1, 'EPSG', 4269,

 'GEOGCS["NAD83",

 DATUM[

 "North_American_Datum_1983",

 SPHEROID[

 "GRS 1980",

 6378137,

 298.257222101

]

],

 PRIMEM["Greenwich",0],

 UNIT["degree",0.0174532925199433]]'

);

CREATE TABLE geotest (

 id INT4,

 name VARCHAR(32)

);

SELECT
AddGeometryColumn('db','geotest','geopoint',1,'POINT',2);
Usage 522

Greenplum Database Reference Guide 4.2 – Chapter 10: Greenplum PostGIS Extension
INSERT INTO geotest (id, name, geopoint)

 VALUES (1, 'Olympia', GeometryFromText('POINT(-122.90
46.97)',1));

INSERT INTO geotest (id, name, geopoint)

 VALUES (2, 'Renton', GeometryFromText('POINT(-122.22
47.50)',1));

SELECT name,AsText(geopoint) FROM geotest;

Spatial Indexes

PostgreSQL provides support for GiST spatial indexing. The GiST scheme offers
indexing even on large objects. It uses a system of lossy indexing in which smaller
objects act as proxies for larger ones in the index. In the PostGIS indexing system, all
objects use their bounding boxes as proxies in the index.

Building a Spatial Index

You can build a GiST index as follows:

CREATE INDEX indexname

ON tablename

USING GIST (geometryfield);
Usage 523

Greenplum Database Reference Guide 4.2 – Chapter 11: Summary of Greenplum Features
11. Summary of Greenplum Features

This section provides a high-level overview of the system requirements and feature set
of Greenplum Database. It contains the following topics:

• Greenplum SQL Standard Conformance
• Greenplum and PostgreSQL Compatibility

Greenplum SQL Standard Conformance
The SQL language was first formally standardized in 1986 by the American National
Standards Institute (ANSI) as SQL 1986. Subsequent versions of the SQL standard
have been released by ANSI and as International Organization for Standardization
(ISO) standards: SQL 1989, SQL 1992, SQL 1999, SQL 2003, SQL 2006, and finally
SQL 2008, which is the current SQL standard. The official name of the standard is
ISO/IEC 9075-14:2008. In general, each new version adds more features, although
occasionally features are deprecated or removed.

It is important to note that there are no commercial database systems that are fully
compliant with the SQL standard. Greenplum Database is almost fully compliant with
the SQL 1992 standard, with most of the features from SQL 1999. Several features
from SQL 2003 have also been implemented (most notably the SQL OLAP features).

This section addresses the important conformance issues of Greenplum Database as
they relate to the SQL standards. For a feature-by-feature list of Greenplum’s support
of the latest SQL standard, see “SQL 2008 Optional Feature Compliance”.

Core SQL Conformance

In the process of building a parallel, shared-nothing database system and query
optimizer, certain common SQL constructs are not currently implemented in
Greenplum Database. The following SQL constructs are not supported:

1. Some set returning subqueries in EXISTS or NOT EXISTS clauses that
Greenplum’s parallel optimizer cannot rewrite into joins.

2. UNION ALL of joined tables with subqueries.

3. Set-returning functions in the FROM clause of a subquery.

4. Backwards scrolling cursors, including the use of FETCH PRIOR, FETCH FIRST,
FETCH ABOLUTE, and FETCH RELATIVE.

5. In CREATE TABLE statements (on hash-distributed tables): a UNIQUE or PRIMARY
KEY clause must include all of (or a superset of) the distribution key columns.
Because of this restriction, only one UNIQUE clause or PRIMARY KEY clause is
allowed in a CREATE TABLE statement. UNIQUE or PRIMARY KEY clauses are not
allowed on randomly-distributed tables.
Greenplum SQL Standard Conformance 524

Greenplum Database Reference Guide 4.2 – Chapter 11: Summary of Greenplum Features
6. CREATE UNIQUE INDEX statements that do not contain all of (or a superset of) the
distribution key columns. CREATE UNIQUE INDEX is not allowed on
randomly-distributed tables.
Note that UNIQUE INDEXES (but not UNIQUE CONSTRAINTS) are enforced on a
part basis within a partitioned table. They guarantee the uniqueness of the key
within each part or sub-part.

7. VOLATILE or STABLE functions cannot execute on the segments, and so are
generally limited to being passed literal values as the arguments to their
parameters.

8. Triggers are not supported since they typically rely on the use of VOLATILE
functions.

9. Referential integrity constraints (foreign keys) are not enforced in Greenplum
Database. Users can declare foreign keys and this information is kept in the
system catalog, however.

10. Sequence manipulation functions CURRVAL and LASTVAL.

11. DELETE WHERE CURRENT OF and UPDATE WHERE CURRENT OF (positioned delete
and positioned update operations).

SQL 1992 Conformance

The following features of SQL 1992 are not supported in Greenplum Database:

1. NATIONAL CHARACTER (NCHAR) and NATIONAL CHARACTER VARYING
(NVARCHAR). Users can declare the NCHAR and NVARCHAR types, however they are
just synonyms for CHAR and VARCHAR in Greenplum Database.

2. CREATE ASSERTION statement.

3. INTERVAL literals are supported in Greenplum Database, but do not conform to
the standard.

4. GET DIAGNOSTICS statement.

5. GRANT INSERT or UPDATE privileges on columns. Privileges can only be granted
on tables in Greenplum Database.

6. GLOBAL TEMPORARY TABLEs and LOCAL TEMPORARY TABLEs. Greenplum
TEMPORARY TABLEs do not conform to the SQL standard, but many commercial
database systems have implemented temporary tables in the same way.
Greenplum temporary tables are the same as VOLATILE TABLEs in Teradata.

7. UNIQUE predicate.

8. MATCH PARTIAL for referential integrity checks (most likely will not be
implemented in Greenplum Database).
Greenplum SQL Standard Conformance 525

Greenplum Database Reference Guide 4.2 – Chapter 11: Summary of Greenplum Features
SQL 1999 Conformance

The following features of SQL 1999 are not supported in Greenplum Database:

1. Large Object data types: BLOB, CLOB, NCLOB. However, the BYTEA and TEXT
columns can store very large amounts of data in Greenplum Database (hundreds
of megabytes).

2. MODULE (SQL client modules).

3. CREATE PROCEDURE (SQL/PSM). This can be worked around in Greenplum
Database by creating a FUNCTION that returns void, and invoking the function as
follows:
SELECT myfunc(args);

4. The PostgreSQL/Greenplum function definition language (PL/PGSQL) is a subset
of Oracle’s PL/SQL, rather than being compatible with the SQL/PSM function
definition language. Greenplum Database also supports function definitions
written in Python, Perl, Java, and R.

5. BIT and BIT VARYING data types (intentionally omitted). These were deprecated
in SQL 2003, and replaced in SQL 2008.

6. Greenplum supports identifiers up to 63 characters long. The SQL standard
requires support for identifiers up to 128 characters long.

7. Prepared transactions (PREPARE TRANSACTION, COMMIT PREPARED, ROLLBACK
PREPARED). This also means Greenplum does not support XA Transactions (2
phase commit coordination of database transactions with external transactions).

8. CHARACTER SET option on the definition of CHAR() or VARCHAR() columns.

9. Specification of CHARACTERS or OCTETS (BYTES) on the length of a CHAR() or
VARCHAR() column. For example, VARCHAR(15 CHARACTERS) or VARCHAR(15
OCTETS) or VARCHAR(15 BYTES).

10. CURRENT_SCHEMA function.

11. CREATE DISTINCT TYPE statement. CREATE DOMAIN can be used as a
work-around in Greenplum.

12. The explicit table construct.

SQL 2003 Conformance

The following features of SQL 2003 are not supported in Greenplum Database:

1. MERGE statements.

2. IDENTITY columns and the associated GENERATED ALWAYS/GENERATED BY
DEFAULT clause. The SERIAL or BIGSERIAL data types are very similar to INT or
BIGINT GENERATED BY DEFAULT AS IDENTITY.
Greenplum SQL Standard Conformance 526

Greenplum Database Reference Guide 4.2 – Chapter 11: Summary of Greenplum Features
3. MULTISET modifiers on data types.

4. ROW data type.

5. Greenplum Database syntax for using sequences is non-standard. For example,
nextval('seq') is used in Greenplum instead of the standard NEXT VALUE FOR
seq.

6. GENERATED ALWAYS AS columns. Views can be used as a work-around.

7. The sample clause (TABLESAMPLE) on SELECT statements. The random()
function can be used as a work-around to get random samples from tables.

8. NULLS FIRST/NULLS LAST clause on SELECT statements and subqueries (nulls
are always last in Greenplum Database).

9. The partitioned join tables construct (PARTITION BY in a join).

10. GRANT SELECT privileges on columns. Privileges can only be granted on tables in
Greenplum Database. Views can be used as a work-around.

11. For CREATE TABLE x (LIKE(y)) statements, Greenplum does not support the
[INCLUDING|EXCLUDING] [DEFAULTS|CONSTRAINTS|INDEXES] clauses.

12. Greenplum array data types are almost SQL standard compliant with some
exceptions. Generally customers should not encounter any problems using them.

SQL 2008 Conformance

The following features of SQL 2008 are not supported in Greenplum Database:

1. BINARY and VARBINARY data types. BYTEA can be used in place of VARBINARY in
Greenplum Database.

2. FETCH FIRST or FETCH NEXT clause for SELECT, for example:
SELECT id, name FROM tab1 ORDER BY id OFFSET 20 ROWS FETCH
NEXT 10 ROWS ONLY;

Greenplum has LIMIT and LIMIT OFFSET clauses instead.

3. The ORDER BY clause is ignored in views and subqueries unless a LIMIT clause is
also used. This is intentional, as the Greenplum optimizer cannot determine when
it is safe to avoid the sort, causing an unexpected performance impact for such
ORDER BY clauses. To work around, you can specify a really large LIMIT. For
example: SELECT * FROM mytable ORDER BY 1 LIMIT 9999999999

4. The row subquery construct is not supported.

5. TRUNCATE TABLE does not accept the CONTINUE IDENTITY and RESTART
IDENTITY clauses.
Greenplum SQL Standard Conformance 527

Greenplum Database Reference Guide 4.2 – Chapter 11: Summary of Greenplum Features
Greenplum and PostgreSQL Compatibility
Greenplum Database is based on PostgreSQL 8.2 with a few features added in from
the 8.3 release. To support the distributed nature and typical workload of a Greenplum
Database system, some SQL commands have been added or modified, and there are a
few PostgreSQL features that are not supported. Greenplum has also added features
not found in PostgreSQL, such as physical data distribution, parallel query
optimization, external tables, resource queues for workload management and
enhanced table partitioning. For full SQL syntax and references, see the “SQL
Command Reference”.

Table 11.1 SQL Support in Greenplum Database

SQL Command
Supported in
Greenplum

Modifications, Limitations, Exceptions

ALTER AGGREGATE YES

ALTER CONVERSION YES

ALTER DATABASE YES

ALTER DOMAIN YES

ALTER FILESPACE YES Greenplum Database parallel tablespace feature - not in
PostgreSQL 8.2.15.

ALTER FUNCTION YES

ALTER GROUP YES An alias for ALTER ROLE

ALTER INDEX YES

ALTER LANGUAGE YES

ALTER OPERATOR YES

ALTER OPERATOR CLASS NO

ALTER RESOURCE QUEUE YES Greenplum Database workload management feature - not in
PostgreSQL.

ALTER ROLE YES Greenplum Database Clauses:
RESOURCE QUEUE queue_name | none

ALTER SCHEMA YES

ALTER SEQUENCE YES

ALTER TABLE YES Unsupported Clauses / Options:
CLUSTER ON
ENABLE/DISABLE TRIGGER

Greenplum Database Clauses:
ADD | DROP | RENAME | SPLIT | EXCHANGE
PARTITION | SET SUBPARTITION TEMPLATE | SET
WITH (REORGANIZE=true | false)| SET
DISTRIBUTED BY

ALTER TABLESPACE YES
Greenplum and PostgreSQL Compatibility 528

Greenplum Database Reference Guide 4.2 – Chapter 11: Summary of Greenplum Features
ALTER TRIGGER NO

ALTER TYPE YES

ALTER USER YES An alias for ALTER ROLE

ANALYZE YES

BEGIN YES

CHECKPOINT YES

CLOSE YES

CLUSTER YES

COMMENT YES

COMMIT YES

COMMIT PREPARED NO

COPY YES Modified Clauses:
ESCAPE [AS] 'escape' | 'OFF'
Greenplum Database Clauses:
[LOG ERRORS INTO error_table]
 SEGMENT REJECT LIMIT count [ROWS|PERCENT]

CREATE AGGREGATE YES Unsupported Clauses / Options:
[, SORTOP = sort_operator]

Greenplum Database Clauses:
[, PREFUNC = prefunc]

Limitations:
The functions used to implement the aggregate must be
IMMUTABLE functions.

CREATE CAST YES

CREATE CONSTRAINT TRIGGER NO

CREATE CONVERSION YES

CREATE DATABASE YES

CREATE DOMAIN YES

CREATE EXTERNAL TABLE YES Greenplum Database parallel ETL feature - not in
PostgreSQL 8.2.15.

CREATE FILESPACE YES Greenplum Database parallel tablespace feature - not in
PostgreSQL 8.2.15.

Table 11.1 SQL Support in Greenplum Database

SQL Command
Supported in
Greenplum

Modifications, Limitations, Exceptions
Greenplum and PostgreSQL Compatibility 529

Greenplum Database Reference Guide 4.2 – Chapter 11: Summary of Greenplum Features
CREATE FUNCTION YES Limitations:
Functions defined as STABLE or VOLATILE can be
executed in Greenplum Database provided that they are
executed on the master only. STABLE and VOLATILE
functions cannot be used in statements that execute at the
segment level.

CREATE GROUP YES An alias for CREATE ROLE

CREATE INDEX YES Greenplum Database Clauses:
USING bitmap (bitmap indexes)
Limitations:
UNIQUE indexes are allowed only if they contain all of (or a
superset of) the Greenplum distribution key columns. On
partitioned tables, a unique index is only supported within an
individual partition - not across all partitions.
CONCURRENTLY keyword not supported in Greenplum.

CREATE LANGUAGE YES

CREATE OPERATOR YES Limitations:
The function used to implement the operator must be an
IMMUTABLE function.

CREATE OPERATOR CLASS NO

CREATE OPERATOR FAMILY NO

CREATE RESOURCE QUEUE YES Greenplum Database workload management feature - not in
PostgreSQL 8.2.15.

CREATE ROLE YES Greenplum Database Clauses:
RESOURCE QUEUE queue_name | none

CREATE RULE YES

CREATE SCHEMA YES

CREATE SEQUENCE YES Limitations:
• The lastval and currval functions are not supported.
• The setval function is only allowed in queries that do not

operate on distributed data.

Table 11.1 SQL Support in Greenplum Database

SQL Command
Supported in
Greenplum

Modifications, Limitations, Exceptions
Greenplum and PostgreSQL Compatibility 530

Greenplum Database Reference Guide 4.2 – Chapter 11: Summary of Greenplum Features
CREATE TABLE YES Unsupported Clauses / Options:
[GLOBAL | LOCAL]
REFERENCES
FOREIGN KEY
[DEFERRABLE | NOT DEFERRABLE]

Limited Clauses:
• UNIQUE or PRIMARY KEY constraints are only allowed on

hash-distributed tables (DISTRIBUTED BY), and the
constraint columns must be the same as or a superset of
the distribution key columns of the table and must include
all the distribution key columns of the partitioning key.

Greenplum Database Clauses:
DISTRIBUTED BY (column, [...]) |
DISTRIBUTED RANDOMLY

PARTITION BY type (column [, ...])
 (partition_specification, [...])
WITH (appendonly=true
 [,compresslevel=value,blocksize=value]
)

CREATE TABLE AS YES See CREATE TABLE

CREATE TABLESPACE NO Greenplum Database Clauses:
FILESPACE filespace_name

CREATE TRIGGER NO

CREATE TYPE YES Limitations:
The functions used to implement a new base type must be
IMMUTABLE functions.

CREATE USER YES An alias for CREATE ROLE

CREATE VIEW YES

DEALLOCATE YES

DECLARE YES Unsupported Clauses / Options:
SCROLL
FOR UPDATE [OF column [, ...]]

Limitations:
Cursors are non-updatable, and cannot be
backward-scrolled. Forward scrolling is supported.

DELETE YES Unsupported Clauses / Options:
RETURNING

DROP AGGREGATE YES

DROP CAST YES

DROP CONVERSION YES

Table 11.1 SQL Support in Greenplum Database

SQL Command
Supported in
Greenplum

Modifications, Limitations, Exceptions
Greenplum and PostgreSQL Compatibility 531

Greenplum Database Reference Guide 4.2 – Chapter 11: Summary of Greenplum Features
DROP DATABASE YES

DROP DOMAIN YES

DROP EXTERNAL TABLE YES Greenplum Database parallel ETL feature - not in
PostgreSQL 8.2.15.

DROP FILESPACE YES Greenplum Database parallel tablespace feature - not in
PostgreSQL 8.2.15.

DROP FUNCTION YES

DROP GROUP YES An alias for DROP ROLE

DROP INDEX YES

DROP LANGUAGE YES

DROP OPERATOR YES

DROP OPERATOR CLASS NO

DROP OWNED NO

DROP RESOURCE QUEUE YES Greenplum Database workload management feature - not in
PostgreSQL 8.2.15.

DROP ROLE YES

DROP RULE YES

DROP SCHEMA YES

DROP SEQUENCE YES

DROP TABLE YES

DROP TABLESPACE NO

DROP TRIGGER NO

DROP TYPE YES

DROP USER YES An alias for DROP ROLE

DROP VIEW YES

END YES

EXECUTE YES

EXPLAIN YES

Table 11.1 SQL Support in Greenplum Database

SQL Command
Supported in
Greenplum

Modifications, Limitations, Exceptions
Greenplum and PostgreSQL Compatibility 532

Greenplum Database Reference Guide 4.2 – Chapter 11: Summary of Greenplum Features
FETCH YES Unsupported Clauses / Options:
LAST
PRIOR
BACKWARD
BACKWARD ALL

Limitations:
Cannot fetch rows in a nonsequential fashion; backward
scan is not supported.

GRANT YES

INSERT YES Unsupported Clauses / Options:
RETURNING

LISTEN NO

LOAD YES

LOCK YES

MOVE YES See FETCH

NOTIFY NO

PREPARE YES

PREPARE TRANSACTION NO

REASSIGN OWNED YES

REINDEX YES

RELEASE SAVEPOINT YES

RESET YES

REVOKE YES

ROLLBACK YES

ROLLBACK PREPARED NO

ROLLBACK TO SAVEPOINT YES

SAVEPOINT YES

SELECT YES Limitations:
• Limited use of VOLATILE and STABLE functions in FROM

or WHERE clauses
• Text search (Tsearch2) is not supported
• FETCH FIRST or FETCH NEXT clauses not supported

Greenplum Database Clauses (OLAP):
[GROUP BY grouping_element [, ...]]
[WINDOW window_name AS
(window_specification)]
[FILTER (WHERE condition)] applied to an aggregate
function in the SELECT list

Table 11.1 SQL Support in Greenplum Database

SQL Command
Supported in
Greenplum

Modifications, Limitations, Exceptions
Greenplum and PostgreSQL Compatibility 533

Greenplum Database Reference Guide 4.2 – Chapter 11: Summary of Greenplum Features
SELECT INTO YES See SELECT

SET YES

SET CONSTRAINTS NO In PostgreSQL, this only applies to foreign key constraints,
which are currently not enforced in Greenplum Database.

SET ROLE YES

SET SESSION AUTHORIZATION YES Deprecated as of PostgreSQL 8.1 - see SET ROLE

SET TRANSACTION YES

SHOW YES

START TRANSACTION YES

TRUNCATE YES

UNLISTEN NO

UPDATE YES Unsupported Clauses:
RETURNING

Limitations:
• SET not allowed for Greenplum distribution key columns.

VACUUM YES Limitations:
VACUUM FULL is not recommended in Greenplum
Database.

VALUES YES

Table 11.1 SQL Support in Greenplum Database

SQL Command
Supported in
Greenplum

Modifications, Limitations, Exceptions
Greenplum and PostgreSQL Compatibility 534

	Preface
	About This Guide
	About the Greenplum Database Documentation Set
	Document Conventions
	Text Conventions
	Command Syntax Conventions

	Getting Support
	Product information
	Technical support

	1. SQL Command Reference
	SQL Syntax Summary
	ABORT
	ALTER AGGREGATE
	ALTER CONVERSION
	ALTER DATABASE
	ALTER DOMAIN
	ALTER EXTERNAL TABLE
	ALTER FILESPACE
	ALTER FUNCTION
	ALTER GROUP
	ALTER INDEX
	ALTER LANGUAGE
	ALTER OPERATOR
	ALTER OPERATOR CLASS
	ALTER PROTOCOL
	ALTER RESOURCE QUEUE
	ALTER ROLE
	ALTER SCHEMA
	ALTER SEQUENCE
	ALTER TABLE
	ALTER TABLESPACE
	ALTER TRIGGER
	ALTER TYPE
	ALTER USER
	ANALYZE
	BEGIN
	CHECKPOINT
	CLOSE
	CLUSTER
	COMMENT
	COMMIT
	COPY
	CREATE AGGREGATE
	CREATE CAST
	CREATE CONVERSION
	CREATE DATABASE
	CREATE DOMAIN
	CREATE EXTERNAL TABLE
	CREATE FUNCTION
	CREATE GROUP
	CREATE INDEX
	CREATE LANGUAGE
	CREATE OPERATOR
	CREATE OPERATOR CLASS
	CREATE RESOURCE QUEUE
	CREATE ROLE
	CREATE RULE
	CREATE SCHEMA
	CREATE SEQUENCE
	CREATE TABLE
	CREATE TABLE AS
	CREATE TABLESPACE
	CREATE TRIGGER
	CREATE TYPE
	CREATE USER
	CREATE VIEW
	DEALLOCATE
	DECLARE
	DELETE
	DROP AGGREGATE
	DROP CAST
	DROP CONVERSION
	DROP DATABASE
	DROP DOMAIN
	DROP EXTERNAL TABLE
	DROP FILESPACE
	DROP FUNCTION
	DROP GROUP
	DROP INDEX
	DROP LANGUAGE
	DROP OPERATOR
	DROP OPERATOR CLASS
	DROP OWNED
	DROP RESOURCE QUEUE
	DROP ROLE
	DROP RULE
	DROP TYPE
	DROP SCHEMA
	DROP SEQUENCE
	DROP TABLE
	DROP TABLESPACE
	DROP TRIGGER
	DROP USER
	DROP VIEW
	END
	EXECUTE
	EXPLAIN
	FETCH
	GRANT
	INSERT
	LOAD
	LOCK
	MOVE
	PREPARE
	REASSIGN OWNED
	REINDEX
	RELEASE SAVEPOINT
	RESET
	REVOKE
	ROLLBACK
	ROLLBACK TO SAVEPOINT
	SAVEPOINT
	SELECT
	SELECT INTO
	SET
	SET ROLE
	SET SESSION AUTHORIZATION
	SET TRANSACTION
	SHOW
	START TRANSACTION
	TRUNCATE
	UPDATE
	VACUUM
	VALUES

	2. SQL 2008 Optional Feature Compliance
	3. System Catalog Reference
	System Tables
	gp_configuration_history
	gp_distributed_log
	gp_distributed_xacts
	gp_distribution_policy
	gpexpand.expansion_progress
	gpexpand.status
	gpexpand.status_detail
	gp_fastsequence
	gp_fault_strategy
	gp_global_sequence
	gp_id
	gp_interfaces
	gp_master_mirroring
	gp_persistent_database_node
	gp_persistent_filespace_node
	gp_persistent_relation_node
	gp_persistent_tablespace_node
	gp_pgdatabase
	gp_relation_node
	gp_resqueue_status
	gp_san_configuration
	gp_segment_configuration
	gp_transaction_log
	gp_version_at_initdb
	pg_aggregate
	pg_am
	pg_amop
	pg_amproc
	pg_appendonly
	pg_attrdef
	pg_attribute
	pg_attribute_encoding
	pg_auth_members
	pg_authid
	pg_autovacuum
	pg_cast
	pg_class
	pg_compression
	pg_constraint
	pg_conversion
	pg_database
	pg_depend
	pg_description
	pg_exttable
	pg_filespace
	pg_filespace_entry
	pg_index
	pg_inherits
	pg_language
	pg_largeobject
	pg_listener
	pg_locks
	pg_opclass
	pg_namespace
	pg_operator
	pg_partition
	pg_partition_columns
	pg_partition_encoding
	pg_partition_rule
	pg_partition_templates
	pg_partitions
	pg_pltemplate
	pg_proc
	pg_resourcetype
	pg_resqueue
	pg_resqueue_attributes
	pg_resqueuecapability
	pg_rewrite
	pg_roles
	pg_shdepend
	pg_shdescription
	pg_stat_activity
	pg_stat_last_operation
	pg_stat_last_shoperation
	pg_stat_operations
	pg_stat_partition_operations
	pg_statistic
	pg_stat_resqueues
	pg_tablespace
	pg_trigger
	pg_type
	pg_type_encoding
	pg_user_mapping
	pg_window

	4. Greenplum Environment Variables
	Required Environment Variables
	Optional Environment Variables

	5. The gp_toolkit Administrative Schema
	Checking for Tables that Need Routine Maintenance
	gp_bloat_diag
	gp_stats_missing

	Checking for Locks
	gp_locks_on_relation
	gp_locks_on_resqueue

	Viewing Greenplum Database Server Log Files
	gp_log_command_timings
	gp_log_database
	gp_log_master_concise
	gp_log_system

	Checking Server Configuration Files
	gp_param_setting('parameter_name')
	gp_param_settings_seg_value_diffs

	Checking for Failed Segments
	gp_pgdatabase_invalid

	Checking Resource Queue Activity and Status
	gp_resq_activity
	gp_resq_activity_by_queue
	gp_resq_priority_statement
	gp_resq_role
	gp_resqueue_status

	Viewing Users and Groups (Roles)
	gp_roles_assigned

	Checking Database Object Sizes and Disk Space
	gp_size_of_all_table_indexes
	gp_size_of_database
	gp_size_of_index
	gp_size_of_partition_and_indexes_disk
	gp_size_of_schema_disk
	gp_size_of_table_and_indexes_disk
	gp_size_of_table_and_indexes_licensing
	gp_size_of_table_disk
	gp_size_of_table_uncompressed
	gp_disk_free

	Checking for Uneven Data Distribution
	gp_skew_coefficients
	gp_skew_idle_fractions

	6. Greenplum Database Data Types
	7. Character Set Support
	Setting the Character Set
	Character Set Conversion Between Server and Client

	8. Server Configuration Parameters
	add_missing_from
	application_name
	array_nulls
	authentication_timeout
	backslash_quote
	block_size
	bonjour_name
	check_function_bodies
	client_encoding
	client_min_messages
	cpu_index_tuple_cost
	cpu_operator_cost
	cpu_tuple_cost
	cursor_tuple_fraction
	custom_variable_classes
	DateStyle
	db_user_namespace
	deadlock_timeout
	debug_assertions
	debug_pretty_print
	debug_print_parse
	debug_print_plan
	debug_print_prelim_plan
	debug_print_rewritten
	debug_print_slice_table
	default_statistics_target
	default_tablespace
	default_transaction_isolation
	default_transaction_read_only
	dynamic_library_path
	effective_cache_size
	enable_bitmapscan
	enable_groupagg
	enable_hashagg
	enable_hashjoin
	enable_indexscan
	enable_mergejoin
	enable_nestloop
	enable_seqscan
	enable_sort
	enable_tidscan
	escape_string_warning
	explain_pretty_print
	extra_float_digits
	from_collapse_limit
	gp_adjust_selectivity_for_outerjo ins
	gp_analyze_relative_error
	gp_autostats_mode
	gp_autostats_on_change_thresh old
	gp_cached_segworkers_threshold
	gp_command_count
	gp_connectemc_mode
	gp_connections_per_thread
	gp_content
	gp_dbid
	gp_debug_linger
	gp_dynamic_partition_pruning
	gp_email_from
	gp_email_smtp_password
	gp_email_smtp_server
	gp_email_smtp_userid
	gp_email_to
	gp_enable_adaptive_nestloop
	gp_enable_agg_distinct
	gp_enable_agg_distinct_pruning
	gp_enable_direct_dispatch
	gp_enable_fallback_plan
	gp_enable_fast_sri
	gp_enable_gpperfmon
	gp_enable_groupext_distinct_gat her
	gp_enable_groupext_distinct_pru ning
	gp_enable_multiphase_agg
	gp_enable_predicate_propagatio n
	gp_enable_preunique
	gp_enable_sequential_window_pl ans
	gp_enable_sort_distinct
	gp_enable_sort_limit
	gp_external_enable_exec
	gp_external_grant_privileges
	gp_external_max_segs
	gp_filerep_tcp_keepalives_count
	gp_filerep_tcp_keepalives_idle
	gp_filerep_tcp_keepalives_interv al
	gp_fts_probe_interval
	gp_fts_probe_threadcount
	gp_fts_probe_timeout
	gp_gpperfmon_send_interval
	gp_hadoop_home
	gp_hadoop_target_version
	gp_hashjoin_tuples_per_bucket
	gp_idf_deduplicate
	auto
	gp_interconnect_hash_multiplier
	gp_interconnect_queue_depth
	gp_interconnect_setup_timeout
	gp_interconnect_type
	gp_log_format
	gp_max_csv_line_length
	gp_max_databases
	gp_max_filespaces
	gp_max_local_distributed_cache
	gp_max_packet_size
	gp_max_tablespaces
	gp_motion_cost_per_row
	gp_num_contents_in_cluster
	gp_reject_percent_threshold
	gp_reraise_signal
	gp_resqueue_memory_policy
	gp_resqueue_priority
	gp_resqueue_priority_cpucores_ per_segment
	gp_resqueue_priority_sweeper_i nterval
	gp_role
	gp_safefswritesize
	gp_segment_connect_timeout
	gp_segments_for_planner
	gp_session_id
	gp_set_proc_affinity
	gp_set_read_only
	gp_snmp_community
	gp_snmp_monitor_address
	gp_snmp_use_inform_or_trap
	gp_statistics_pullup_from_child_ partition
	gp_statistics_use_fkeys
	gp_vmem_idle_resource_timeout
	gp_vmem_protect_limit
	gp_vmem_protect_segworker_ca che_limit
	gp_workfile_checksumming
	gp_workfile_compress_algorithm
	gpperfmon_port
	integer_datetimes
	IntervalStyle
	join_collapse_limit
	krb_caseins_users
	krb_server_keyfile
	krb_srvname
	lc_collate
	lc_ctype
	lc_messages
	lc_monetary
	lc_numeric
	lc_time
	listen_addresses
	local_preload_libraries
	log_autostats
	log_connections
	log_disconnections
	log_dispatch_stats
	log_duration
	log_error_verbosity
	log_executor_stats
	log_hostname
	log_min_duration_statement
	log_min_error_statement
	log_min_messages
	log_parser_stats
	log_planner_stats
	log_rotation_age
	log_rotation_size
	log_statement
	log_statement_stats
	log_timezone
	log_truncate_on_rotation
	max_appendonly_tables
	max_connections
	max_files_per_process
	max_fsm_pages
	max_fsm_relations
	max_function_args
	max_identifier_length
	max_index_keys
	max_locks_per_transaction
	max_prepared_transactions
	max_resource_portals_per_trans action
	max_resource_queues
	max_stack_depth
	max_statement_mem
	password_encryption
	pljava_classpath
	pljava_statement_cache_size
	pljava_release_lingering_savepoi nts
	pljava_vmoptions
	port
	random_page_cost
	regex_flavor
	resource_cleanup_gangs_on_wait
	resource_select_only
	search_path
	seq_page_cost
	server_encoding
	server_version
	server_version_num
	shared_buffers
	shared_preload_libraries
	ssl
	ssl_ciphers
	standard_conforming_strings
	statement_mem
	statement_timeout
	stats_queue_level
	superuser_reserved_connections
	tcp_keepalives_count
	tcp_keepalives_idle
	tcp_keepalives_interval
	temp_buffers
	TimeZone
	timezone_abbreviations
	track_activities
	track_counts
	transaction_isolation
	transaction_read_only
	transform_null_equals
	unix_socket_directory
	unix_socket_group
	unix_socket_permissions
	update_process_title
	vacuum_cost_delay
	vacuum_cost_limit
	vacuum_cost_page_dirty
	vacuum_cost_page_hit
	vacuum_cost_page_miss
	vacuum_freeze_min_age

	9. Greenplum MapReduce Specification
	Greenplum MapReduce Document Format
	Greenplum MapReduce Document Schema
	Example Greenplum MapReduce Document
	MapReduce Flow Diagram

	10. Greenplum PostGIS Extension
	About PostGIS
	Greenplum PostGIS Extension
	Greenplum PostGIS Limitations

	Enabling PostGIS Support
	Usage
	Spatial Indexes

	11. Summary of Greenplum Features
	Greenplum SQL Standard Conformance
	Core SQL Conformance
	SQL 1992 Conformance
	SQL 1999 Conformance
	SQL 2003 Conformance
	SQL 2008 Conformance

	Greenplum and PostgreSQL Compatibility

